A. Stewart, L. Rifkin, P. Amess, V. Kirkbride, J. Townsend et al., Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm, The Lancet, vol.353, issue.9165, pp.1653-1657, 1999.
DOI : 10.1016/S0140-6736(98)07130-X

L. Abernethy, R. Cooke, and L. Foulder-hughes, Caudate and Hippocampal Volumes, Intelligence, and Motor Impairment in 7-Year-Old Children Who Were Born Preterm, Pediatric Research, vol.317, issue.5, pp.884-893, 2004.
DOI : 10.1203/01.PDR.0000117843.21534.49

S. Hintz, D. Kendrick, B. Vohr, W. Poole, and R. Higgins, Changes in Neurodevelopmental Outcomes at 18 to 22 Months' Corrected Age Among Infants of Less Than 25 Weeks' Gestational Age Born in 1993-1999, PEDIATRICS, vol.115, issue.6, pp.1645-1651, 1993.
DOI : 10.1542/peds.2004-2215

B. Freeman and J. Crapo, Hyperoxia increases oxygen radical production in rat lungs and lung mitochondria, J Biol Chem, vol.256, pp.10986-10992, 1981.

T. Alon, I. Hemo, A. Itin, J. Pe-'er, J. Stone et al., Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity, Nature Medicine, vol.9, issue.10, pp.1024-1028, 1995.
DOI : 10.1038/356397a0

A. Madan and J. Penn, Animal models of oxygen-induced retinopathy, Front Biosci, vol.8, pp.1030-1043, 2003.

M. Beauchamp, F. Sennlaub, G. Speranza, F. Gobeil, . Jr et al., Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy, Free Radical Biology and Medicine, vol.37, issue.11, pp.1885-1894, 2004.
DOI : 10.1016/j.freeradbiomed.2004.09.008

G. Baydas, F. Karatas, M. Gursu, H. Bozkurt, N. Ilhan et al., Antioxidant Vitamin Levels in Term and Preterm Infants and Their Relation to Maternal Vitamin Status, Archives of Medical Research, vol.33, issue.3, pp.276-280, 2002.
DOI : 10.1016/S0188-4409(02)00356-9

T. Ogawa, A. Ohira, and T. Amemiya, Manganese ad copper-zinc superoxide dismutases in the developing rat retina, Acta Histochemica, vol.99, issue.1, pp.1-12, 1997.
DOI : 10.1016/S0065-1281(97)80002-5

R. Morton, K. Das, X. Guo, D. Ikle, and C. White, Effect of oxygen on lung superoxide dismutase activities in premature baboons with bronchopulmonary dysplasia, Am J Physiol, vol.276, pp.64-74, 1999.

E. Gerdin, O. Tyden, and U. Eriksson, The Development of Antioxidant Enzymatic Defense in the Perinatal Rat Lung: Activities of Superoxide Dismutase, Glutathione Peroxidase, and Catalase, Pediatric Research, vol.19, issue.7, pp.687-691, 1985.
DOI : 10.1203/00006450-198507000-00010

T. Fujii, Y. Ikeda, H. Yamashita, and J. Fujii, Transient Elevation of Glutathione Peroxidase 1 Around the Time of Eyelid Opening in the Neonatal Rat, Journal of Ocular Pharmacology and Therapeutics, vol.19, issue.4, pp.361-369, 2003.
DOI : 10.1089/108076803322279417

M. Arkovitz, C. Szabo, V. Garcia, H. Wong, and J. Wispe, DIFFERENTIAL EFFECTS OF HYPEROXIA ON THE INDUCIBLE AND CONSTITUTIVE ISOFORMS OF NITRIC OXIDE SYNTHASE IN THE LUNG, Shock, vol.7, issue.5, pp.345-350, 1997.
DOI : 10.1097/00024382-199705000-00006

S. Brooks, X. Gu, S. Samuel, D. Marcus, M. Bartoli et al., Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice, Invest Ophthalmol Vis Sci, vol.42, pp.222-228, 2001.

T. Murohara, T. Asahara, M. Silver, C. Bauters, H. Masuda et al., Nitric oxide synthase modulates angiogenesis in response to tissue ischemia., Journal of Clinical Investigation, vol.101, issue.11, pp.2567-2578, 1998.
DOI : 10.1172/JCI1560

F. Sennlaub, Y. Courtois, and O. Goureau, Inducible nitric oxide synthase mediates the change from retinal to vitreal neovascularization in ischemic retinopathy, Journal of Clinical Investigation, vol.107, issue.6, pp.717-725, 2001.
DOI : 10.1172/JCI10874

URL : https://hal.archives-ouvertes.fr/inserm-00150818

U. Felderhoff-mueser, P. Bittigau, M. Sifringer, B. Jarosz, E. Korobowicz et al., Oxygen causes cell death in the developing brain, Neurobiology of Disease, vol.17, issue.2, pp.273-282, 2004.
DOI : 10.1016/j.nbd.2004.07.019

J. Penn, M. Henry, P. Wall, and B. Tolman, The range of PaO2 variation determines the severity of oxygen-induced retinopathy in newborn rats, Invest Ophthalmol Vis Sci, vol.36, pp.2063-2070, 1995.

J. Dobbing, J. Sands, and C. Gratrix, Cell size and cell number: a reconsideration of organ growth and catch-up potential, Proc Nutr Soc, vol.38, p.99, 1979.

E. Kermorvant-duchemin, F. Sennlaub, M. Sirinyan, S. Brault, G. Andelfinger et al., Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1???dependent microvascular degeneration, Nature Medicine, vol.274, issue.12, pp.1339-1345, 2005.
DOI : 10.1038/nm1336

URL : https://hal.archives-ouvertes.fr/inserm-00150825

F. Gobeil, . Jr, I. Dumont, A. Marrache, A. Vazquez-tello et al., Receptors, Circulation Research, vol.90, issue.6, pp.682-689, 2002.
DOI : 10.1161/01.RES.0000013303.17964.7A

M. Niesman, K. Johnson, and J. Penn, Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity, Neurochemical Research, vol.22, issue.5, pp.597-605, 1997.
DOI : 10.1023/A:1022474120512

B. Illi, P. Puri, L. Morgante, M. Capogrossi, and C. Gaetano, Nuclear Factor-??B and cAMP Response Element Binding Protein Mediate Opposite Transcriptional Effects on the Flk-1/KDR Gene Promoter, Circulation Research, vol.86, issue.12, pp.110-117, 2000.
DOI : 10.1161/01.RES.86.12.e110

S. Greenacre and H. Ischiropoulos, Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction, Free Radical Research, vol.277, issue.6, pp.541-581, 2001.
DOI : 10.1080/01635588609513875

P. Hardy, K. Peri, I. Lahaie, D. Varma, and S. Chemtob, Increased Nitric Oxide Synthesis and Action Preclude Choroidal Vasoconstriction to Hyperoxia in Newborn Pigs, Circulation Research, vol.79, issue.3, pp.504-511, 1996.
DOI : 10.1161/01.RES.79.3.504

G. Taglialatela, J. Perez-polo, and D. Rassin, Induction of apoptosis in the CNS during development by the combination of hyperoxia and inhibition of glutathione synthesis, Free Radical Biology and Medicine, vol.25, issue.8, pp.936-942, 1998.
DOI : 10.1016/S0891-5849(98)00131-2

J. Garthwaite and S. Charles, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain, Nature, vol.336, issue.6197, pp.385-388, 1988.
DOI : 10.1038/336385a0

G. Wei, V. Dawson, and J. Zweier, Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1455, issue.1, pp.23-34, 1999.
DOI : 10.1016/S0925-4439(99)00051-4

D. Atochin, I. Demchenko, J. Astern, A. Boso, C. Piantadosi et al., Contributions of Endothelial and Neuronal Nitric Oxide Synthases to Cerebrovascular Responses to Hyperoxia, Journal of Cerebral Blood Flow & Metabolism, vol.57, pp.1219-1226, 2003.
DOI : 10.1097/01.WCB.0000089601.87125.E4

P. Ekert, N. Keenan, H. Whyte, J. Boulton, and M. Taylor, Visual Evoked Potentials for Prediction of Neurodevelopmental Outcome in Preterm Infants, Neonatology, vol.71, issue.3, pp.148-155, 1997.
DOI : 10.1159/000244410

M. Al-shabrawey, A. El-remessy, X. Gu, S. Brooks, M. Hamed et al., Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase, Mol Vis, vol.9, pp.549-558, 2003.

S. Shiva, J. Oh, A. Landar, E. Ulasova, A. Venkatraman et al., Nitroxia: The pathological consequence of dysfunction in the nitric oxide???cytochrome c oxidase signaling pathway, Free Radical Biology and Medicine, vol.38, issue.3, pp.297-306, 2005.
DOI : 10.1016/j.freeradbiomed.2004.10.037

A. El-remessy, M. Bartoli, D. Platt, D. Fulton, and R. Caldwell, Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration, Journal of Cell Science, vol.118, issue.1, pp.243-252, 2005.
DOI : 10.1242/jcs.01612

S. Kotamraju, Y. Tampo, A. Keszler, C. Chitambar, J. Joseph et al., Nitric oxide inhibits H2O2-induced transferrin receptor-dependent apoptosis in endothelial cells: Role of ubiquitin-proteasome pathway, Proceedings of the National Academy of Sciences, vol.100, issue.19, pp.10653-10658, 2003.
DOI : 10.1073/pnas.1933581100

S. Miller, D. Ferriero, C. Leonard, R. Piecuch, D. Glidden et al., Early Brain Injury in Premature Newborns Detected with Magnetic Resonance Imaging is Associated with Adverse Early Neurodevelopmental Outcome, The Journal of Pediatrics, vol.147, issue.5, pp.609-616, 2005.
DOI : 10.1016/j.jpeds.2005.06.033

G. Vogel, DEVELOPMENTAL BIOLOGY: The Unexpected Brains Behind Blood Vessel Growth, Science, vol.307, issue.5710, pp.665-667, 2005.
DOI : 10.1126/science.307.5710.665