S. Garofalo, E. Vuorio, M. Metsaranta, R. Rosati, D. J. Toman et al., Reduced amounts of cartilage collagen fibrils and growth plate anomalies in transgenic mice harboring a glycine-to-cysteine mutation in the mouse type II procollagen alpha 1-chain gene., Proceedings of the National Academy of Sciences, vol.88, issue.21, pp.9648-9652, 1991.
DOI : 10.1073/pnas.88.21.9648

O. Jacenko, P. A. Luvalle, and B. R. Olsen, Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition, Nature, vol.365, issue.6441, pp.56-61, 1993.
DOI : 10.1038/365056a0

B. Lee, H. Vissing, F. Ramirez, D. Rogers, and D. And-rimoin, Identification of the molecular defect in a family with spondyloepiphyseal dysplasia, Science, vol.244, issue.4907, pp.978-980, 1989.
DOI : 10.1126/science.2543071

H. Watanabe, K. Nakata, K. Kimata, I. Nakanishi, and Y. Yamada, Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan, Proceedings of the National Academy of Sciences, vol.113, issue.11, pp.6943-6947, 1997.
DOI : 10.1001/archopht.1995.01100110114034

H. Horton, T. Miyashita, K. Kohno, J. R. Hassel, and Y. Yamada, Identification of a phenotype-specific enhancer in the first intron of the rat collagen II gene., Proceedings of the National Academy of Sciences, vol.84, issue.24, pp.8864-8868, 1987.
DOI : 10.1073/pnas.84.24.8864

V. Lefebvre, G. Zhou, K. Mukhopadhyay, C. N. Smith, Z. Zhang et al., An 18-base-pair sequence in the mouse proalpha1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes., Molecular and Cellular Biology, vol.16, issue.8, pp.4512-4535, 1996.
DOI : 10.1128/MCB.16.8.4512

K. K. Leung, K. J. Ng, K. K. Ho, P. P. Tam, C. et al., Gene in Transgenic Mice, The Journal of Cell Biology, vol.108, issue.6, pp.1291-1300, 1998.
DOI : 10.1101/gad.7.7a.1277

J. L. Boulay, C. Dennefeld, A. , and A. , The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers, Nature, vol.330, issue.6146, pp.395-398, 1987.
DOI : 10.1038/330395a0

K. Hemavathy, S. I. Ashraf, and Y. T. Ip, Snail/Slug family of repressors: slowly going into the fast lane of development and cancer, Gene, vol.257, issue.1, pp.1-12, 2000.
DOI : 10.1016/S0378-1119(00)00371-1

E. Batlle, E. Sancho, C. Franci, D. Dominguez, M. Monfar et al., The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells, Nature Cell Biology, vol.17, issue.2, pp.84-89, 2000.
DOI : 10.1083/jcb.111.3.1265

N. Fuse, S. Hirose, and S. Hayash, Diploidy of Drosophila imaginal cells is maintained by a transcriptional repressor encoded by escargot., Genes & Development, vol.8, issue.19, pp.2270-2281, 1994.
DOI : 10.1101/gad.8.19.2270

T. Inukai, A. Inoue, H. Kurosawa, K. Goi, T. Shinjyo et al., SLUG, a ces-1-Related Zinc Finger Transcription Factor Gene with Antiapoptotic Activity, Is a Downstream Target of the E2A-HLF Oncoprotein, Molecular Cell, vol.4, issue.3, pp.343-352, 1999.
DOI : 10.1016/S1097-2765(00)80336-6

C. Labonne and M. Bronner-fraser, Snail-Related Transcriptional Repressors Are Required in Xenopus for both the Induction of the Neural Crest and Its Subsequent Migration, Developmental Biology, vol.221, issue.1, pp.195-205, 2000.
DOI : 10.1006/dbio.2000.9609

H. Nakayama, I. C. Scott, and J. C. Cross, The Transition to Endoreduplication in Trophoblast Giant Cells Is Regulated by the mSNA Zinc Finger Transcription Factor, Developmental Biology, vol.199, issue.1, pp.150-163, 1998.
DOI : 10.1006/dbio.1998.8914

M. A. Nieto, M. G. Sargent, D. G. Wilkinson, and J. Cooke, Control of cell behavior during vertebrate development by Slug, a zinc finger gene, Science, vol.264, issue.5160, pp.835-839, 1994.
DOI : 10.1126/science.7513443

P. Savagner, K. M. Yamada, and J. P. Thiery, The Zinc-Finger Protein Slug Causes Desmosome Dissociation, an Initial and Necessary Step for Growth Factor???induced Epithelial???Mesenchymal Transition, The Journal of Cell Biology, vol.14, issue.6, pp.1403-1419, 1997.
DOI : 10.1038/361543a0

A. M. Arias, Epithelial Mesenchymal Interactions in Cancer and Development, Cell, vol.105, issue.4, pp.425-431, 2001.
DOI : 10.1016/S0092-8674(01)00365-8

H. Kataoka, T. Murayama, M. Yokode, S. Mori, H. Sano et al., A novel Snail-related transcription factor Smuc regulates basic helix-loop-helix transcription factor activities via specific E-box motifs, Nucleic Acids Research, vol.28, issue.2, pp.626-633, 2000.
DOI : 10.1093/nar/28.2.626

P. Savagner, I. Karavanova, A. Perantoni, J. P. Thiery, and K. M. Yamada, Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis, Developmental Dynamics, vol.172, issue.2, pp.182-187, 1998.
DOI : 10.1002/(SICI)1097-0177(199810)213:2<182::AID-AJA3>3.0.CO;2-C

T. Atsumi, Y. Miwa, and Y. Ikawa, A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells, Cell Differentiation and Development, vol.30, issue.2, pp.109-116, 1990.
DOI : 10.1016/0922-3371(90)90079-C

B. Newman, L. I. Gigout, L. Sundre, M. E. Grant, W. et al., Coordinated expression of matrix Gla protein is required during endochondral ossification for chondrocyte survival, The Journal of Cell Biology, vol.84, issue.3, pp.659-666, 2001.
DOI : 10.1083/jcb.147.5.1097

N. C. Andrews and D. V. Faller, A rapid micrqpreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells, Nucleic Acids Research, vol.19, issue.9, p.2499, 1991.
DOI : 10.1093/nar/19.9.2499

C. Shukunami, K. Ishizeki, T. Atsumi, Y. Ohta, F. Suzuki et al., Cellular Hypertrophy and Calcification of Embryonal Carcinoma-Derived Chondrogenic Cell Line ATDC5 In Vitro, Journal of Bone and Mineral Research, vol.130, issue.8, pp.1174-1188, 1997.
DOI : 10.1359/jbmr.1997.12.8.1174

J. Bonaventure, N. Kadhom, L. Cohen-solal, K. H. Ng, K. H. Bourguignon et al., Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads, Experimental Cell Research, vol.212, issue.1, pp.97-104, 1994.
DOI : 10.1006/excr.1994.1123

F. Lemare, N. Streimberg, C. Le-griel, S. Demignot, A. et al., Dedifferentiated chondrocytes cultured in alginate beads: Restoration of the differentiated phenotype and of the metabolic responses to Interleukin-1??, Journal of Cellular Physiology, vol.44, issue.2, pp.303-313, 1998.
DOI : 10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S

B. Petit, K. Masuda, A. L. Soua, L. Otten, D. Pietryla et al., Characterization of Crosslinked Collagens Synthesized by Mature Articular Chondrocytes Cultured in Alginate Beads: Comparison of Two Distinct Matrix Compartments, Experimental Cell Research, vol.225, issue.1, pp.151-161, 1996.
DOI : 10.1006/excr.1996.0166

R. Mayor, N. Guerrero, R. M. Young, J. L. Gomez-skarmeta, and C. Cuellar, A novel function for the Xslug gene: control of dorsal mesendoderm development by repressing BMP-4, Mechanisms of Development, vol.97, issue.1-2, pp.47-56, 2000.
DOI : 10.1016/S0925-4773(00)00412-3

D. M. Bell, K. K. Leung, S. C. Wheatley, L. J. Ng, S. Zhou et al., SOX9 directly regulates the type-ll collagen gene, Nature Genetics, vol.7, issue.2, pp.174-178, 1997.
DOI : 10.1038/ng0195-15

P. Thorogood, J. Bee, and K. Von-der-mark, Transient expression of collagen type II at epitheliomesenchymal interfaces during morphogenesis of the cartilaginous neurocranium, Developmental Biology, vol.116, issue.2, pp.497-509, 1986.
DOI : 10.1016/0012-1606(86)90150-8