N. D. Rawlings and A. J. Barrett, [13] Evolutionary families of metallopeptidases, Methods Enzymol, vol.248, pp.183-228, 1995.
DOI : 10.1016/0076-6879(95)48015-3

B. W. Matthews, Structural basis of the action of thermolysin and related zinc peptidases, Accounts of Chemical Research, vol.21, issue.9, pp.333-340, 1988.
DOI : 10.1021/ar00153a003

T. Benchetrit, V. Bissery, J. P. Mornon, A. Devault, P. Crine et al., Primary structure homologies between two zinc metallopeptidases, the neutral endopeptidase 24.11 ("enkephalinase") and thermolysin, through clustering analysis, Biochemistry, vol.27, issue.2, pp.592-596, 1988.
DOI : 10.1021/bi00402a014

A. Devault, V. Sales, C. Nault, A. Beaumont, B. P. Roques et al., Exploration of the catalytic site of endopeptidase 24.11 by site-directed mutagenesis Histidine residues 583 and 587 are essential for catalysis, FEBS Letters, vol.252, issue.1, pp.54-58, 1988.
DOI : 10.1016/0014-5793(88)80701-4

N. Dion, L. Moual, H. Crine, P. Boileau, and G. , Kinetic evidence that His-711 of neutral endopeptidase 24.11 is involved in stabilization of the transition state, FEBS Letters, vol.2, issue.3, pp.301-304, 1993.
DOI : 10.1016/0014-5793(93)80533-Z

L. Moual, H. Dion, N. Roques, B. P. Crine, P. Boileau et al., Asp650 is crucial for catalytic activity of neutral endopeptidase 24-11, European Journal of Biochemistry, vol.158, issue.1, pp.475-480, 1994.
DOI : 10.1038/351761a0

C. Marie-claire, E. Ru¡et, S. Antonczac, A. Beaumont, M. J. O-'donohue et al., Evidence by Site-Directed Mutagenesis That Arginine 203 of Thermolysin and Arginine 717 of Neprilysin (Neutral Endopeptidase) Play Equivalent Critical Roles in Substrate Hydrolysis and Inhibitor Binding, Biochemistry, vol.36, issue.45, pp.13938-13945, 1997.
DOI : 10.1021/bi9712495

URL : https://hal.archives-ouvertes.fr/inserm-00171023

B. P. Roques, M. C. Fournie-È-zaluski, E. Soroca, J. M. Lecomte, B. Malfroy et al., The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice, Nature, vol.188, issue.5788, pp.286-287, 1980.
DOI : 10.1038/288286a0

O. Donohue, M. J. Roques, B. P. Beaumont, and A. , Rokko coding for the thermostable metalloprotease thermolysin, Biochemical Journal, vol.300, issue.2, pp.599-603, 1994.
DOI : 10.1042/bj3000599

F. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

C. Marie-claire, B. P. Roques, and A. Beaumont, Intramolecular Processing of Prothermolysin, Journal of Biological Chemistry, vol.273, issue.10, pp.5697-5701, 1998.
DOI : 10.1074/jbc.273.10.5697

URL : https://hal.archives-ouvertes.fr/inserm-00145189

M. Schmidt, B. Kro-Ë-ger, E. Jacob, H. Seulberger, T. Subkowski et al., Molecular characterization of human and bovine endothelin converting enzyme (ECE-1), FEBS Letters, vol.180, issue.2-3, pp.238-243, 1994.
DOI : 10.1016/0014-5793(94)01277-6

N. Emoto and M. Yanagisawa, Endothelin-converting Enzyme-2 Is a Membrane-bound, Phosphoramidon-sensitive Metalloprotease with Acidic pH Optimum, Journal of Biological Chemistry, vol.270, issue.25, pp.15262-15268, 1995.
DOI : 10.1074/jbc.270.25.15262

M. L. Lipman, D. Panda, H. P. Bennet, J. E. Henderson, E. Shane et al., Cloning of Human PEX cDNA: EXPRESSION, SUBCELLULAR LOCALIZATION, AND ENDOPEPTIDASE ACTIVITY, Journal of Biological Chemistry, vol.273, issue.22, pp.13729-13737, 1998.
DOI : 10.1074/jbc.273.22.13729

Y. N. Chen, M. R. Ehlers, and J. F. Riordan, The functional role of tyrosine-200 in human testis angiotensin-converting enzyme, Biochemical and Biophysical Research Communications, vol.184, issue.1, pp.306-309, 1992.
DOI : 10.1016/0006-291X(92)91193-T

G. Vazeux, X. Iturrioz, P. Corvol, and C. Llorens-cortes, A tyrosine residue essential for catalytic activity in aminopeptidase A, Biochemical Journal, vol.327, issue.3, pp.883-889, 1997.
DOI : 10.1042/bj3270883