B. W. Matthews, Structural basis of the action of thermolysin and related zinc peptidases, Accounts of Chemical Research, vol.21, issue.9, pp.333-340, 1988.
DOI : 10.1021/ar00153a003

D. R. Wetmore, S. Wong, and R. S. Roche, The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus, Molecular Microbiology, vol.160, issue.12, pp.1593-1604, 1992.
DOI : 10.1038/339483a0

O. Donohue, M. J. Roques, B. P. Beaumont, and A. , Rokko coding for the thermostable metalloprotease thermolysin, Biochemical Journal, vol.300, issue.2, pp.599-603, 1994.
DOI : 10.1042/bj3000599

U. Shinde and M. Inouye, Intramolecular chaperones and protein folding, Trends in Biochemical Sciences, vol.18, issue.11, pp.442-446, 1993.
DOI : 10.1016/0968-0004(93)90146-E

J. Eder and A. R. Fersht, Pro-sequence-assisted protein folding, Molecular Microbiology, vol.88, issue.4, pp.609-614, 1995.
DOI : 10.1038/339483a0

M. Takagi and T. Imanaka, Role of the pre-pro-region of neutral protease in secretion in Bacillus subtilis, Journal of Fermentation and Bioengineering, vol.67, issue.2, pp.71-76, 1989.
DOI : 10.1016/0922-338X(89)90182-7

D. R. Wetmore, S. Wong, and R. S. Roche, The efficiency of processing and secretion of the thermolysin-like neutral protease from Bacillus cereus does not require the whole prosequence, but does depend on the nature of the amino acid sequence in the region of the cleavage site, Molecular Microbiology, vol.160, issue.5, pp.747-759, 1994.
DOI : 10.1038/339483a0

P. Braun, J. Tommassen, and A. Filloux, Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa, Molecular Microbiology, vol.19, issue.2, pp.297-306, 1996.
DOI : 10.1046/j.1365-2958.1996.381908.x

K. Mciver, E. Kessler, and D. E. Ohman, Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase., Journal of Bacteriology, vol.173, issue.24, pp.7781-7789, 1991.
DOI : 10.1128/jb.173.24.7781-7789.1991

A. Beaumont, M. J. O-'donohue, N. Paredes, N. Rousselet, M. Assicot et al., The Role of Histidine 231 in Thermolysin-like Enzymes.: A SITE-DIRECTED MUTAGENESIS STUDY, Journal of Biological Chemistry, vol.270, issue.28, pp.16803-16808, 1995.
DOI : 10.1074/jbc.270.28.16803

G. Vriend and V. Eijsink, Prediction and analysis of structure, stability and unfolding of thermolysin-like proteases, Journal of Computer-Aided Molecular Design, vol.5, issue.4, pp.367-396, 1993.
DOI : 10.1007/BF02337558

V. Eijsink, O. R. Veltman, W. Aukema, G. Vriend, and G. Venema, Structural determinants of the stability of thermolysin-like proteinases, Nature Structural Biology, vol.55, issue.5, pp.374-379, 1995.
DOI : 10.1016/0263-7855(87)80010-3

S. Litster, D. Wetmore, R. Roche, C. , and P. , Thermolysin-Like Neutral Protease at 2.8 ?? Resolution, Acta Crystallographica Section D Biological Crystallography, vol.52, issue.3, pp.543-550, 1996.
DOI : 10.1107/S0907444995016684

K. Shimada, M. Takahashi, A. J. Turner, and K. Tanzawa, with a similar catalytic mechanism and a distinct substrate binding mechanism compared with neutral endopeptidase-24.11, Biochemical Journal, vol.315, issue.3, pp.863-867, 1996.
DOI : 10.1042/bj3150863

F. Sambrook, E. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

M. A. Innis, G. , and D. H. , PCR Protocols: A Guide to Method and Applications, pp.3-12, 1990.

S. M. Ho, H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pearse, Site-directed mutagenesis by overlap extension using the polymerase chain reaction, Gene, vol.77, issue.1, pp.51-59, 1989.
DOI : 10.1016/0378-1119(89)90358-2

T. Benchetrit, M. Fournié-zaluski, R. , and B. P. , Relationship between the inhibitory potencies of thiorphan and retrothiorphan enantiomers on thermolysin and neutral endopeptidase 24.11 and their interactions with the thermolysin active site by computer modelling, Biochemical and Biophysical Research Communications, vol.147, issue.3, pp.1034-1040, 1987.
DOI : 10.1016/S0006-291X(87)80174-2

U. Shinde and M. Inouye, Folding Mediated by an Intramolecular Chaperone: Autoprocessing Pathway of the Precursor Resolvedviaa Substrate Assisted Catalysis Mechanism, Journal of Molecular Biology, vol.247, issue.3, pp.390-395, 1995.
DOI : 10.1006/jmbi.1994.0147

Y. Li and M. Inouye, The Mechanism of Autoprocessing of the Propeptide of Prosubtilisin E: Intramolecular or Intermolecular Event?, Journal of Molecular Biology, vol.262, issue.5, pp.591-594, 1996.
DOI : 10.1006/jmbi.1996.0537

A. Volkov, J. , and F. , Evidence for Intramolecular Processing of Prosubtilisin Sequestered on a Solid Support, Journal of Molecular Biology, vol.262, issue.5, pp.595-599, 1996.
DOI : 10.1006/jmbi.1996.0538

X. Zhu, Y. Ohta, F. Jordan, and M. Inouye, Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process, Nature, vol.339, issue.6224, pp.483-484, 1989.
DOI : 10.1038/339483a0

Y. Ohta, H. Hojo, S. Aimoto, T. Kobayashi, X. Zhu et al., Pro-peptide as an intermolecular chaperone: renaturation of denatured subtilisin E with a synthetic pro-peptide, Molecular Microbiology, vol.261, issue.6, pp.1507-1510, 1991.
DOI : 10.1038/339483a0

D. Baker, J. L. Silen, and D. A. Agard, Protease pro region required for folding is a potent inhibitor of the mature enzyme, Proteins: Structure, Function, and Genetics, vol.336, issue.4, pp.339-344, 1992.
DOI : 10.1002/prot.340120406

S. Kojima, T. Minagawa, and K. Miura, The propeptide of subtilisin BPN??? as a temporary inhibitor and effect of an amino acid replacement on its inhibitory activity, FEBS Letters, vol.3, issue.1, pp.128-132, 1997.
DOI : 10.1016/S0014-5793(97)00678-9

A. Corbett, F. Ahmad, and R. Roche, Domain unfolding and the stability of thermolysin in guanidine hydrochloride, Biochemistry and Cell Biology, vol.64, issue.10, pp.953-961, 1988.
DOI : 10.1139/o86-127