S. Nirasawa, Y. Nakajima, Z. Z. Zhang, M. Yoshida, and K. Hayashi, Intramolecular chaperone and inhibitor activities of a propeptide from a bacterial zinc aminopeptidase, Biochem. J, pp.341-366, 1999.

Z. Z. Zhang, S. Nirasawa, Y. Nakajima, M. Yoshida, and K. Hayashi, Function of the N-terminal propeptide of an aminopeptidase from Vibrio proteolyticus, Biochem. J, pp.350-671, 2000.

S. Nirasawa, Y. Nakajima, Z. Z. Zhang, M. Yoshida, and K. Hayashi, Molecular cloning and expression in Escherichia coli of the extracellular endoprotease of Aeromonas caviae T-64, a proaminopeptidase processing enzyme, Biochim. Biophys. Acta, pp.1433-335, 1999.

B. Tang, S. Nirasawa, M. Kitaoka, and K. Hayashi, In vitro stepwise autoprocessing of the proform of pro-aminopeptidase processing protease from Aeromonas caviae T-64, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1596, issue.1, pp.16-27, 2002.
DOI : 10.1016/S0167-4838(01)00315-6

B. Tang, S. Nirasawa, M. Kitaoka, and K. Hayashi, The role of the N-terminal propeptide of the pro-aminopeptidase processing protease: refolding, processing, and enzyme inhibition, Biochemical and Biophysical Research Communications, vol.296, issue.1, pp.296-74, 2002.
DOI : 10.1016/S0006-291X(02)00838-0

X. Fu, M. Inouye, and U. Shinde, Folding Pathway Mediated by an Intramolecular Chaperone. THE INHIBITORY AND CHAPERONE FUNCTIONS OF THE SUBTILISIN PROPEPTIDE ARE NOT OBLIGATORILY LINKED, Journal of Biological Chemistry, vol.275, issue.22, pp.275-16871, 2000.
DOI : 10.1074/jbc.275.22.16871

D. Baker, J. L. Silen, and D. A. Agard, A protein-folding reaction under kinetic control, Nature, vol.356, issue.6366, pp.263-365, 1992.
DOI : 10.1038/356263a0

C. Ramos, J. R. Winther, and M. C. Kielland-branat, Requirement of the propeptide for in vivo formation of active yeast carboxypeptidase Y, J. Biol. Chem, vol.269, pp.7006-7012, 1994.

Y. C. Lee and T. Matsuzawa, A non-covalent NH 2 -terminal proregion aids the production of active aqualysin I (a thermophilic protease) with out the COOH-terminal pro-sequence in E. coli, FEMS Microbiol. Lett, pp.92-73, 1992.

H. B. Hazel, M. C. Kielland-brandt, and J. B. Winther, The propeptide is required for in vivo formation of stable active yeast proteinase A and can function even when not covalently linked to the mature region, J. Biol. Chem, pp.268-18002, 1993.

M. J. Oõdonohue and A. Beaumont, The roles of the prosequence of thermolysin in enzyme inhibition and folding in vitro, J. Biol. Chem, vol.271, pp.26477-26481, 1996.

E. Kessler and M. Safrin, The propeptide of Pseudomonas aeruginosa elastase acts as an elastase inhibitor, J. Biol. Chem, vol.269, pp.22726-22731, 1994.

A. Cascon, J. Yugueros, A. Temprano, M. Sanchez, C. Hernaz et al., A Major Secreted Elastase Is Essential for Pathogenicity of Aeromonas hydrophila, Infection and Immunity, vol.68, issue.6, pp.68-3223, 2000.
DOI : 10.1128/IAI.68.6.3233-3241.2000

V. A. David, A. H. Deutch, A. Sloma, D. Pawlyk, A. Ally et al., Cloning, sequencing and expression of the gene encoding the extracellular neutral protease, vibriolysin, of Vibrio proteolyticus, Gene, vol.112, issue.1, pp.107-112, 1992.
DOI : 10.1016/0378-1119(92)90310-L

J. C. Cheng, C. P. Shao, and L. I. Hor, Cloning and nucleotide sequencing of the protease gene of Vibrio vulnificus, Gene, vol.183, issue.1-2, pp.255-257, 1996.
DOI : 10.1016/S0378-1119(96)00488-X

C. Hase and R. A. Finkelstein, Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain., Journal of Bacteriology, vol.173, issue.11, pp.173-3311, 1991.
DOI : 10.1128/jb.173.11.3311-3317.1991

D. L. Milton, A. Norovist, and H. Wolf-watz, Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum., Journal of Bacteriology, vol.174, issue.22, pp.7235-7244, 1992.
DOI : 10.1128/jb.174.22.7235-7244.1992

D. R. Wetmore, S. L. Wong, and R. S. Roche, The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus, Molecular Microbiology, vol.160, issue.12, pp.1593-1604, 1992.
DOI : 10.1038/339483a0

B. W. Matthews, P. M. Colman, J. N. Jansonius, K. Titani, K. A. Walsh et al., Structure of Thermolysin, Nature New Biology, vol.238, issue.80, pp.41-43, 1972.
DOI : 10.1038/newbio238041a0

M. M. Thayer, K. M. Flaherty, and D. B. Mckay, Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5 A A resolution, J. Biol. Chem, pp.266-2864, 1991.

R. A. Pauptit, R. Karlsson, D. Picot, J. A. Jenkins, A. S. Niklaus-reimer et al., Crystal structure of neutral protease from Bacillus cereus refined at 3.0 A A resolution and comparison with the homologous but more thermostable thermolysin, J. Mol. Biol, pp.199-525, 1988.

A. Banbula, J. Potempa, J. Travis, C. Fernandez-catalan, K. Mann et al., Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 ?? resolution, Structure, vol.6, issue.9, pp.1185-1193, 1998.
DOI : 10.1016/S0969-2126(98)00118-X

J. King and U. K. Laemmli, Polypeptides of the tail fibres of bacteriophage T4, Journal of Molecular Biology, vol.62, issue.3, pp.465-477, 1971.
DOI : 10.1016/0022-2836(71)90148-3

C. Marie-claire, Y. Yabuta, K. Suefuji, H. Matsuzawa, and U. Shinde, Folding pathway mediated by an intramolecular chaperone: the structural and functional characterization of the aqualysin I propeptide, Journal of Molecular Biology, vol.305, issue.1, pp.305-151, 2001.
DOI : 10.1006/jmbi.2000.4233

URL : https://hal.archives-ouvertes.fr/inserm-00171014