W. Catterall, From Ionic Currents to Molecular Mechanisms, Neuron, vol.26, issue.1, pp.13-25, 2000.
DOI : 10.1016/S0896-6273(00)81133-2

L. Isom, Sodium Channel ?? Subunits: Anything but Auxiliary, The Neuroscientist, vol.274, issue.1, pp.42-54, 2001.
DOI : 10.1177/107385840100700108

F. Yu, R. Westenbroek, I. Silos-santiago, K. Mccormick, D. Lawson et al., Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2, J Neurosci, vol.23, issue.20, pp.7577-85, 2003.

A. Goldin, R. Barchi, J. Caldwell, F. Hofmann, J. Howe et al., Nomenclature of Voltage-Gated Sodium Channels, Neuron, vol.28, issue.2, pp.365-373, 2000.
DOI : 10.1016/S0896-6273(00)00116-1

A. Goldin, Resurgence of Sodium Channel Research, Annual Review of Physiology, vol.63, issue.1, pp.871-94, 2001.
DOI : 10.1146/annurev.physiol.63.1.871

T. Decoursey, K. Chandy, S. Gupta, and M. Cahalan, Voltage-dependent ion channels in T-lymphocytes, Journal of Neuroimmunology, vol.10, issue.1, pp.71-95, 1985.
DOI : 10.1016/0165-5728(85)90035-9

O. Hamill, A. Marty, E. Neher, B. Sackman, and F. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfl??gers Archiv - European Journal of Physiology, vol.12, issue.2, pp.85-100, 1981.
DOI : 10.1007/BF00656997

S. Parker, T. Tong, S. Bolden, and P. Wingo, Cancer statistics, 1996, CA: A Cancer Journal for Clinicians, vol.46, issue.1, pp.5-27, 1996.
DOI : 10.3322/canjclin.46.1.5

J. Grimes, S. Fraser, G. Stephens, J. Downing, M. Laniado et al., currents in two prostatic tumour cell lines: contribution to invasiveness in vitro, FEBS Letters, vol.295, issue.2-3, pp.290-294, 1995.
DOI : 10.1016/0014-5793(95)00772-2

M. Lanadio, E. Lalani, S. Fraser, J. Grimes, G. Bhangal et al., Expression and functional analysis of voltage-activated Na + channels in human prostate cancer cell lines and 22 their contribution to invasion in vitro, Am J Pathol, vol.150, issue.4, pp.1213-1234, 1997.

P. Smith, N. Rhodes, A. Shortland, S. Fraser, M. Djamgoz et al., Sodium channel protein expression enhances the invasiveness of rat and human prostate cancer cells, FEBS Letters, vol.33, issue.1, pp.19-24, 1998.
DOI : 10.1016/S0014-5793(98)00050-7

E. Bennett, B. Smith, and J. Harper, Voltage-gated Na + channels confer invasive properties on human prostate cancer cells, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.6, pp.908-922, 2004.
DOI : 10.1007/s00424-003-1205-x

J. Grimes and M. Djamgoz, Electrophysiological characterization of voltage-gated Na+ current expressed in the highly metastatic Mat-LyLu cell line of rat prostate cancer, Journal of Cellular Physiology, vol.267, issue.1, pp.50-58, 1998.
DOI : 10.1002/(SICI)1097-4652(199804)175:1<50::AID-JCP6>3.0.CO;2-B

J. Diss, S. Stewart, S. Fraser, J. Black, S. Dib-hajj et al., channel in rat and human prostate cancer cell lines, FEBS Letters, vol.43, issue.1, pp.5-10, 1998.
DOI : 10.1016/S0014-5793(98)00378-0

J. Diss, S. Archer, J. Hirano, S. Fraser, and M. Djamgoz, Expression profiles of voltage-gated Na+ channel ?-subunit genes in rat and human prostate cancer cell lines, The Prostate, vol.83, issue.3, pp.165-78, 2001.
DOI : 10.1002/pros.1095

L. Jaffe and R. Nuccitelli, Electrical Controls of Development, Annual Review of Biophysics and Bioengineering, vol.6, issue.1, pp.445-76, 1977.
DOI : 10.1146/annurev.bb.06.060177.002305

M. Chiang, K. Robinson, and J. Vanable, Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye, Experimental Eye Research, vol.54, issue.6, pp.999-1003, 1992.
DOI : 10.1016/0014-4835(92)90164-N

M. Djamgoz, M. Mycielska, Z. Madeja, S. Fraser, and W. Korohoda, Directional movement of rat prostate cancer cells in direct-current electric field: involvement of voltage-gated Na + channel activity, J Cell Science, vol.114, pp.2697-705, 2001.

M. Szatkowski, M. Mycielska, R. Knowles, A. Kho, and M. Djamgoz, Electrophysiological recordings from the rat prostate gland in vitro: identified single-cell and transepithelial (lumen) potentials, BJU International, vol.57, issue.9, pp.1068-75, 2000.
DOI : 10.1046/j.1464-410x.2000.00889.x

M. Mycielska and M. Djamgoz, Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease, Journal of Cell Science, vol.117, issue.9, pp.1631-1640, 2004.
DOI : 10.1242/jcs.01125

S. Lee, C. Deutsch, and W. Beck, Comparison of ion channels in multidrug-resistant and -sensitive human leukemic cells., Proc. Natl. Acad. Sci, pp.2019-2042, 1988.
DOI : 10.1073/pnas.85.6.2019

S. Fraser, J. Diss, L. Lloyd, F. Pani, A. Chioni et al., channel activity, FEBS Letters, vol.4, issue.1-3, pp.191-195, 2004.
DOI : 10.1016/j.febslet.2004.05.063

D. Kim, L. Mackenzie, B. Carey, W. Pettingell, and D. Kovacs, Presenilin/??-Secretase-mediated Cleavage of the Voltage-gated Sodium Channel ??2-Subunit Regulates Cell Adhesion and Migration, Journal of Biological Chemistry, vol.280, issue.24
DOI : 10.1074/jbc.M412938200

M. Monk and C. Holding, Human embryonic genes re-expressed in cancer cells, Oncogene, vol.20, issue.56, pp.8085-91, 2001.
DOI : 10.1038/sj.onc.1205088

J. Diss, S. Fraser, and M. Djamgoz, Voltage-gated Na+ channels: multiplicity of expression, plasticity, functional implications and pathophysiological aspects, European Biophysics Journal, vol.33, issue.3, pp.180-93, 2004.
DOI : 10.1007/s00249-004-0389-0

R. Wen, G. Lui, and R. Steinberg, Expression of a tetrodotoxin-sensitive Na+ current in cultured human retinal pigment epithelial cells., The Journal of Physiology, vol.476, issue.2, pp.187-96, 1994.
DOI : 10.1113/jphysiol.1994.sp020122

C. Choby, M. Mangoni, G. Boccara, J. Nargeot, and S. Richard, Evidence for tetrodotoxin-sensitive sodium currents in primary cultured myocytes from human, pig and rabbit arteries, Pfl??gers Archiv - European Journal of Physiology, vol.440, issue.1, pp.149-52, 2000.
DOI : 10.1007/s004240000268

K. Walsh, M. Wolf, and F. J. , Voltage-gated sodium channels in cardiac microvascular endothelial cells, Am J Physiol, vol.274, pp.506-518, 1998.

D. Gordienko and H. Tsukahara, Tetrodotoxin-blockable depolarization-activated Na+ currents in a cultured endothelial cell line derived from rat interlobar arter and human umbilical vein, Pfl???gers Archiv European Journal of Physiology, vol.419, issue.1, pp.91-94, 1994.
DOI : 10.1007/BF00374756

F. Vargas, P. Caviedes, and S. Grant, Electrophysiological Characteristics of Cultured Human Umbilical Vein Endothelial Cells, Microvascular Research, vol.47, issue.2, pp.153-65, 1994.
DOI : 10.1006/mvre.1994.1012

E. Braga, V. Senchenko, I. Bazov, W. Loginov, J. Liu et al., Critical tumor-suppressor gene regions on chromosome 3P in major human epithelial malignancies: Allelotyping and quantitative real-time PCR, International Journal of Cancer, vol.76, issue.5, pp.534-575, 2002.
DOI : 10.1002/ijc.10511

V. Senchenko, J. Liu, W. Loginov, I. Bazov, D. Angeloni et al., Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas, Oncogene, vol.23, issue.34, pp.5719-5747, 2004.
DOI : 10.1038/sj.onc.1207760