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Abstract - The objective of this study was to develop a non-invasive method for the 

estimation of pulmonary arterial pressure (PAP) using a neural network (NN) and features 

extracted from the second heart sound (S2). To obtain the information required to train and 

test the NN, an animal model of pulmonary hypertension (PHT) was developed and 9 pigs 

were investigated. During the experiments, the electrocardiogram, the phonocardiogram, and 

the PAP were recorded. Subsequently, between 15 and 50 S2 were isolated for each PAP 

stage and for each animal studied. A Coiflet wavelet decomposition and a pseudo smoothed 

Wigner-Ville distribution were used to extract features from the S2 and train a one-hidden 

layer NN using 2/3 of the data. The NN performance was tested on the remaining 1/3 of the 

data. NN estimates of the systolic and mean PAPs were obtained for each S2 and then 

ensemble averaged over the 15 to 50 S2 selected for each PAP stage. The standard errors 

between the mean and systolic PAPs estimated by the NN and those measured with a catheter 

were of 6.0 mmHg and 8.4 mmHg, respectively, and the correlation coefficients were 0.89 

and 0.86, respectively. The classification accuracy, using a 23 mmHg mean PAP and a 30 

mmHg systolic PAP thresholds between normal PAP and PHT was 97% and 91% 

respectively. 

 

Keywords - Time-frequency analysis, Wavelet decomposition, Second heart sound, Neural 

network analysis, Pulmonary arterial pressure, Animal investigation. 
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1 Introduction 

Pulmonary hypertension (PHT) is a frequent and serious complication of several 

cardiovascular or respiratory diseases that is difficult to assess noninvasively (ENRIQUEZ-

SARANO et al., 1997; SNOPEK et al., 1996; GOLAN et al., 1995; FISHMAN; 1994). As the 

options for treatment of PHT have expanded, the requirement for accurate and noninvasive 

methods to allow regular and safe estimation of pulmonary arterial pressure (PAP) has 

increased. In patients necessitating continuous monitoring of PAP or in patients with 

suspected PHT, the PAP is usually measured using a pulmonary arterial catheter. Even if the 

occurrences are relatively rare, this method can however cause complications including 

lesions of the tricuspid valve, pulmonary valve, right ventricle, or pulmonary arteries, cardiac 

arrhythmia, dislodgment of a thrombus, and infectious complications (KAPLAN; 1987). A 

pulmonary arterial catheter can be left in place for a few days to allow continuous monitoring 

of PAP in patients at the critical care unit. However, it is not recommended for repeated 

measurements (one time every week or month or 6 months depending of the evolution of the 

disease) because of the potential risks and discomfort for the patient. Nonetheless, regular 

evaluation of the PAP is very important to follow the evolution of the disease and to assess 

the efficacy of the treatment. Consequently, non invasive methods have been developed to 

allow frequent and accurate measurement of PAP. Mainly, two methods have been explored: 

the first one is based on the measurement of the systolic pressure gradient across the tricuspid 

valve using Doppler echocardiography, and the second one is based on the spectral analysis 

of the second heart sound recorded with digital phonocardiography.  

1.1 Doppler method 
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The measurement of PAP by Doppler-echocardiography provides a high degree of 

correlation (0.89 < r < 0.97) and a standard error (SEE) varying from 7 to 12 mmHg in 

comparison with pulmonary artery catheterization (YOCK et al., 1984; CURRIE et al., 1985; 

NAEIJE et al., 1995). However, the PAP cannot be estimated by Doppler in approximately 

50% of patients with normal PAP, 10 to 20 % of patients with elevated PAP, and 34 to 76% 

of patients with chronic obstructive pulmonary disease because of the absence of tricuspid 

regurgitation, a weak Doppler signal, or a poor signal-to-noise ratio (CURRIE et al., 1985; 

YOCK et al., 1984; NISHIMURA et al., 1994; NAEIJE et al., 1995). Furthermore, Doppler 

echocardiography requires an expensive ultrasound system and a highly qualified technician. 

This method has a limited applicability and is also not practicable for daily measurements of 

PAP in small clinics or at home. 

1.2 Phonocardiographic method 

The second heart sound (S2) is composed of 2 basic components (Figure 1). The 

aortic component (A2), which is generally produced by the vibration of the aortic valve and 

surrounding tissues after aortic valve closure, is followed by the pulmonary component (P2) 

resulting from the vibration of the pulmonary valve and surrounding tissues after pulmonary 

valve closure(REDDY et al., 1985; TILKIAN et al., 1984; STEIN; 1981). It is also well known 

that the splitting interval between A2 and P2 is increased in the presence of pulmonary 

hypertension  (LEATHAM; 1975; LONGHINI et al., 1991; CHEN et al., 1996). It could 

therefore be useful feature to estimate the PAP. The basic principle supporting the estimation 

of the PAP by using spectral features of P2 is based on Laplace's law which states that the 

tension of the pulmonary artery wall is proportional to the PAP from the instant 

corresponding to the onset of the pulmonary valve closure (right ventricular end-systole) up 
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to the end of right ventricular diastole. Similarly to that of a stretched drumhead, it is 

expected that the resonant frequency of P2 is proportional to the tension in the main 

pulmonary artery, and thus to the end-systolic PAP. 

This hypothesis was confirmed by Longhini et al. and Aggio et al. (AGGIO et al., 

1990; LONGHINI et al., 1991) who found in 19 patients with mitral stenosis a high 

correlation between 2 spectral features of P2 (dominant frequency Fp and quality factor Qp) 

and the systolic PAP measured by pulmonary artery catheterization. Recently, we have 

demonstrated that spectral analysis of S2 can provide a reliable estimate (r = 0.84; SEE = ± 5 

mmHg) of the systolic PAP when compared with Doppler in patients with a prosthetic heart 

valve (SHAMSOLLAHI et al., 1997; CHEN et al., 1996). The Longhini study resulted in the 

following equation: PAP = 0.3 + 0.2 Fp + 18.9 Qp. In our previous study, the use of this 

equation gave poor results (r = 0.03, p = 0.82, SEE ± 10mmHg). Then, two additional 

parameters were added: the dominant frequency of S2 (Fs) and the ratio of the dominant 

frequencies of P2 and A2 (Fp/Fa). The resulting equation was PAP = 47 + 0.68 Fp – 4.4 Qp – 

17 Fp/Fa – 0.15 Fs. The main difference between these equations may be partly due to the 

different patient populations and the different recording devices utilized. It was concluded 

that additional, more fundamental research was necessary. The main objective of this paper is 

to evaluate the usefulness of a neural network (NN) using temporal and spectral features 

extracted from S2 as a noninvasive and low cost method to estimate the PAP in an animal 

model designed to vary the PAP over a wide range. 

2 Method 

2.1 Animal model  
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A phonocardiogram (PCG) and an electrocardiogram (ECG) were recorded in pigs 

who underwent an experimental protocol based on a pharmacological approach designed to 

control the PAP. Nine pigs weighing between 30 and 35 kg were anesthetized and ventilated 

as previously published by Troncy et al. (TRONCY et al., 1996). The PAP measurement was 

performed using a 7F Swan-Ganz catheter (Model Mikro-tip, MPA-372 T, Millar) inserted 

into the left jugular vein and flow-directed into the main pulmonary artery. An ARMACO 

1306 electret microphone was used to develop a PCG microphone with characteristics similar 

to those of the electronic stethoscope previously developed by our group (GRENIER et al., 

1998). This microphone had a sensitivity of 17 mV/Pa and a flat frequency response (± 3 dB) 

between 20 Hz and 8 kHz, as determined in a Brüel & Kjaer anechoic chamber (B&K Model 

422) coupled to a audio-analyzer (B&K Model 2012). The microphone was positioned and 

fixed on the thorax of the pigs at the pulmonary area (3rd-4th left intercostal space) to record 

the thoracic PCG. A first-order high-pass Butterworth filter with a cut-off frequency of 100 

Hz was used to de-emphasize the high-intensity low-frequency components of the PCG. 

According to our previous study (CHEN et al., 1996) and the results of the study of Longhini 

et al. (LONGHINI et al., 1991), the frequency range of the resonant frequency of P2 is below 

200 Hz. Consequently, the overall frequency response of the PCG channel was limited to 300 

Hz by using a 5th order low-pass anti-aliasing Butterworth filter. 

After the initial instrumentation of the animal, the study was delayed until a stable 

and normal physiological state was obtained. The PAP was modulated using the following 

experimental protocol divided into four stages of 15 min each. 1- Baseline measurements 

were performed while the systolic PAP was within the normal range (15-20 mmHg), 2- 

moderate PHT was induced by a continuous intravenous infusion of a thromboxane analogue 

H
A

L author m
anuscript    inserm

-00140563, version 1



7 

(U44069, Sigma, USA) at 20 μg /ml diluted in 0.9 % saline (VAN OBBERGH et al., 1996). 

The infusion rate was adjusted between 5 and 20 μg/min to maintain a stable systolic PAP of 

approximately 35-40 mmHg for 15 minutes, 3- severe PHT (systolic PAP 45-60 mmHg) was 

then obtained by increasing the infusion rate (range 10 to 60 μg/min), 4- ‘back to baseline’ 

measurements were performed after stopping the infusion and allowing sufficient time to 

ensure that the animal’s PAP had returned to normal. For each stage, the PAP, the ECG and 

thoracic PCG were digitized at 1 kHz with 12-bit resolution and saved on a 66 MHz 486 

personal computer. During PCG recording, the catheter was pulled back into the right 

ventricle in order to eliminate any potential interaction of the catheter with the pulmonary 

valve closure and thus with P2. 

2.2 Signal processing 

Signal processing of the ECG and PCG was performed with Matlab 5.3 (The 

MathWorks Inc, Boston, USA), in a Windows NT environment, using the Time-Frequency 

ToolBox (TFTB) developed by le Groupe de Recherche en Information, Signal, Image et 

Vision (see acknowledgments) and the wavelet toolbox (Wavekit) developed by Harri 

Ojanen (see also acknowledgments).  

 

First, 256-ms PCG segments containing S2 were automatically extracted from the 

PCG recordings based on the timing reference of the ECG. The S2 that presented important 

artifacts or noise were excluded (less than 3% of the data) by visual inspection. Between 15 

and 50 S2 were thus obtained for each PAP stage of each pig. The top panel of Figure 2 

shows an example of a 256-ms S2 segment selected from one pig recording. Two databases 

were created. Database A consisted in 514 S2 from 5 pigs, the mean PAP varying between 12 
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and 47 mmHg and the systolic PAP between 15 and 61 mmHg. The features extracted from 

this database were used to determine the topology of the NN, i.e. its structure, the number of 

neurones in the three interconnection levels, and the transfer functions (see Figure 3). 

Database B was composed of 1250 S2 selected from the PCG of 9 pigs. The mean PAP 

varied between 12 and 50 mmHg and the systolic PAP between 13 and 61 mmHg (see Table 

1). The features extracted from this database were used to train the NN optimized with 

database A and test its performance to estimate the PAP or to detect PHT using a pressure 

threshold reference as described later. 

2.3 Time-frequency analysis 

The S2 signal is a non-stationary signal. Its temporal representation does not reflect 

accurately all its basic characteristics since its frequency content is not represented. 

Computing its power spectrum with the discrete Fourier transform does not take into 

consideration the dynamic spectral properties of S2. An alternative is therefore the joint time-

frequency representations (TFRs). There are a large number of TFR techniques, but an 

appropriate one should be selected according to the specific characteristics of the S2 signal 

and the quantitative features to be extracted. For the present application, various TFR 

techniques were tested and the smoothed pseudo Wigner-Ville distribution (SPWVD) was 

selected because it provides a good compromise between the time and frequency resolutions 

while minimizing the cross-terms (FLANDRIN; 1999). Its mathematical definition is: 
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where g and h are the time and frequency smoothing windows. In our application, we used 

Hamming windows with durations of 25 ms and 16 ms. Three quantitative features were 

extracted from the SPWVD of S2 by manual selection and utilized to train and test the NN 
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algorithm: the maximum instantaneous frequency of A2, that of P2, and the splitting interval 

between A2 and P2 (see Figure 2, middle panel). 

 

Since wavelet analysis has been widely and successfully used for signal compression, 

noise reduction, classification and detection of transient signals, we also evaluate the 

Orthonormal Wavelet Transform (OWT). Its general expression is: 

( ) ( ) ( )∫
+∞

∞−

−− −= dskssxjkOWT j
j

x 22, 2 ψ , 

where j and k are integers and ( )ksj
j

−−− 22 2ψ  is the scaled and translated form of the 

wavelet ( )sψ . OWT is an analysis tool that is equivalent to a perfect discrete filter bank 

based on conjugate mirror filters(MALLAT; 1998). It is a time-scale linear representation that 

can lead to a reduced cross-term TFR, in which the frequency index “υ” is inversely 

proportionally to the scale “s”. In the present study, a 18th order Coifelet wavelet with 6 

vanishing moments was chosen because of its resemblance with A2 (see Figure 1) and 7 

scales were retained ( { }7,...,2,1∈j ). Each normalized zero-mean S2 signal was decomposed 

for feature extraction. The associated OWT was squared and for each scale j, the maximum 

value, its position and the sum of the decomposition coefficients were computed and used as 

a set of 21 additional features to train and test the NN. 

2.4 PAP model  

While estimating a physical quantity from several features, one has to make an 

hypothesis over the type of relationship expected. The most common hypothesis is that of 

linearity, i.e., the desired quantity can be estimated by a linear combination of the features. In 

the present case, a preliminary investigation of the time-frequency features of S2 (beginning 
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or mean instantaneous frequencies, splitting interval, etc.) showed no clear linear behavior as 

a function of the PAP. The relationship between the S2 features and the PAP was thus 

modeled by the following equation: 

( ) ( )anatohemoN FFDDDPAP ,,..,, 21 Θ+Φ=  

where Di (0<i<N) are S2 features, Fhemo and Fanato are animal’s hemodynamic and anatomic 

features (such as systemic pressure, age, sex) and Φ and Θ are non-linear operators. This is a 

general model; in order to make it useful, we had to make some hypotheses about its 

different components. Because the pig population used in the present study is quite 

homogenous, the influence of function Θ was negligible, whereas it may be more important 

in a patient population. Concerning Φ, we had no a priori assumption, thus a NN was chosen 

since it is known to be a suited approach to this particular type of situation (LIPPMANN; 

1987). 

2.5 Topology of the Neural Network 

In our particular case, a feed-forward back-propagation NN with one hidden layer 

was implemented (see Figure 3). The sizes of the input and the hidden layers were 

determined with Database A. The input vectors (quantitative features extracted from the 

TFRs) were normalized and a principal component analysis (PCA) performed in order to 

minimize the redundancy and reduce the number of features of the input layer. A sigmoid 

transfer function was applied to each neuron of the second hidden layer. The third layer 

(output) consisted in one neuron with a linear transfer function.  

2.7 Beat-by-beat PAP estimation using the hold-out analysis 

Each database was randomly split into three data sets: a training set (5/9 of data), a 

validation set (1/9 of data) and a testing set (1/3 of data). The NN learning (i.e. estimate of 
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NN weights and biases) was conducted by using the training and validation sets (2/3 of the 

data) and the test set (remaining 1/3) served to evaluate the performance of the trained NN 

(hold out method) when applied to a new set of independent data (not used in the learning 

process).  

2.8 Training algorithm 

Training is an iterative approach used to determine the parameters (weights and 

biases) of the NN, in a way that a known input gives a desired output, by minimizing the 

mean square error over the training set. A potential problem is the over-training of the NN 

(lack of generalization). In this situation, the NN becomes too specific to the training set and 

performs poorly on new data. To avoid this drawback, the algorithm was stopped when the 

estimation error, obtained on the validation set, began to increase for a given number of 

successive iterations. This early-stopping approach was compared with the approach based 

on a fixed number of iterations. We also determined the most significant S2 features to be fed 

into the NN using database A and different combinations of the features (wavelet, TFR or 

both TFR and wavelet features). 

The minimization procedure of the mean square error was performed by the 

Levenberg-Marquardt algorithm. It is a cost-effective algorithm allowing rapid convergence 

at the expense of local minima sensitivity (HAGAN et al., 1994). To face the local minima 

problem, we repeated the random initialization of the Levenberg-Marquardt algorithm 20 

times and averaged the output results. This is equivalent to using a 20 NN parallel 

architecture and to average the estimated 20 PAPs for each heart beat analyzed. The training 

time is multiplied by 20, but once the algorithm is trained, the calculation time on the testing 
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set is very short, consisting in simple arithmetic computations structured in a parallel 

architecture. 

2.9 Testing approach 

The performance of the NN using database B was compared with the catheter 

measurements of the PAP by using the Pearson’s correlation coefficient (r) and the standard 

error of the estimate (SEE). The NN attempted to estimate, for each series of 15 to 50 S2, the 

corresponding mean and systolic PAPs. The classification accuracy (normal PAP vs PHT) 

was then assessed by using two decision thresholds: 23 mmHg for the mean PAP and 30 

mmHg for the systolic PAP. These thresholds corresponded approximately to the median 

between the maximal PAP recorded in the normal and back to normal stages and the minimal 

PAP of the moderate PHT stage. 

3 Results 

3.1 Qualitative analysis of S2 

In figure 2, the upper panel is a temporal representation of S2 recorded during a 

moderate PHT (mean PAP = 29 mmHg) in one pig. The middle panel is a smoothed pseudo-

Wigner-Ville representation of the signal and the lowest image is a schematic representation 

of the main components of this TFR with the most important cross-terms. In this example, 

there are 3 main components (green in the lower panel), two of relatively high power and 

long duration and a third, low-power, low-frequency and shorter duration component. The 

components 1 and 2 are identified as A2 and P2, respectively. In the majority of the S2 

signals, a very rapid instantaneous frequency decaying behavior (chirp) could be identified 

for A2 and P2 (as shown in this example for A2). However, the time-frequency morphology 

of each component was complex and variable from one PAP condition to another and from 
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one pig to another. The third component might be a remnant of P2, a small (subclinical) S3 

or a phonocardiographic component of unknown or artifactual origin. 

Besides these 3 main components, there are many other terms in this representation as 

well as some background noise. Also, all bilinear TFR generate cross-terms. The principal 

difficulty in eradicating them is that they cannot be identified with precision. Nevertheless, it 

is known that cross-terms have an oscillatory structure (minimized here by smoothing) with a 

maximum intensity halfway between the real components. Schematic examples are shown in 

the lower panel of Figure 2 in relationship with their origins. Cross-terms may also results 

from the interaction of the different parts of a non linear chirp component (not illustrated in 

Figure 2). The beginning instantaneous frequencies of A2 and P2 were generally easy to 

identify visually, as shown in the middle panel of Figure 2. 

The examination of the TFRs of representative S2 signals of the two PAP stages of 

two pigs (Figure 4) confirms that, beside the expected A2 and P2 components, there were 

other short duration components mostly due to the cross-terms between A2 and P2. The 

signal complexity seemed to increase with increasing PAP. The beginning instantaneous 

frequencies of A2 and P2 were generally easy to identify visually. It became more difficult 

when low frequency components seem to precede the main part of A2 or P2. In such cases, 

the maximum instantaneous frequency of the component was considered as its instantaneous 

beginning frequency. No clear linear relationship was found between these beginning 

instantaneous frequencies and the PAP. Finally, a small but significant difference was 

observed on the S2 TFRs obtained for the initial and the back-to-baseline conditions (with 

similar PAPs). This was due to changes in the phases of A2 and P2 that affected both the 
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auto and the cross terms of the signal. Since the splitting interval was generally shorter in the 

back-to-baseline condition, the A2 and P2 components overlapped more significantly.  

3.2 Training of the NN using database A 

As shown in Figure 5, the NN performances using the three TFR features and using both 

the TFR and the wavelet features were comparable. Also, the differences were not significant 

for a hidden layer dimension varying between 5 and 15. Nevertheless, we decided to use both 

the TFR and the Coiflet wavelet features for the rest of the study, considering that the 

performance of the NN was similar and that, theoretically, the wavelet features should 

contain relevant information. We also found that a hidden layer with 10 neurons was a stable 

size providing a very good NN performance. The early stopping approach was compared to 

the approach stopped after 1000 iterations (see Figure 5). Since the computational speed of 

the early stopping method was about ten times faster than the other one and its performance 

was slightly lower, we choose this method even if it was not optimal. In summary, we used 

the following topology for the study: 

- The 24 TFR features of the input neurons were reduced to a dimension of 17 by the PCA, 

using a 1% variance threshold, 

-  10 neurons in the hidden-layer, 

-  the catheter measured mean or systolic PAP as the target output,  

- the early stopping approach. 

- averaging the mean and systolic PAPs estimated by the NN over 15 to 50 S2 (heart 

beats). 

3.3 Performance evaluation using database B 

Figures 6 show the scattergrams between the catheter-measured and NN estimates of the 

mean (panel A) and systolic (panel B) PAPs, respectively. The linear regression line is also 
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represented. A correlation coefficient r of 0.89 and a SEE of 6.0 mmHg were obtained for the mean 

PAP, whereas the correlation coefficient r was 0.86 and the SEE was 8.4 mmHg for the systolic PAP. 

In this figure, each point corresponds to one PAP condition (i. e. normal PAP, moderate PHT or 

severe PHT) of each pig, as described in section 2.9. The beat-by-beat classification of the mean PAP 

(normal vs. PHT) using a threshold of 23 mmHg was 97% accurate; the sensitivity was 100% and the 

specificity was 93%. For the beat-by-beat classification of the systolic PAP, the  accuracy was 91%, 

the sensitivity 100% and the specificity 79%. 

4 DISCUSSION ET CONCLUSION 

The estimation of the systolic PAP yielded a 40% higher SEE than that of the mean 

PAP (8.4 mmHg against 6.0 mmHg). Considering that the systolic PAP values were 

approximately 30% higher than mean PAP, we consider that the SEE results are probably 

following a statistically insignificant trend. The correlation levels r are following a weaker 

trend (0.86 for the systolic PAP and 0.89 for the mean PAP). The classification accuracy 

follows a similar trend, with two more false positives in the systolic PAP case. Although 

these results might be due to chance alone, it is not excluded that the NN method gives a 

better estimate of the mean PAP than the systolic PAP. Meanwhile, the small size of our 

study limits the statistical significance that can be attached to these modest trends. The 

catheter-measured systolic PAP has a higher variance (being calculated by the maximum of 

the pressure curve while the mean PAP represents an averaged value) and this might explain 

a slightly worse correlation with the estimate obtained by the NN from the TFRs of S2. 

The NN method thus shows a good robustness and comparable estimation 

performances for the systolic and mean PAPs. Its performance compares positively with the 

Doppler echographic method (0.89 < r < 0.97 and SEE varying from 7 to 12 mmHg). In 

addition, it has the main advantage of being (at least theoretically) applicable to all the 
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patients, while the Doppler method is not feasible in 50% of patients with normal PAP, 20 % 

of patients with pulmonary hypertension and up to 76% of patients with chronic obstructive 

pulmonary disease. Defining the PHT as a mean PAP superior to 23 mmHg or a systolic PAP 

superior to 30 mmHg, the method provided an excellent 91-97% classification accuracy. 

The studies performed by Longhini et al. and Chen et al. (LONGHINI et al., 1991a; 

CHEN et al., 1996a) were based only on spectral features extracted from S2, even if it was 

well known that the splitting interval was an important indicator of pulmonary hypertension. 

In addition, the relationships between the mean and systolic PAPs and the spectral features 

were modeled with linear regression functions, which are probably not the most adequate 

model. These limitation are compensated to a great extent in the present study because 1- 

time-frequency representations were used instead of Fourier representations, and 2- of one of 

the main advantages of the NN is that it can integrate the non linear relationship between the 

time and frequency features of S2 and the PAP. Consequently, the NN method should 

provide a more robust PAP estimator when applied to a larger population, especially for the 

detection of PHT vs. normal PAP.  

We are aware that our animal population was small, but four direct pressure 

measurements at significantly different PAP levels were obtained for most of the nine 

animals studied. Since almost only the principal variable of interest, the PAP, was 

modulated, the need for a large animal population was not necessary to develop and test the 

NN technique. Also, this protocol ensured that the NN was optimised to estimate the mean 

and systolic PAPs. It is impossible to perform such a study (modulating the PAP) in patients 

because it would be unethical. Using patients at the intensive care unit or at the 

catheterization laboratory is possible but may take considerable time to reach a sufficient 
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number of patients in each pressure category: normal PAP, mild, moderate and severe PHT. 

Since the results of this experimental study are encouraging, it now becomes relevant to 

evaluate the performance of the NN in patients having right heart catheterization. Our study 

has thus its own limitations, but is an important one since it provides the basic justification 

for evaluation the NN method in these patients. 

Pulmonary artery catheterization is a routine procedure in cardiology. However, this 

is an invasive and expensive procedure that is not without risk for the patient. Hence, 

pulmonary artery catheterization can not be used to measure PAP for a long period of time or 

on a regular basis (once every week or month). If satisfactory results are obtained in patients, 

the NN method could potentially replace and/or allow to reduce pulmonary artery 

catheterization to shorter periods of time since it would allow to pursue the PAP monitoring 

after the removal of the pulmonary arterial catheter. 
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Table 1: Pig description 

Pig stage 1 stage 2 stage 3 stage 4
1 13/19 33/42 40/55 N/A
2 18/22 36/44 45/60 N/A
3 18/25 28/36 40/48 N/A
4 14/17 32/36 44/55 16/18
5 14/18 28/34 38/48 16/19
6 19/21 28/36 41/51 14/17
7  12/15 29/36 37/46 12/15
8 14/15 30/36 26/44 12/13
9 13/16 32/42 47/61 16/21  

 

Pig PAP by stage: values represent mean/systolic PAP in mmHg. 
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LIST OF FIGURE CAPTIONS 

Figure 1: Example of a PCG of one cardiac cycle. The amplitude of S1 was saturated to 

optimize the amplitude range of S2. The 18th-order Coiflet wavelet used in our 

study is presented for visual comparison with A2 and P2. 

Figure 2: Example of a 256-ms S2 segment selected from one pig recording (top panel) and 

its time-frequency representation of S2 (middle panel). The splitting time is 40 ms 

and the maximum instantaneous frequencies of A2 and P2 are 84 Hz and 108 Hz, 

respectively. A schematic illustration shows examples of auto-terms and cross-

terms is shown in the lower panel. 

Figure 3: Basic neuron structure (panel A) and architecture (panel B) of the network 

selected, which consists in 17 input neurons with a 10 neurons hidden layer 

(sigmoid transfer functions) and one output neuron (linear transfer function). 

Figure 4: Examples of Pseudo-Smoothed Wigner-Ville Time-frequency representations for 

two pigs (left panel pig 1, right panel pig 2) for normal pulmonary artery pressure 

and for pulmonary artery hypertension. 

Figure 5: NN performance (based on the correlation coefficient r) for different inputs and 

varying hidden-layer dimension using Database A (mean performance and 

standard deviation). 

Figure 6: Early stopping effect on NN performance using Database A (mean performance 

and standard deviation). 

Figure 7: Correlation between the systolic (panel A) or mean (panel B) PAPs estimated 

using the NN method and directly measured by catheter. Each point represents the 

average estimate obtained from 15 to 50 S2 recorded during a given PAP 
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condition (normal PAP, moderate hypertension, severe hypertension, back-to-

normal PAP) in 9 pigs. The solid line represents the regression line. 
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