F. Lang, M. Foller, . Lang, . Ks, P. Lang et al., Ion Channels in Cell Proliferation and Apoptotic Cell Death, Journal of Membrane Biology, vol.99, issue.Pt 2, pp.147-57, 2005.
DOI : 10.1007/s00232-005-0780-5

M. Razik and J. Cidlowski, Molecular interplay between ion channels and the regulation of apoptosis, Biological Research, vol.35, issue.2, pp.203-210, 2002.
DOI : 10.4067/S0716-97602002000200011

R. Sobel, . Sadar, and . Md, CELL LINES USED IN PROSTATE CANCER RESEARCH: A COMPENDIUM OF OLD AND NEW LINES???PART 1, The Journal of Urology, vol.173, issue.2, pp.342-59, 2005.
DOI : 10.1097/01.ju.0000141580.30910.57

Z. Wang, Roles of K + channels in regulating tumour cell proliferation and apoptosis, Pfl???gers Archiv European Journal of Physiology, vol.448, issue.3, pp.274-86, 2004.
DOI : 10.1007/s00424-004-1258-5

C. Remillard and J. Yuan, Activation of K+ channels: an essential pathway in programmed cell death, AJP: Lung Cellular and Molecular Physiology, vol.286, issue.1, pp.49-67, 2004.
DOI : 10.1152/ajplung.00041.2003

S. Yu, Regulation and critical role of potassium homeostasis in apoptosis, Progress in Neurobiology, vol.70, issue.4, pp.363-86, 2003.
DOI : 10.1016/S0301-0082(03)00090-X

B. Hemmerlein, R. Weseloh, F. Mello-de-queiroz, H. Knotgen, A. Sanchez et al., Overexpression of Eag1 potassium channels in clinical tumours, Molecular Cancer, vol.5, issue.1, p.41, 2006.
DOI : 10.1186/1476-4598-5-41

L. Pardo, C. Contreras-jurado, M. Zientkowska, . Alves, and W. Stuhmer, Role of Voltage-gated Potassium Channels in Cancer, Journal of Membrane Biology, vol.11, issue.3, pp.115-139, 2005.
DOI : 10.1007/s00232-005-0776-1

L. Pardo, D. Del-camino, A. Sanchez, F. Alves, A. Bruggemann et al., Oncogenic potential of EAG K+ channels, The EMBO Journal, vol.18, issue.20, pp.5540-5547, 1999.
DOI : 10.1093/emboj/18.20.5540

V. Rybalchenko, N. Prevarskaya, F. Van-coppenolle, G. Legrand, L. Lemonnier et al., Verapamil inhibits proliferation of LNCaP human prostate cancer cells influencing K+ channel gating, Mol Pharmacol, vol.59, pp.1376-87, 2001.

R. Skryma, F. Van-coppenolle, L. Dufy-barbe, . Dufy, and N. Prevarskaya, Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line, Receptors Channels, vol.6, pp.241-53, 1999.

R. Skryma, N. Prevarskaya, L. Dufy-barbe, . Odessa, . Mf et al., Potassium conductance in the androgen-sensitive prostate cancer cell line, LNCaP: Involvement in cell proliferation, The Prostate, vol.322, issue.2, pp.112-134, 1997.
DOI : 10.1002/(SICI)1097-0045(19971001)33:2<112::AID-PROS5>3.0.CO;2-M

M. Laniado, . Fraser, . Djamgoz, and . Mb, Voltage-gated K+ channel activity in human prostate cancer cell lines of markedly different metastatic potential: Distinguishing characteristics of PC-3 and LNCaP cells, The Prostate, vol.151, issue.4, pp.262-74, 2001.
DOI : 10.1002/1097-0045(20010301)46:4<262::AID-PROS1032>3.0.CO;2-F

M. Abdul and N. Hoosein, Expression and activity of potassium ion channels in human prostate cancer, Cancer Letters, vol.186, issue.1, pp.99-105, 2002.
DOI : 10.1016/S0304-3835(02)00348-8

S. Fraser, J. Grimes, J. Diss, D. Stewart, . Dolly et al., Predominant expression of Kv1.3 voltage-gated K+ channel subunit in rat prostate cancer cell lines: electrophysiological, pharmacological and molecular characterisation, Pfl??gers Archiv - European Journal of Physiology, vol.4, issue.5, pp.559-71, 2003.
DOI : 10.1007/s00424-003-1077-0

H. Ouadid-ahidouch, F. Van-coppenolle, L. Bourhis, X. Belhaj, and N. Prevarskaya, Potassium channels in rat prostate epithelial cells, FEBS Letters, vol.177, issue.1, pp.15-21, 1999.
DOI : 10.1016/S0014-5793(99)01121-7

B. Wible, L. Wang, Y. Kuryshev, A. Basu, . Haldar et al., Increased K+ Efflux and Apoptosis Induced by the Potassium Channel Modulatory Protein KChAP/PIAS3?? in Prostate Cancer Cells, Journal of Biological Chemistry, vol.277, issue.20, pp.17852-62, 2002.
DOI : 10.1074/jbc.M201689200

G. Gessner, K. Schonherr, M. Soom, A. Hansel, M. Asim et al., BKCa Channels Activating at Resting Potential without Calcium in LNCaP Prostate Cancer Cells, Journal of Membrane Biology, vol.276, issue.3, pp.229-269, 2005.
DOI : 10.1007/s00232-005-0830-z

M. Abdul and N. Hoosein, Voltage-gated sodium ion channels in prostate cancer: expression and activity, Anticancer Res, vol.22, pp.1727-1757, 2002.

E. Bennett, . Smith, and . Harper, Voltage-gated Na + channels confer invasive properties on human prostate cancer cells, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.6, pp.908-922, 2004.
DOI : 10.1007/s00424-003-1205-x

J. Diss, . Archer, . Sn, J. Hirano, . Fraser et al., Expression profiles of voltage-gated Na+ channel ?-subunit genes in rat and human prostate cancer cell lines, The Prostate, vol.83, issue.3, pp.165-78, 2001.
DOI : 10.1002/pros.1095

J. Diss, D. Stewart, F. Pani, . Foster, . Cs et al., A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo, Prostate Cancer and Prostatic Diseases, vol.2, issue.3, pp.266-73, 2005.
DOI : 10.1016/j.febslet.2004.06.088

J. Anderson, . Hansen, . Tp, . Lenkowski, . Pw et al., Voltage-gated sodium channel blockers as cytostatic inhibitors of the androgen-independent prostate cancer cell line PC-3, Mol Cancer Ther, vol.2, pp.1149-54, 2003.

S. Fraser, V. Salvador, . Manning, . Ea, J. Mizal et al., Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. lateral motility, Journal of Cellular Physiology, vol.8, issue.3, pp.479-87, 2003.
DOI : 10.1002/jcp.10312

M. Mycielska, . Fraser, . Sp, . Szatkowski, . Djamgoz et al., Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: II. Secretory membrane activity, Journal of Cellular Physiology, vol.20, issue.3, pp.461-470, 2003.
DOI : 10.1002/jcp.10265

N. Scorey, . Fraser, . Sp, P. Patel, C. Pridgeon et al., Notch signalling and voltage-gated Na+ channel activity in human prostate cancer cells: independent modulation of in vitro motility, Prostate Cancer and Prostatic Diseases, vol.57, issue.4, pp.399-406, 2006.
DOI : 10.1006/scbi.2001.0416

E. Rosenthal, . Shapiro, and H. Lepor, Characterization of 1,4, dihydropyridine calcium channel binding sites in the human prostate, J Urol, vol.144, pp.1539-1581, 1990.

J. Connor, . Sawczuk, . Is, . Benson, . Mc et al., Calcium channel antagonists delay regression of androgen-dependent tissues and suppress gene activity associated with cell death, The Prostate, vol.8, issue.2, pp.119-149, 1988.
DOI : 10.1002/pros.2990130204

P. Martikainen and J. Isaacs, Role of calcium in the programmed death of rat prostatic glandular cells, The Prostate, vol.3, issue.3, pp.175-87, 1990.
DOI : 10.1002/pros.2990170302

P. Abrahamsson, Neuroendocrine cells in tumour growth of the prostate, Endocrine Related Cancer, vol.6, issue.4, pp.503-522, 1999.
DOI : 10.1677/erc.0.0060503

P. Di-sant-'agnese, Neuroendocrine differentiation in prostatic carcinoma: an update, Prostate, vol.8, pp.74-83, 1998.

J. Kim, . Shin, . Sy, . Yun, . Ss et al., Voltage-dependent ion channel currents in putative neuroendocrine cells dissociated from the ventral prostate of rat, Pfl??gers Archiv - European Journal of Physiology, vol.276, issue.1, pp.88-99, 2003.
DOI : 10.1007/s00424-002-0995-6

H. Bonkhoff, Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status, Annals of Oncology, vol.12, issue.suppl 2, p.12, 2001.
DOI : 10.1093/annonc/12.suppl_2.S141

T. Fixemer, . Remberger, and H. Bonkhoff, Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma, The Prostate, vol.88, issue.2, pp.118-141, 2002.
DOI : 10.1002/pros.10133

Y. Xue, A. Verhofstad, W. Lange, F. Smedts, F. Debruyne et al., Prostatic neuroendocrine cells have a unique keratin expression pattern and do not express Bcl-2: cell kinetic features of neuroendocrine cells in the human prostate, Am J Pathol, vol.151, pp.1759-65, 1997.

N. Xing, J. Qian, D. Bostwick, . Bergstralh, and C. Young, Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin, The Prostate, vol.273, issue.1, pp.7-15, 2001.
DOI : 10.1002/pros.1076

L. July, M. Akbari, T. Zellweger, . Jones, . Ec et al., Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy, The Prostate, vol.3, issue.356, pp.179-88, 2002.
DOI : 10.1002/pros.10047

P. Mariot, K. Vanoverberghe, N. Lalevee, . Rossier, and N. Prevarskaya, Overexpression of an ??1H (Cav3.2) T-type Calcium Channel during Neuroendocrine Differentiation of Human Prostate Cancer Cells, Journal of Biological Chemistry, vol.277, issue.13, pp.10824-10857, 2002.
DOI : 10.1074/jbc.M108754200

URL : https://hal.archives-ouvertes.fr/hal-00311244

S. Thebault, M. Roudbaraki, V. Sydorenko, Y. Shuba, L. Lemonnier et al., ??1-adrenergic receptors activate Ca2+-permeable cationic channels in prostate cancer epithelial cells, Journal of Clinical Investigation, vol.111, issue.11, pp.1691-701, 2003.
DOI : 10.1172/JCI16293

K. Vanoverberghe, P. Mariot, V. Abeele, F. Delcourt, P. Parys et al., Mechanisms of ATP-induced calcium signaling and growth arrest in human prostate cancer cells, Cell Calcium, vol.34, issue.1, pp.75-85, 2003.
DOI : 10.1016/S0143-4160(03)00024-1

G. Hajnoczky, . Davies, M. Madesh, and C. Signaling, Calcium signaling and apoptosis, Biochemical and Biophysical Research Communications, vol.304, issue.3, pp.445-54, 2003.
DOI : 10.1016/S0006-291X(03)00616-8

S. Orrenius, . Zhivotovsky, and P. Nicotera, Calcium: Regulation of cell death: the calcium???apoptosis link, Nature Reviews Molecular Cell Biology, vol.4, issue.7, pp.552-65, 2003.
DOI : 10.1038/nrm1150

R. Rizzuto, P. Pinton, D. Ferrari, M. Chami, G. Szabadkai et al., Calcium and apoptosis: facts and hypotheses, Oncogene, vol.22, issue.53, pp.8619-8646, 2003.
DOI : 10.1038/sj.onc.1207105

L. Lipskaia, . Lompre, and . Am, Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation, Biology of the Cell, vol.96, issue.1, pp.55-68, 2004.
DOI : 10.1016/j.biolcel.2003.11.001

L. Munaron, . Antoniotti, and D. Lovisolo, Intracellular calcium signals and control of cell proliferation: how many mechanisms?, Journal of Cellular and Molecular Medicine, vol.7, issue.2, pp.161-169, 2004.
DOI : 10.1038/31960

L. Santella, . Ercolano, . Nusco, and . Ga, The cell cycle: a new entry in the field of Ca2+ signaling, Cellular and Molecular Life Sciences, vol.62, issue.21, pp.2405-2418, 2005.
DOI : 10.1007/s00018-005-5083-6

A. Parekh, J. Putney, and J. , Store-Operated Calcium Channels, Physiological Reviews, vol.85, issue.2, pp.757-810, 2005.
DOI : 10.1152/physrev.00057.2003

M. Hoth and R. Penner, Depletion of intracellular calcium stores activates a calcium current in mast cells, Nature, vol.355, issue.6358, pp.353-359, 1992.
DOI : 10.1038/355353a0

F. Vanden-abeele, R. Skryma, Y. Shuba, F. Van-coppenolle, C. Slomianny et al., Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells, Cancer Cell, vol.1, issue.2, pp.169-79, 2002.
DOI : 10.1016/S1535-6108(02)00034-X

S. Zhang, Y. Yu, J. Roos, J. Kozak, . Deerinck et al., STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane, Nature, vol.1481, issue.7060, pp.902-907, 2005.
DOI : 10.1074/jbc.M011342200

J. Liou, . Kim, . Ml, . Heo, . Wd et al., STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx, Current Biology, vol.15, issue.13, pp.1235-1276, 2005.
DOI : 10.1016/j.cub.2005.05.055

S. Feske, Y. Gwack, M. Prakriya, S. Srikanth, . Puppel et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, vol.25, issue.7090, pp.179-85, 2006.
DOI : 10.1038/nature04702

S. Pedersen, . Owsianik, and B. Nilius, TRP channels: An overview, Cell Calcium, vol.38, issue.3-4, pp.233-52, 2005.
DOI : 10.1016/j.ceca.2005.06.028

I. Ramsey, . Delling, and D. Clapham, AN INTRODUCTION TO TRP CHANNELS, Annual Review of Physiology, vol.68, issue.1, pp.619-666, 2006.
DOI : 10.1146/annurev.physiol.68.040204.100431

F. Vanden-abeele, L. Lemonnier, S. Thebault, G. Lepage, J. Parys et al., Two Types of Store-operated Ca2+ Channels with Different Activation Modes and Molecular Origin in LNCaP Human Prostate Cancer Epithelial Cells, Journal of Biological Chemistry, vol.279, issue.29, pp.30326-30363, 2004.
DOI : 10.1074/jbc.M400106200

URL : https://hal.archives-ouvertes.fr/inserm-00139796

. Vanden-abeele, . Fv, Y. Shuba, M. Roudbaraki, and . Lemonnier, Store-operated Ca2+ channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis, Cell Calcium, vol.33, issue.5-6, pp.357-73, 2003.
DOI : 10.1016/S0143-4160(03)00049-6

F. Vanden-abeele, M. Roudbaraki, Y. Shuba, . Skryma, and N. Prevarskaya, Store-operated Ca2+ Current in Prostate Cancer Epithelial Cells: ROLE OF ENDOGENOUS Ca2+ TRANSPORTER TYPE 1, Journal of Biological Chemistry, vol.278, issue.17, pp.15381-15390, 2003.
DOI : 10.1074/jbc.M212106200

H. Kahr, R. Schindl, R. Fritsch, B. Heinze, M. Hofbauer et al., CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells, The Journal of Physiology, vol.66, issue.1, pp.121-153, 2004.
DOI : 10.1113/jphysiol.2004.062653

J. Peng, . Chen, . Xz, . Berger, . Uv et al., Molecular Cloning and Characterization of a Channel-like Transporter Mediating Intestinal Calcium Absorption, Journal of Biological Chemistry, vol.274, issue.32, pp.22739-22785, 1999.
DOI : 10.1074/jbc.274.32.22739

T. Fixemer, U. Wissenbach, . Flockerzi, and H. Bonkhoff, Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression, Oncogene, vol.22, issue.49, pp.7858-61, 2003.
DOI : 10.1038/sj.onc.1206895

J. Peng, L. Zhuang, . Berger, . Uv, R. Adam et al., CaT1 Expression Correlates with Tumor Grade in Prostate Cancer, Biochemical and Biophysical Research Communications, vol.282, issue.3, pp.729-763, 2001.
DOI : 10.1006/bbrc.2001.4638

U. Wissenbach, . Niemeyer, . Ba, T. Fixemer, A. Schneidewind et al., Expression of CaT-like, a Novel Calcium-selective Channel, Correlates with the Malignancy of Prostate Cancer, Journal of Biological Chemistry, vol.276, issue.22, pp.19461-19469, 2001.
DOI : 10.1074/jbc.M009895200

E. Schwarz, U. Wissenbach, . Niemeyer, . Ba, B. Strauss et al., TRPV6 potentiates calcium-dependent cell proliferation, Cell Calcium, vol.39, issue.2, pp.163-73, 2006.
DOI : 10.1016/j.ceca.2005.10.006

M. Bodding, C. Fecher-trost, and V. Flockerzi, Store-operated Ca2+ Current and TRPV6 Channels in Lymph Node Prostate Cancer Cells, Journal of Biological Chemistry, vol.278, issue.51, pp.50872-50881, 2003.
DOI : 10.1074/jbc.M308800200

A. Thomas, . Bird, . Gs, G. Hajnoczky, . Robb-gaspers et al., Spatial and temporal aspects of cellular calcium signaling, Faseb J, vol.10, pp.1505-1522, 1996.

S. Thebault, M. Flourakis, K. Vanoverberghe, F. Vandermoere, M. Roudbaraki et al., Differential Role of Transient Receptor Potential Channels in Ca2+ Entry and Proliferation of Prostate Cancer Epithelial Cells, Cancer Research, vol.66, issue.4, pp.2038-2085, 2006.
DOI : 10.1158/0008-5472.CAN-05-0376

URL : https://hal.archives-ouvertes.fr/inserm-00137697

N. Kyprianou, . Chon, and C. Benning, Effects of alpha(1)-adrenoceptor (alpha(1)- AR) antagonists on cell proliferation and apoptosis in the prostate: therapeutic implications in prostatic disease, Prostate, vol.9, pp.42-48, 2000.

C. Benning and N. Kyprianou, Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor- independent action, Cancer Res, vol.62, pp.597-602, 2002.

D. Pigozzi, T. Ducret, N. Tajeddine, . Gala, . Jl et al., Calcium store contents control the expression of TRPC1, TRPC3 and TRPV6 proteins in LNCaP prostate cancer cell line, Cell Calcium, vol.39, issue.5, pp.401-416, 2006.
DOI : 10.1016/j.ceca.2006.01.003

K. Vanoverberghe, V. Abeele, F. Mariot, P. Lepage, G. Roudbaraki et al., Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells, Cell Death and Differentiation, vol.11, issue.3, pp.321-351, 2004.
DOI : 10.1038/sj.cdd.4401375

N. Prevarskaya, . Skryma, and Y. Shuba, Ca2+ homeostasis in apoptotic resistance of prostate cancer cells, Biochemical and Biophysical Research Communications, vol.322, issue.4, pp.1326-1361, 2004.
DOI : 10.1016/j.bbrc.2004.08.037

D. Mckemy, . Neuhausser, and D. Julius, Identification of a cold receptor reveals a general role for TRP channels in thermosensation, Nature, vol.371, issue.6876, pp.52-60, 2002.
DOI : 10.1038/nature719

A. Peier, A. Moqrich, . Hergarden, . Ac, A. Reeve et al., A TRP Channel that Senses Cold Stimuli and Menthol, Cell, vol.108, issue.5, pp.705-720, 2002.
DOI : 10.1016/S0092-8674(02)00652-9

URL : https://hal.archives-ouvertes.fr/hal-00311323

L. Tsavaler, . Shapero, . Mh, . Morkowski, and R. Laus, Trp-p8, a novel prostatespecific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins, Cancer Res, vol.61, pp.3760-3769, 2001.

S. Thebault, L. Lemonnier, G. Bidaux, M. Flourakis, A. Bavencoffe et al., Novel Role of Cold/Menthol-sensitive Transient Receptor Potential Melastatine Family Member 8 (TRPM8) in the Activation of Store-operated Channels in LNCaP Human Prostate Cancer Epithelial Cells, Journal of Biological Chemistry, vol.280, issue.47, pp.39423-39458, 2005.
DOI : 10.1074/jbc.M503544200

URL : https://hal.archives-ouvertes.fr/inserm-00137715

L. Zhang and G. Barritt, Evidence that TRPM8 Is an Androgen-Dependent Ca2+ Channel Required for the Survival of Prostate Cancer Cells, Cancer Research, vol.64, issue.22, pp.8365-73, 2004.
DOI : 10.1158/0008-5472.CAN-04-2146

G. Bidaux, M. Roudbaraki, C. Merle, A. Crepin, P. Delcourt et al., Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement, Endocrine Related Cancer, vol.12, issue.2, pp.367-82, 2005.
DOI : 10.1677/erc.1.00969

URL : https://hal.archives-ouvertes.fr/inserm-00139733

H. Bonkhoff, . Fixemer, and K. Remberger, Relation between Bcl-2, cell proliferation, and the androgen receptor status in prostate tissue and precursors of prostate cancer, The Prostate, vol.29, issue.4, pp.251-259, 1998.
DOI : 10.1002/(SICI)1097-0045(19980301)34:4<251::AID-PROS2>3.0.CO;2-K

E. Bruckheimer, K. Spurgers, . Weigel, . Nl, . Logothetis et al., Regulation of Bcl-2 Expression by Dihydrotestosterone in Hormone Sensitive LNCaP-FGC Prostate Cancer Cells, The Journal of Urology, vol.169, issue.4, pp.1553-1560, 2003.
DOI : 10.1097/01.ju.0000055140.91204.c7

P. Nantermet, J. Xu, Y. Yu, P. Hodor, D. Holder et al., Identification of Genetic Pathways Activated by the Androgen Receptor during the Induction of Proliferation in the Ventral Prostate Gland, Journal of Biological Chemistry, vol.279, issue.2, pp.1310-1332, 2004.
DOI : 10.1074/jbc.M310206200

S. Fuessel, D. Sickert, A. Meye, U. Klenk, U. Schmidt et al., -p8) in primary prostate cancers using quantitative RT-PCR, Multiple tumor marker analyses Int J Oncol, vol.23, pp.221-229, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00569738

A. Kiessling, S. Fussel, M. Schmitz, S. Stevanovic, A. Meye et al., Identification of an HLA-A*0201-restricted T-cell epitope derived from the prostate cancer-associated protein trp-p8, The Prostate, vol.8, issue.4, pp.270-279, 2003.
DOI : 10.1002/pros.10265

R. Berges, J. Vukanovic, J. Epstein, M. Carmichel, L. Cisek et al., Implication of cell kinetic changes during the progression of human prostatic cancer, Clin Cancer Res, vol.1, pp.473-80, 1995.

S. Henshall, . Afar, . De, J. Hiller, . Horvath et al., Survival analysis of genome-wide gene expression profiles of prostate cancers identifies new prognostic targets of disease relapse, Cancer Res, vol.63, pp.4196-203, 2003.

J. Furst, M. Gschwentner, M. Ritter, G. Botta, M. Jakab et al., Molecular and functional aspects of anionic channels activated during regulatory volume decrease in mammalian cells*, Pfl??gers Archiv, vol.444, issue.1-2, pp.1-25, 2002.
DOI : 10.1007/s00424-002-0805-1

Y. Okada, T. Shimizu, E. Maeno, S. Tanabe, . Wang et al., Volume-sensitive Chloride Channels Involved in Apoptotic Volume Decrease and Cell Death, Journal of Membrane Biology, vol.12, issue.Suppl. 2, pp.21-30, 2006.
DOI : 10.1007/s00232-005-0836-6

M. Shen, Y. Tang, and . Mj, A Novel Function of BCL-2 Overexpression in Regulatory Volume Decrease. ENHANCING SWELLING-ACTIVATED Ca2+ ENTRY AND Cl- CHANNEL ACTIVITY, Journal of Biological Chemistry, vol.277, issue.18, pp.15592-15601, 2002.
DOI : 10.1074/jbc.M111043200

L. Lemonnier, Y. Shuba, A. Crepin, M. Roudbaraki, C. Slomianny et al., Bcl-2-Dependent Modulation of Swelling-Activated Cl- Current and ClC-3 Expression in Human Prostate Cancer Epithelial Cells, Cancer Research, vol.64, issue.14, pp.4841-4849, 2004.
DOI : 10.1158/0008-5472.CAN-03-3223

Y. Shuba, N. Prevarskaya, L. Lemonnier, F. Van-coppenolle, . Kostyuk et al., Volume-regulated chloride conductance in the LNCaP human prostate cancer cell line, Am J Physiol Cell Physiol, vol.279, pp.1144-54, 2000.

L. Lemonnier, N. Prevarskaya, Y. Shuba, V. Abeele, F. Nilius et al., Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels, The FASEB Journal, vol.16, pp.222-226, 2002.
DOI : 10.1096/fj.01-0383fje

URL : https://hal.archives-ouvertes.fr/hal-00149443

L. Lemonnier, R. Lazarenko, Y. Shuba, S. Thebault, M. Roudbaraki et al., Alterations in the regulatory volume decrease (RVD) and swelling-activated Cl-current associated with neuroendocrine differentiation of prostate cancer epithelial cells, Endocrine Related Cancer, vol.12, issue.2, pp.335-384, 2005.
DOI : 10.1677/erc.1.00898

URL : https://hal.archives-ouvertes.fr/inserm-00139782

D. Duan, C. Winter, S. Cowley, . Hume, and B. Horowitz, Molecular identification of a volume-regulated chloride channel, Nature, vol.390, pp.417-438, 1997.