P. Abrahamsson, Neuroendocrine cells in tumour growth of the prostate, Endocrine Related Cancer, vol.6, issue.4, pp.503-519, 1999.
DOI : 10.1677/erc.0.0060503

F. Afshari, A. Chu, and C. Sato-bigbee, Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodendrocytes: Differential involvement of the transcription factor CREB, Journal of Neuroscience Research, vol.60, issue.1, pp.37-45, 2001.
DOI : 10.1002/jnr.1195

B. Bang, C. Ericsen, and J. Aarbakke, Effects of CAMP and cGMP Elevating Agents on HL-60 Cell Differentiation, Pharmacology & Toxicology, vol.11, issue.2, pp.108-112, 1994.
DOI : 10.1111/j.1600-0773.1994.tb00331.x

L. Lemonnier, Neuroendocrine differentiation Molecular mechanisms of erythrophagocytosis: flow cytometric quantitation of in vitro erythrocyte phagocytosis by macrophages, Cytometry, vol.30, pp.269-274, 1997.

T. Burchardt, M. Burchardt, M. Chen, Y. Cao, A. De-la-taille et al., TRANSDIFFERENTIATION OF PROSTATE CANCER CELLS TO A NEUROENDOCRINE CELL PHENOTYPE IN VITRO AND IN VIVO, The Journal of Urology, vol.162, issue.5, pp.1800-1805, 1999.
DOI : 10.1016/S0022-5347(05)68241-9

P. Chomczynski and . Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, vol.162, issue.1, pp.156-159, 1987.
DOI : 10.1016/0003-2697(87)90021-2

B. Dallaporta, P. Marchetti, M. De-pablo, C. Maisse, H. Duc et al., Plasma membrane potential in thymocyte apoptosis, Journal of Immunology, vol.162, pp.6534-6542, 1999.

P. Deeble, D. Murphy, S. Parsons, and M. Cox, Interleukin-6- and Cyclic AMP-Mediated Signaling Potentiates Neuroendocrine Differentiation of LNCaP Prostate Tumor Cells, Molecular and Cellular Biology, vol.21, issue.24, pp.8471-8482, 2001.
DOI : 10.1128/MCB.21.24.8471-8482.2001

P. Di-sant-'agnese, Neuroendocrine differentiation in carcinoma of the prostate. Diagnostic, prognostic, and therapeutic implications, Cancer, vol.68, issue.S1, pp.254-268, 1992.
DOI : 10.1002/1097-0142(19920701)70:1+<254::AID-CNCR2820701312>3.0.CO;2-E

P. Di-sant-'agnese, Neuroendocrine cells of the prostate and neuroendocrine differentiation in prostatic carcinoma: a review of morphologic aspects, Urology, vol.51, issue.5, pp.121-124, 1998.
DOI : 10.1016/S0090-4295(98)00064-8

D. Duan, C. Winter, S. Cowley, J. Hume, and . Horowitz, Molecular identification of a volume-regulated chloride channel, Nature, vol.390, pp.417-421, 1997.

D. Duan, J. Zhong, M. Hermoso, C. Satterwhite, C. Rossow et al., oocytes by anti-ClC-3 antibody, The Journal of Physiology, vol.507, issue.2, pp.437-444, 2001.
DOI : 10.1111/j.1469-7793.2001.0437i.x

J. Dubois and B. Rouzaire-dubois, Role of potassium channels in mitogenesis, Progress in Biophysics and Molecular Biology, vol.59, issue.1, pp.1-21, 1993.
DOI : 10.1016/0079-6107(93)90005-5

J. Eggermont and D. Trouet, Cellular Function and Control of Volume-Regulated Anion Channels, Cell Biochemistry and Biophysics, vol.35, issue.3, pp.263-274
DOI : 10.1385/CBB:35:3:263

B. Feldman and D. Feldman, The development of androgen-independent prostate cancer, Nature Reviews Cancer, vol.1, issue.1, pp.34-45, 2001.
DOI : 10.1038/35094009

T. Fixemer, K. Remberger, and H. Bonkhoff, Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma, The Prostate, vol.88, issue.2, pp.118-123, 2002.
DOI : 10.1002/pros.10133

J. Furst, M. Gschwentner, M. Ritter, G. Botta, M. Jakab et al., Molecular and functional aspects of anionic channels activated during regulatory volume decrease in mammalian cells*, Pfl??gers Archiv, vol.444, issue.1-2, pp.1-25, 2002.
DOI : 10.1007/s00424-002-0805-1

M. Gentzsch, L. Cui, A. Mengos, X. Chang, J. Chen et al., The PDZ-binding Chloride Channel ClC-3B Localizes to the Golgi and Associates with Cystic Fibrosis Transmembrane Conductance Regulator-interacting PDZ Proteins, Journal of Biological Chemistry, vol.278, issue.8, pp.6440-6449, 2003.
DOI : 10.1074/jbc.M211050200

U. Haussler, M. Rivet-bastide, C. Fahlke, D. Muller, and E. Zachar, Role of the cytoskeleton in the regulation of Cl? channels in human embryonic skeletal muscle cells, Pfl???gers Archiv European Journal of Physiology, vol.421, issue.3-4, pp.323-330, 1994.
DOI : 10.1007/BF00724514

M. Hermoso, C. Satterwhite, Y. Andrade, J. Hidalgo, S. Wilson et al., ClC-3 Is a Fundamental Molecular Component of Volume-sensitive Outwardly Rectifying Cl- Channels and Volume Regulation in HeLa Cells and Xenopus laevis Oocytes, Journal of Biological Chemistry, vol.277, issue.42, pp.40066-40074, 2002.
DOI : 10.1074/jbc.M205132200

J. Horoszewicz, S. Leong, E. Kawinski, J. Karr, H. Rosenthal et al., LNCaP model of human prostatic carcinoma, Cancer Research, vol.43, pp.1809-1818, 1983.

T. Ito, S. Yamamoto, Y. Ohno, K. Namiki, T. Aizawa et al., Up-regulation of neuroendocrine differentiation in prostate cancer after androgen deprivation therapy, degree and androgen independence, Oncology Reports, vol.8, pp.1221-1224, 2001.
DOI : 10.3892/or.8.6.1221

T. Jentsch, V. Stein, F. Weinreich, and A. Zdebik, Molecular Structure and Physiological Function of Chloride Channels, Physiological Reviews, vol.82, issue.2, pp.503-568, 2002.
DOI : 10.1152/physrev.00029.2001

N. Jin, J. Kim, D. Yang, S. Cho, J. Kim et al., channel function and cell volume regulation in AGS cells, Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy, pp.179-188, 2002.
DOI : 10.1152/ajpgi.00470.2002

J. Kim, S. Shin, S. Yun, T. Kim, S. Oh et al., Voltage-dependent ion channel currents in putative neuroendocrine cells dissociated from the ventral prostate of rat, Pfl??gers Archiv - European Journal of Physiology, vol.276, issue.1, pp.88-99, 2003.
DOI : 10.1007/s00424-002-0995-6

F. Lang, M. Ritter, N. Gamper, S. Huber, S. Fillon et al., Cell Volume in the Regulation of Cell Proliferation and Apoptotic Cell Death, Cellular Physiology and Biochemistry, vol.10, issue.5-6, pp.417-428, 2000.
DOI : 10.1159/000016367

L. Lemonnier, Y. Vitko, Y. Shuba, V. Abeele, F. Prevarskaya et al., chelating agents, FEBS Letters, vol.203, issue.1-3, pp.152-156, 2002.
DOI : 10.1016/S0014-5793(02)02863-6

L. Lemonnier, N. Prevarskaya, Y. Shuba, V. Abeele, F. Nilius et al., Alterations in the regulatory volume decrease (RVD) and swelling-activated Cl-current associated with neuroendocrine differentiation of prostate cancer epithelial cells, Endocrine Related Cancer, vol.12, issue.2, pp.335-349, 2002.
DOI : 10.1677/erc.1.00898

URL : https://hal.archives-ouvertes.fr/inserm-00139782

. Www, endocrinology-journals.org of volume-regulated anion channels: evidence for colocalization with store-operated channels, FASEB Journal, vol.16, pp.222-224

L. Lemonnier, N. Prevarskaya, J. Mazurier, Y. Shuba, and . Skryma, 2-APB inhibits volume-regulated anion channels independently from intracellular calcium signaling modulation, FEBS Letters, vol.17, issue.1-3, pp.121-126, 2004.
DOI : 10.1016/S0014-5793(03)01387-5

URL : https://hal.archives-ouvertes.fr/hal-00149473

L. Lemonnier, Y. Shuba, A. Crepin, M. Roudbaraki, C. Slomianny et al., Bcl-2-Dependent Modulation of Swelling-Activated Cl- Current and ClC-3 Expression in Human Prostate Cancer Epithelial Cells, Cancer Research, vol.64, issue.14, pp.4841-4848, 2004.
DOI : 10.1158/0008-5472.CAN-03-3223

I. Levitan, C. Almonte, P. Mollard, and S. Garber, Modulation of a volume-regulated chloride current by Factin, Journal of Membrane Biology, vol.147, pp.283-294, 1995.

X. Li, T. Wang, Z. Zhao, and S. Weinman, The ClC-3 chloride channel promotes acidification of lysosomes in CHO-K1 and Huh-7 cells, AJP: Cell Physiology, vol.282, issue.6, pp.1483-1491, 2002.
DOI : 10.1152/ajpcell.00504.2001

R. Macleod and J. Hamilton, regulation initiated by Na + -nutrient cotransport in isolated mammalian villus enterocytes, American Journal of Physiology, vol.260, pp.26-33, 1991.

E. Maeno, Y. Ishizaki, T. Kanaseki, A. Hazama, and Y. Okada, Normotonic cell shrinkage because of disordered volume regulation is an early prerequisite to apoptosis, Proceedings of the National Academy of Sciences, vol.272, issue.48, pp.9487-9492, 2000.
DOI : 10.1074/jbc.272.48.30567

P. Mariot, K. Vanoverberghe, N. Lalevee, M. Rossier, and . Prevarskaya, Overexpression of an ??1H (Cav3.2) T-type Calcium Channel during Neuroendocrine Differentiation of Human Prostate Cancer Cells, Journal of Biological Chemistry, vol.277, issue.13, pp.10824-10833, 2002.
DOI : 10.1074/jbc.M108754200

URL : https://hal.archives-ouvertes.fr/hal-00311244

S. Mergler, Ca2+ channel characteristics in neuroendocrine tumor cell cultures analyzed by color contour plots, Journal of Neuroscience Methods, vol.129, issue.2, pp.169-181, 2003.
DOI : 10.1016/S0165-0270(03)00204-8

N. Monsul, A. Geisendorfer, P. Han, R. Banik, M. Pease et al., Intraocular injection of dibutyryl cyclic AMP promotes axon regeneration in rat optic nerve, Experimental Neurology, vol.186, issue.2, pp.124-133, 2004.
DOI : 10.1016/S0014-4886(03)00311-X

B. Nilius, J. Eggermont, T. Voets, G. Buyse, V. Manolopoulos et al., Properties of volume-regulated anion channels in mammalian cells, Progress in Biophysics and Molecular Biology, vol.68, issue.1, pp.69-119, 1997.
DOI : 10.1016/S0079-6107(97)00021-7

Y. Okada, Cell Volume-Sensitive Chloride Channels, Contributions to Nephrology, vol.123, pp.21-33, 1998.
DOI : 10.1159/000059920

Y. Okada and E. Maeno, Apoptosis, cell volume regulation and volume-regulatory chloride channels, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol.130, issue.3, pp.377-383, 2001.
DOI : 10.1016/S1095-6433(01)00424-X

Y. Okada, E. Maeno, T. Shimizu, K. Dezaki, J. Wang et al., Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD), The Journal of Physiology, vol.274, issue.2, pp.3-16, 2001.
DOI : 10.1111/j.1469-7793.2001.0003g.x

B. Peters, J. Peters, C. Kuhn, J. Zoller, and W. Franke, Maintenance of cell-type-specific cytoskeletal character in epithelial cells out of epithelial context: Cytokeratins and other cytoskeletal proteins in the rests of Malassez of the periodontal ligament, Differentiation, vol.59, issue.2, pp.113-126, 1995.
DOI : 10.1046/j.1432-0436.1995.5920113.x

M. Shen, C. Chou, K. Hsu, K. Hsu, and M. Wu, channels and cell volume by actin filaments and microtubules in human cervical cancer HT-3 cells, Acta Physiologica Scandinavica, vol.262, issue.3, pp.215-225, 1999.
DOI : 10.1007/BF00374387

M. Shen, T. Yang, and M. Tang, A Novel Function of BCL-2 Overexpression in Regulatory Volume Decrease. ENHANCING SWELLING-ACTIVATED Ca2+ ENTRY AND Cl- CHANNEL ACTIVITY, Journal of Biological Chemistry, vol.277, issue.18, pp.15592-15599, 2002.
DOI : 10.1074/jbc.M111043200

Y. Shuba, N. Prevarskaya, L. Lemonnier, F. Van-coppenolle, P. Kostyuk et al., Volumeregulated chloride conductance in the LNCaP human prostate cancer cell line, American Journal of Physiology ? Cell Physiology, vol.279, pp.1144-1154, 2000.

R. Skryma, P. Mariot, X. Bourhis, F. Coppenolle, Y. Shuba et al., current in human prostate cancer LNCaP cells: involvement in apoptosis, The Journal of Physiology, vol.90, issue.1, pp.71-83, 2000.
DOI : 10.1111/j.1469-7793.2000.00071.x

J. Trimarchi, L. Liu, P. Smith, and D. Keefe, Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation, AJP: Cell Physiology, vol.282, issue.3, pp.588-594, 2002.
DOI : 10.1152/ajpcell.00365.2001

F. Vanden-abeele, R. Skryma, Y. Shuba, F. Van-coppenolle, C. Slomianny et al., Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells, Cancer Cell, vol.1, issue.2, pp.169-179, 2002.
DOI : 10.1016/S1535-6108(02)00034-X

K. Vanoverberghe, V. Abeele, F. Mariot, P. Lepage, G. Roudbaraki et al., Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells, Cell Death and Differentiation, vol.11, issue.3, pp.321-330
DOI : 10.1038/sj.cdd.4401375

Y. Vitko, N. Pogorelaya, N. Prevarskaya, R. Skryma, and Y. Shuba, Proteolytic modification of swellingactivated Cl -current in LNCaP prostate cancer epithelial cells, Journal of Bioenergetics and Biomembranes, vol.34, issue.4, pp.307-315, 2002.
DOI : 10.1023/A:1020260603492

T. Voets, G. Szucs, G. Droogmans, and B. Nilius, Blockers of volume-activated Cl? currents inhibit endothelial cell proliferation, Pfl???gers Archiv European Journal of Physiology, vol.54, issue.1, pp.132-134, 1995.
DOI : 10.1007/BF00374387

T. Voets, L. Wei, D. Smet, P. Van-driessche, W. Eggermont et al., Downregulation of volume-activated Cl -currents during muscle differentiation, American Journal of Physiology, vol.272, pp.667-674, 1997.

G. Wang, W. Hatton, G. Wang, J. Zhong, I. Yamboliev et al., Functional effects of novel anti-ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.4, pp.1453-1463, 2003.
DOI : 10.1152/ajpheart.00244.2003