Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells.

To cite this version:
Stéphanie Thébault, Morad Roudbaraki, Vadim Sydorenko, Yaroslav Shuba, Loic Lemonnier, et al.. Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells.. Journal of Clinical Investigation, American Society for Clinical Investigation, 2003, 111 (11), pp.1691-701. <10.1172/JCI200316293.>. <inserm-00139765>
α1-adrenergic receptors activate Ca2+-permeable cationic channels in prostate cancer epithelial cells

Stephanie Thebault, Morad Roudbaraki, Vadim Sydorenko, Yaroslav Shuba, Loic Lemonnier, Christian Slomianny, Etienne Dewailly, Jean-Louis Bonnal, Brigitte Mauroy, Roman Skryma, and Natalia Prevarskaya

Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale (INSERM) EMI 0228, Villeneuve d’Ascq, France

The prostate gland is a rich source of α1-adrenergic receptors (α1-ARs). α1-AR antagonists are commonly used in the treatment of benign prostatic hyperplasia symptoms, due to their action on smooth muscle cells. However, virtually nothing is known about the role of α1-ARs in epithelial cells. Here, by using two human prostate cancer epithelial (hPCE) cell models — primary cells from resection specimens (primary hPCE cells) and an LNCaP (lymph node carcinoma of the prostate) cell line — we identify an α1A subtype of adrenergic receptor (α1A-AR) and show its functional coupling to plasmaemmal cationic channels via direct diacylglycerol (DAG) gating. In both cell types, agonist-mediated stimulation of α1A-ARs and DAG analogues activated similar cationic membrane currents and Ca2+ influx. These currents were sensitive to the α1A-AR antagonists, prazosin and WB4101, and to transient receptor potential (TRP) channel blockers, 2-aminophenyl borate and SK&F 96365. Chronic activation of α1A-ARs enhanced LNCaP cell proliferation, which could be antagonized by α1A-AR and TRP inhibitors. Collectively, our results suggest that α1-ARs play a role in promoting hPCE cell proliferation via TRP channels.

Introduction
Prostate cancer has the highest incidence of any malignancy and is the second cause of cancer-related deaths in men in industrialized countries (1). Besides metastasis to bone and lymph nodes, the most important reason for prostate cancer mortality is the progression from androgen-dependent to androgen-independent tumors (2). In the case of metastasis, androgen suppression is the leading treatment and currently the most successful. However, as androgen-independent cells are insensitive to this treatment, they continue to grow and prevent cancer regression (3). This insensitivity is a significant problem considering the general aging of the population in the United States and Europe. As hormonal ablation and chemotherapy are not always effective, continuing effort is required to find new targets for therapeutic intervention.

α1-adrenergic receptor (α1-AR) antagonists are already in use for the clinical treatment of benign prostatic hyperplasia, where they act directly on the α1-ARs present in prostatic smooth muscle (4). Recent studies have demonstrated that α1-AR antagonists such as doxazosin and terazosin induce apoptosis in primary human prostate cancer epithelial (hPCE) cells and smooth muscle cells without affecting cellular proliferation (5). While this finding is apparently very promising, the mechanism of apoptosis induction in prostate cancer cells by α-antagonists seems to be α1-AR-independent (5, 6), so whereas prostate epithelial cells seem to express α1-ARs, their functional role in these particular cells has yet to be established.

Among α1-AR subtypes, α1A is believed to be predominant in the fibromuscular stroma of the prostate (7–11). Its stimulation leads principally to the activation of phospholipase C (PLC), ultimately resulting in an increase in intracellular free Ca2+ via inositol trisphosphate (IP3) and diacylglycerol (DAG) production (12, 13). Recent studies in vascular smooth muscles have shown that α1-ARs may also activate Ca2+-permeable nonselective cationic channels (14) and that TRPC6 — a member of the transient receptor potential (TRP) channel family originally found in Drosophila and then discovered in most mammalian tissues (15) — may be an essential component of these channels (16). Enhanced...
Ca2+ entry due to overexpression of one of the TRPs, TRPC1, has been shown to be linked to the proliferation of human pulmonary myocytes (17). Given that, in general, mitogen-mediated cell growth requires an increase in cytosolic Ca2+ concentration (18), these facts highlight the role of TRP channels in maintaining a high intracellular Ca2+ concentration during proliferation. However, our data on the expression and physiological roles of TRPs in the prostate are still incomplete.

This study was designed to identify any store-independent mechanisms in \(\alpha_1\)-AR–activated Ca2+ entry in hPCE cells. We show, to our knowledge for the first time, that hPCE cells express the \(\alpha_1A\) subtype of \(\alpha_1\)-AR (\(\alpha_1A\)-AR) and demonstrate that the \(\alpha_1\)-AR antagonists prazosin and WB4101, as well as SK&F 96365, an inhibitor of receptor-mediated Ca2+ entry, inhibit the proliferative effects of \(\alpha_1\)-AR agonists. Furthermore, our data on the nature of \(\alpha_1\)-AR–stimulated transmembrane Ca2+ entry suggest that it has a substantial store-independent component that is mediated by members of the TRP-channel family.

Methods

Cell cultures. Lymph node carcinoma of the prostate (LNCaP) cells from American Type Culture Collection (Rockville, Maryland, USA) were cultivated in RPMI 1640 medium (BioWhittaker SA, Verviers, Belgium), supplemented with 5 mM l-glutamine (Sigma-Aldrich, L’Isle d’Abeau, France) and 10% FBS (Applera France SA, Courtaboeuf, France). The culture medium also contained 50,000 IU/l penicillin and 50 mg/l streptomycin. Primary hPCE cells were cultivated in KSF medium (InVitrogen SARL, Cergy Pontoise, France) supplemented with 50 µg/ml bovine pituitary extract and 50 µg/ml EGF. Cells were routinely grown in 50-ml flasks (Nunc, Applera France SA) and kept at 37°C in a humidified incubator in an atmosphere of 5% CO\textsubscript{2}. For electrophysiology and calcium imagery experiments, the cells were subcultured in Petri dishes (Nunc; Dominique Dutscher SA, Issy-les Moulineaux, France) and used after 3–6 days.

Calcium imaging. Intracellular Ca2+ concentration ([Ca2+]\textsubscript{i}) was measured using Fura-2 (the detailed procedure has been described previously) (19, 20). The extracellular solution contained (in mM): 120 NaCl, 6 KCl, 2 CaCl\textsubscript{2}, 2 MgCl\textsubscript{2}, 10 HEPES, and 12 glucose. For Ca2+-free HBSS, CaCl\textsubscript{2} was removed and 0.5 mM EGTA was added.

Electrophysiology and solutions. Regular and perforated whole-cell patch-clamp techniques were used for current recording, as detailed elsewhere (21, 22). The extracellular solution contained (in mM): 130 CsCl, 5 KCl, 10 glucose, 2 CaCl\textsubscript{2}, 2 MgCl\textsubscript{2}, 10 HEPES, and 20 TEA-OH, adjusted to pH 7.3 with HCl. In the whole-cell experiments, the intracellular solution contained (in mM): 50 CsCl, 90 CsOH, 2 MgCl\textsubscript{2}, 3 CaCl\textsubscript{2} (calculated [Ca2+]\textsubscript{i} = 280 nM), 5 glucose, 10 HEPES, 4 EGTA, and 2 Na-ATP, adjusted to pH 7.2 with glutamic acid. In the perforated-patch experiments, the intracellular solution contained (in mM): 55 CsCl, 70 Cs\textsubscript{2}SO\textsubscript{4}, 7 MgCl\textsubscript{2}, 1 CaCl\textsubscript{2}, 5 glucose, and 10 HEPES, adjusted to pH 7.2 with CsOH.

For monovalent cation permeability measurements, we omitted KCl from the extracellular solution and replaced it with 135 mM of either NaCl or CsCl. Divalent cation permeability was measured in a solution containing 10 mM CaCl\textsubscript{2}, BaCl\textsubscript{2}, or MgCl\textsubscript{2} and 125 mM N-methyl-D-glucamine replacing CsCl and KCl. The permeability ratios were calculated on the basis of shifts in reversal potential, using formulas presented in Watanabe et al. (23).

Immunofluorescence staining. The cells were permeabilized in acetone at −20°C for 15 minutes. They were then placed on slides and blocked with 1.2% gelatin in PBS for 30 minutes to avoid nonspecific binding. They were then incubated overnight at 4°C in 100% humidity, together with the primary antibodies for \(\alpha_1A\)-AR (Santa Cruz Biotechnology Inc., Santa Cruz, California, USA), cytookeratin 18 (NeoMarkers, Fremont, California, USA), and cytookeratin 14 (Chemicon International, Temecula, California, USA). After several washes in 1.2% gelatin in PBS, the slides were incubated at 37°C for 1 hour with the secondary antibodies donkey anti-goat IgG labeled with FITC (Chemicon International) and anti-mouse IgG labeled with Rhodamine Red-X (Jackson ImmunoResearch Laboratories Inc., West Grove, Pennsylvania, USA), then washed in PBS and mounted in Mowiol (Mowiol, Aldrich, France). The sections were observed under a Zeiss Axioshot microscope (Carl Zeiss Inc., Thornwood, New York, USA) equipped with epifluorescence (FITC: excitation, 450–490 nm; emission, 520 nm. Rhodamine Red-X: excitation, 570 nm; emission, 590 nm). Negative controls consisted of the omission of the primary antibody.

Western analysis. Western analysis of protein expression was carried out as previously described (22). Anti–\(\alpha_1A\)-AR antibody was from Santa Cruz Biotechnology Inc.

RT-PCR analysis. Total RNA from the LNCaP cell line was isolated by the guanidium thiocyanate–phenol-chloroform extraction procedure. After treatment with 0.1 U/µl deoxyribonuclease I (Invitrogen SARL) for 1 hour at 25°C to eliminate genomic DNA, total RNA was reverse transcribed into cDNA as described by Roudbaraki et al. (24). For the PCR reaction, specific sense and antisense primers were selected, based on GenBank TRP sequences, using GeneJockey II (Biosoft, Thornwood, New York, USA). Primers were synthesized by Invitrogen SARL. Human TRPC1 splice variant TRPC1A–specific sense and antisense primers (GenBank accession no. P19334) were: 5′-TTCTCTCTC-CATCCTCCTTTGGC-3′ (nucleotides 795–816) and 5′-CATATTGTGTTACTAGTGGAGAACG-3′ (nucleotides 1,231–1,252). The predicted size of the PCR-amplified product was 457 bp for TRPC1 and 355 bp for the TRPC1A splice variant. Human TRPC3–specific sense and antisense primers (GenBank accession no. U47050) were: 5′-GGAAAAACATTATCCCTACTTCTTACTA-3′ (nucleotides 2,260–2,284) and 5′-CTGATTGTCTGAGATGAGGACTA-3′ (nucleotides 2,619–2,643). The predicted size of the PCR-amplified TRPC3 product was 383 bp.
The primers used for amplification were (a) the 625-bp part of the human TRPC6 coding sequence (GenBank accession no. AJ271066): 5′-GAACCTTACAGACGAAGGAGC-3′ (sense, nucleotides 895–917) and 5′-CATATGCTATTCCAAAGGGA-3′ (antisense, nucleotides 1,499–1,521); and (b) the 477-bp part of human TRPC7 cDNA (GenBank accession no. NM020389): 5′-GTCCGAATGCAAGGAAATCT-3′ (sense, nucleotides 1,356–1,375) and 5′-TGGGTGTATTTGGCACCCT-3′ (antisense, nucleotides 1,814–1,833).

Each sample was amplified using AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, California, USA) in an automated thermal cycler (GeneAmp 2400; Applied Biosystems). DNA amplification conditions included an initial 7-minute denaturation step at 95°C (which also activated the AmpliTaq Gold) and 40 cycles of 30 seconds at 95°C, 30 seconds at 58°C, 40 seconds at 72°C, and a final elongation of 7 minutes at 72°C. The RT-PCR samples were electrophoresed on a 1.5% agarose gel and stained with ethidium bromide (0.5 µg/ml), then photographed under UV light. In order to study band identity, the RT-PCR products were subjected to restriction enzyme analysis.

Proliferation assays. The CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega Corp., Madison, Wisconsin, USA) was used to determine the number of viable cells in proliferation assays. This commercial assay is composed of MTS (inner salt) and PMS (an electron coupling reagent). MTS is bioreduced by cells into a formazan that is soluble in the tissue culture medium. The absorbance of the formazan at 490 nm is measured directly from 96-well assay plates. The quantity of formazan produced, measured by the amount of 490 nm absorbance, is directly proportional to the number of living cells in the culture. The Dunnett test was used for statistical analyses.

Data analysis. Each experiment was repeated several times and the results were expressed as mean ± SEM where appropriate. The data were analyzed and graphs were plotted using Origin 5.0 software (Microcal Software Inc., Northampton, Massachusetts, USA). Characteristic times of membrane current or [Ca2+]i response to any intervention were determined as follows. The time intervals from the onset of the intervention until the current or [Ca2+]i reached 0.05(A_max – A_base) and 0.95(A_max – A_base) were considered as latency and time-to-peak response periods, respectively, where A_base is the baseline signal amplitude before the intervention and A_max is the maximal signal amplitude. The time interval between 0.05(A_max – A_base) and 0.95(A_max – A_base) was considered to be the response development time.

Results

α1A-AR protein expression in hPCE cells. α1A-ARs are primarily distributed in the fibromuscular stroma of the prostate. To demonstrate the expression of α1-ARs in a primary culture of hPCE cells and in the androgen-dependent LNCaP cell line, we used an immunodetection strategy with a specific antibody for α1A-AR, considered to be the dominant subtype in the prostate. Figure 1 shows that both primary hPCE cells and LNCaP cells express α1A-AR. With FITC-labeled secondary antibody alone, no immunoreactivity was detected in either cell type in response to treatment (data not shown).

Evidence of functional α1A-AR in hPCE cells. Having demonstrated the presence of α1A-AR in hPCE cells, we investigated whether stimulation of this receptor affected intracellular Ca2+ homeostasis. Figure 2 shows that applying the α1-specific agonist phenylephrine (Phe, 10 µM) to primary hPCE cells elicited intracellular Ca2+ oscillations (osc), which occurred only during agonist application, with an average frequency of 1 osc/8.4 ± 0.6 min and an average duration of 2.6 ± 0.2 min (Figure 2a, n = 17). These oscillations were suppressed by SK&F 96365, a conventional blocker of receptor-operated Ca2+ entry (25) (10 µM, Figure 2b, n = 9), suggesting that Ca2+ entry is essential to the generation of these oscillations. Exposure of LNCaP cells to 10 µM Phe induced a slow, gradual increase in [Ca2+]i, within 29.0 ± 1.8 min, followed only by minor oscillations around the [Ca2+]i plateau (Figure 2c, n = 37), which, however, was also sensitive to SK&F 96365 (see Figure 2e). This dramatic difference in [Ca2+]i signal kinetics in response to Phe between the primary hPCE cells and LNCaP cells sug-

Figure 1

α1A-AR protein expression in hPCE cells. (a-c) Epifluorescence images representing double labeling of the primary culture of hPCE cells with anti–cytokeratin 14 antibody that selectively stains epithelial cells (red in a) and with goat anti–α1A-AR antibody (green in b), resulting in an orange interference color (c). (d) Staining of LNCaP cells with goat anti–α1A-AR antibody. (e) Representative Western blot analysis of α1A-AR in LNCaP cells with goat anti–α1A-AR polyclonal antibody (see Methods for details). Each experiment was repeated several times.
gests quite different modes of Ca\(^{2+}\) entry, release, and uptake in the two cell types. As LNCaP cells were much more accessible for experimental use than primary hPCE cells, most of the experiments reported in this study used LNCaP cells.

The Phe-induced [Ca\(^{2+}\)] \textit{i} increase in LNCaP cells was completely inhibited by competitive α1A-AR antagonists such as prazosin and WB4101 (both at 1 μM). In addition, this validated the involvement of α1-ARs (Figure 2c, \(n = 31\) and \(n = 33\) respectively). To determine the origin of the agonist-evoked [Ca\(^{2+}\)] \textit{i} rise in LNCaP cells, we used extracellular media with varying Ca\(^{2+}\) content. Figure 2d (\(n = 9\)) shows that removal of extracellular Ca\(^{2+}\) during the plateau of the Phe-evoked [Ca\(^{2+}\)] \textit{i} increase caused a sharp decline in [Ca\(^{2+}\)] \textit{i}, suggesting that virtually all of the Ca\(^{2+}\) entered the cell from extracellular space. Moreover, in Ca\(^{2+}\)-free media, Phe did not induce any [Ca\(^{2+}\)] \textit{i} increase (data not shown). Similar [Ca\(^{2+}\)] \textit{i} responses were caused in LNCaP cells by the nonspecific adrenergic agonist epinephrine (see Figure 4a, \(n = 31\)), suggesting that β-ARs play, at most, a negligible role. This would therefore justify the interchangeable usage of the two agonists.

To further validate the involvement of plasmalemmal Ca\(^{2+}\)-permeable channels in the α1-AR–stimulated Ca\(^{2+}\) \textit{i} influx into LNCaP cells, we tested the ability of SK&F 96365 and 2-aminophenyl borate (2-APB), an IP\(_3\) receptor and a store-operated Ca\(^{2+}\)-channel (SOC) inhibitor (25, 26), to interfere with the effect of Phe on Ca\(^{2+}\) homeostasis. Figure 2e shows that both drugs at their typically used concentrations (10 μM SK&F 96365, \(n = 10\) and 100 μM 2-APB, \(n = 10\)) effectively blocked Phe-induced Ca\(^{2+}\) \textit{i} influx, although SK&F 96365 appeared to be slightly more potent, inhibiting virtually 100% of the response, compared with about 80% for 2-APB (Figure 2e).

Figure 2 α1A-AR agonist–evoked Ca\(^{2+}\) signaling in human prostate epithelial cells. (a and b) Changes in [Ca\(^{2+}\)] \textit{i} in representative primary human prostate epithelial cells in response to Phe (10 μM, \(n = 17\)) (a) alone and (b) in combination with SK&F 96365 (10 μM, \(n = 9\)). (c) Phe-evoked changes in [Ca\(^{2+}\)] \textit{i} in representative LNCaP cells under control conditions (\(n = 37\)) and in the presence of the α1-AR antagonists prazosin (\(n = 31\)) or WB4101 (\(n = 33\)) (both at 1 μM). (d) Phe-evoked [Ca\(^{2+}\)] \textit{i} increase in LNCaP cells at 2 mM extracellular Ca\(^{2+}\) (2/Ca\(^{2+}\)) and the decrease on removal of extracellular Ca\(^{2+}\) (0/Ca\(^{2+}\)) (29). (e) Blockade of Phe-evoked [Ca\(^{2+}\)] \textit{i} increase in two representative LNCaP cells by SK&F 96365 (10 μM, \(n = 10\)) and 2-APB (100 μM, \(n = 10\)). [Ca\(^{2+}\)] \textit{i} signals were measured on Fura-2–loaded cells; all interventions in each panel are marked by horizontal bars.
n = 23), which was, however, dependent on [Ca2+]_{out} as OAG-induced oscillations. Moreover, these oscillations were sensitive to SK&F 96365 and 2-APB (data not shown). Thus, the experiments with DAG analogues indicate that transmembrane Ca2+ entry into LNCaP cells bypassing α1-AR stimulation can be activated by using one of its downstream products that does not affect IP3-dependent Ca2+ stores. In addition, this product probably targets the subset of membrane channels that contribute to overall Ca2+ entry, which is associated with α1-AR stimulation.

In order to prove the dependence of α1-AR agonist–evoked Ca2+ entry on the signaling cascade triggered by PLC-catalyzed phospholipid turnover, we used the PLC inhibitor U73122 and its inactive analogue U73343 (32, 33). Figure 4a shows that pretreatment of LNCaP cells with 10 µM U73122 (n = 12) for 15 minutes completely prevented the epinephrine-induced [Ca2+] increase, whereas U73343 exerted no inhibitory effect under equivalent conditions (n = 19). We also investigated whether PKC activation contributed to the effect of DAG analogues on Ca2+ entry into LNCaP cells. LNCaP cells were pretreated for 30 minutes with one of the following PKC inhibitors: staurosporine (1 µM, n = 17), bis-indolylmaleimide I (500 nM, n = 33), or GÖ6976 (50 nM, n = 13) for 30 minutes. Cells were then exposed to 100 µM OAG. Figure 4b shows that this pretreatment did not interfere with the ability of OAG to induce [Ca2+] oscillations. Indeed, the average frequency and duration of the OAG-induced oscilla-
tions in the presence of PKC inhibitors (1 osc/9.5 ± 0.8 min, data not shown) was similar to that estimated in the absence of PKC inhibitors (1 osc/9.8 ± 1.0 min). These results rule out PKC involvement in \([Ca^{2+}]_i\) oscillations and strongly suggest that OAG may act directly on the channels, underpinning the notion of agonist-evoked \(Ca^{2+}\) influx into LNCaP cells.

\(\alpha_1\text{-AR}\) stimulation activates an inwardly rectifying cationic current similar to that induced by OAG. Fluorescent \([Ca^{2+}]_i\) measurements provide only a rough estimate of the \(Ca^{2+}\) influx, as the resulting \([Ca^{2+}]_i\) signal is strongly affected by intracellular \(Ca^{2+}\) handling mechanisms. To demonstrate directly that \(\alpha_1\text{-AR}\) stimulation translates into the activation of store-independent membrane channels, we carried out whole-cell patch-clamp recordings of Phe-induced membrane currents. Experiments were performed on LNCaP cells under conditions that ensured both the effective suppression of the voltage-dependent \(K^+\) current characteristic of these cells (21) and the prevention of passive intracellular \(Ca^{2+}\) store depletion that could lead to the activation of SOCs (i.e., high \([Ca^{2+}]_{free}\) in the pipette solution). Changes in the membrane current in response to voltage-clamp pulses were continuously monitored. These pulses included a linear-ramp portion connecting two steady levels of −100 mV and +50 mV applied every 10 seconds (Figure 5a). Under our experimental conditions, these pulses (Figure 5a), as well as regular stepwise pulses to different membrane potentials (\(V_m\), Figure 5b), elicited only a small background current that was considered a baseline for further examinations. Phe application (50 µM) caused the development of the current, which reached its full amplitude in about 4.0 ± 0.8 min (Figure 5b) and showed no signs of voltage- or time-dependent gating (Figure 5, a and b). The average density of Phe-evoked current was 23.0 ± 1.8 pA/pF at \(V_m = −100\) mV (\(n = 9\)). The \(I-V\) relationship derived from the ramp portions of the currents, which displayed quite prominent inward rectification (Figure 5a). Phe-induced current was reversibly inhibited by SK&F 96365 (22 ± 5% at 10 µM and \(V_m = −100\) mV) and 2-APB (58 ± 6% at 100 µM and \(V_m = −100\) mV) (data not shown), suggesting that it was transferred via \(\alpha_1\text{-AR}\)-coupled cationic membrane channels.

In order to study the development of Phe-activated current (\(I_{\text{Phe}}\)) cationic current under more physiological experimental conditions than those of the conventional whole-cell configuration, we used the perforated-patch recording technique. Figure 6 shows the time course of \(I_{\text{Phe}}\) development. In all the perforated-patch experiments (\(n = 7\)), the latency before \(I_{\text{Phe}}\) activation (calculated as described in Methods) was prolonged, at 6.4 ± 0.5 min, compared with 0.2 ± 0.1 min in the conventional whole-cell configuration. However, the response development time and average density of \(I_{\text{Phe}}\) were similar in Figure 6

Combined perforated-patch recording of the Phe-evoked inwardly rectifying cationic current at a holding potential of −100 mV (see Methods). The data are mean ± SEM for seven cells. The horizontal black bars indicate the applications of 50 µM Phe and 10 µM SK&F 96365.
both perforated (1.45 ± 0.5 min and 15.0 ± 1.9 pA/pF at $V_m = -100$ mV, Figure 6) and conventional whole-cell configurations (2.6 ± 0.5 min and 23.0 ± 2.7 pA/pF at $V_m = -100$ mV, Figure 5b). Phe-induced current was also reversibly inhibited by SK&F 96365 (10 μM, $n = 4$, Figure 6) under perforated-patch conditions.

Current with similar properties to that elicited by Phe could also be induced by the membrane-permeable DAG analogue OAG (100 μM, Figure 5, d and e). This is consistent with the hypothesis that I_{Phe} is directly activated via the DAG branch of the receptor-bound PLC-catalyzed inositol phospholipid-breakdown signaling pathway after stimulation of α_1-ARs. The average density of OAG-induced current was 23.0 ± 2.8 pA/pF at $V_m = -100$ mV ($n = 7$), with a reversal potential of around 0 mV.

In order to quantify the relative permeability of monovalent cations through α_1-AR agonist and OAG-activated membrane channels, we replaced all and K+ in the divalent cation–free extracellular solution with equimolar amounts of Na+ and Cs+. We then measured the shifts in current reversal potential (E_{rev}). On the basis of the E_{rev} shifts, the following order of relative permeability was deduced for Phe ($n = 7$): $P_{Cs^+} > P_{K^+}$ and for OAG ($n = 4$): $P_{Ca^{2+}} > P_{Mg^{2+}} > P_{Ba^{2+}}$ (Figure 7b). Following the removal of extracellular Ca$^{2+}$, the amplitude of the OAG-induced current at −100 mV decreased by about 20% (data not shown). This suggested that Ca$^{2+}$ is an essential component of the overall cationic current, thus contributing to the fluorometrically measured Phe- and OAG-induced increase in [Ca$^{2+}$]. The electrophysiological properties of the OAG-induced current are similar to those of the Phe-induced current, i.e., voltage dependence (inward-
ly rectifying $I-V$), current density, reversal potential, and ion permeability sequence.

To verify the hypothesis that DAG may be actively involved in Phe-induced cationic current, we investigated the additional application of both agonists, Phe and the membrane-permeable DAG analogue OAG. Figure 7a shows that, in LNCaP cells, the application of Phe elicited a cell membrane current, I_{Phe}, and that the application of OAG at maximum I_{Phe} (during maximal Phe-induced response) had no additional effect ($n=4$). Similarly, the application of OAG elicited a current indistinguishable from that evoked by Phe, and the application of Phe during maximal OAG-induced response had no additional effect (data not shown). The current densities (26.5 ± 2.1 pA/pF and 25.0 ± 2.5 pA/pF at $V_m = -100$ mV, respectively) and reversal potential (~ 0 mV) were similar in the presence of both agonists. These data strongly suggest that the α_1-AR agonist targets the same channels as OAG. Moreover, pretreatment with PKC inhibitors such as staurosporine modified neither OAG-induced ($n=4$) nor Phe-induced ($n=6$) currents.

α_1-ARs and LNCaP cell proliferation. To determine whether α_1-ARs are involved in LNCaP cell proliferation, we examined the effect of culturing cells in medium supplemented with the agonist epinephrine, either alone, in combination with one of the two α_1-AR antagonists (prazosin or WB4101), or with a cationic channel inhibitor, SK&F 96365. Two days of treatment with 1 µM epinephrine resulted in about 25% cell growth promotion, which was α_1-AR–specific, as it was completely abolished by the competitive α_1-AR antagonists prazosin and WB4101 (Figure 8a). The proliferative action of α_1-AR stimulation was apparently mediated by Ca$^{2+}$ influx through plasmalemmal cationic channels, as coincubation of the cells with 10 µM SK&F 96365 inhibited epinephrine-evoked proliferation (Figure 8a). Interestingly, 10 µM SK&F 96365 alone had no effect on LNCaP cell viability, although a preferential inhibitor of IP$_3$ receptors and SOCs, 2-APB (100 µM), was able to suppress cell proliferation (data not shown).

To demonstrate that Ca$^{2+}$ influx was required for α_1-AR–stimulated proliferation of LNCaP cells, we repeated the experiments with epinephrine (1 µM) incubation at various concentrations of extracellular Ca$^{2+}$. Figure 8b shows that at 0.4 mM [Ca$^{2+}]_{\text{out}}$, epinephrine-induced cell proliferation was similar to that observed at the normal [Ca$^{2+}]_{\text{out}}$ of 2 mM (see Figure 8a). However, epinephrine lost its ability to stimulate cell proliferation in nominally Ca$^{2+}$-free extracellular medium, which itself inhibited cell growth (Figure 8b).

Collectively, these results suggest that α_1-ARs play an essential role in promoting hPCE cell proliferation and highlight the significance in this process of α_1-AR–stimulated transmembrane Ca$^{2+}$ influx via plasmalemmal cationic channels.

Expression of receptor-operated TRP channels in hPCE cells. As previously mentioned, four members of the short subfamily of TRP channels, TRPC1, TRPC3, TRPC6, and TRPC7 (15), are the most implicated in the receptor-operated, store-independent Ca$^{2+}$ entry linked to the inositol phospholipid–breakdown signaling cascade. We therefore attempted to identify the α_1-AR–coupled cationic channel in hPCE cells. This was done using RT-PCR analysis to determine the expression of mRNA specific to the human isoforms of these TRPs in primary hPCE and LNCaP cells. Figure 9 shows that the transcripts for the TRPC1A splice variant (Figure 9a) and TRPC3 (Figure 9b) were abundantly expressed in the LNCaP cell line, whereas TRPC6 (Figure 9c) and TRPC7 (Figure 9d) were undetectable. In primary hPCE cells the situation was somewhat different: these cells expressed TRPC1A (Figure 9a) and TRPC6 (Figure 9c) strongly, TRPC3 weakly (Figure 9d), and TRPC7 not at all (Figure 9d). However, it is premature to identify exactly which TRPs contribute to the α_1-AR–stim-
ulated store-independent Ca\(^{2+}\) entry in the two cell types and in what proportion simply on the basis of expression patterns.

Discussion

This study presents, we believe for the first time, evidence of the role of \(\alpha1\)-ARs in transmembrane Ca\(^{2+}\) signaling in hPCE cells. It also demonstrates the involvement of this signaling in the proliferation of these cells. Furthermore, it shows that the \(\alpha1\)-AR subtype expressed in hPCE cells is \(\alpha1\)A, and that \(\alpha1\)A-AR–stimulated transmembrane Ca\(^{2+}\) influx contains an essential cationic store–independent component, which is probably provided by the members of the TRP-channel family.

\(\alpha1\)-ARs in the prostate and cell proliferation

The role of \(\alpha1\)-ARs in agonist-stimulated proliferation has mainly been demonstrated for smooth muscle myocytes (34, 35), although there is evidence that these receptors may participate in the promotion of proliferation of other cell types as well (36). Moreover, recent studies demonstrate that some of the immediate targets for \(\alpha1\)-AR stimulation, at least in smooth muscle cells, are Ca\(^{2+}\)-permeable cationic channels in the TRP-channel family (16). These works have shown that these channels can be activated directly by DAG, one of the products of the \(\alpha1\)-AR–coupled inositol phospholipid hydrolysis signaling cascade (29, 30). Enhanced Ca\(^{2+}\) influx mediated by overexpression of the TRP-channel TRPC1 is directly involved in the proliferation of vascular smooth muscle cells (17).

Four subtypes of \(\alpha1\)-ARs (\(\alpha1\)A, \(\alpha1\)B, \(\alpha1\)C, and \(\alpha1\)L) have been identified in human prostate cells (7–11). These receptors are mostly localized in the fibromuscular stroma, where they mediate the contraction of prostate smooth muscle (8). While the role of \(\alpha1\)-ARs in maintaining the contractile properties of the prostate has been intensively investigated, and has even received widespread recognition in the clinical treatment of benign prostatic hyperplasia, the representation and function of these receptors in the glandular epithelium have yet to be determined. At the same, there is growing evidence that \(\alpha1\)-ARs support the direct mitogenic effect of catecholamines on prostate growth (37).

Our study is the first to provide direct evidence that both primary hPCE cells and LNCaP epithelial cells express the \(\alpha1\)A subtype of \(\alpha1\)-ARs and that this receptor is functionally coupled to transmembrane Ca\(^{2+}\) entry via the PLC-catalyzed inositol phospholipid hydrolysis signaling pathway, presumably through activation of channels in the TRP family. This Ca\(^{2+}\) entry seems to be a dominant source of the Ca\(^{2+}\) required to promote the proliferation of LNCaP cells. The specificity of \(\alpha1\)-AR agonist–induced proliferation is proven by its complete suppression by \(\alpha1\)-AR inhibitors, such as prazosin and WB4101. Moreover, \(\alpha1\)-AR agonist–stimulated proliferation of LNCaP cells was also inhibited by the endogenous cationic channel and the TRP channel blockers 2-APB and SK&F 96365, suggesting that these channels are involved in the proliferative effect of \(\alpha1\)-AR agonists.

Candidates for \(\alpha1\)-AR–coupled channels in prostate cancer epithelial cells. As \(\alpha1\)-ARs act via PLC-catalyzed production of two second-messengers, IP\(_3\) and DAG (12), two mechanisms are probably involved in Ca\(^{2+}\) entry in response to the stimulation of these receptors by agonists. The first is related to the IP\(_3\)-evoked depletion of intracellular Ca\(^{2+}\) stores and the subsequent activation of plasmalemmal SOCs, also thought to belong to the TRP-channel family (15). The second, however, is related to the direct DAG-mediated activation of other TRP members (15, 29).

Our [Ca\(^{2+}\)]i measurements, together with previous work showing the presence of SOC-mediated Ca\(^{2+}\) entry into LNCaP cells (22, 30), suggest that both mechanisms are activated in response to \(\alpha1\)-AR stimulation. Furthermore, the \(\alpha1\)-AR agonist Phe, which activates the entire inositol phospholipid–breakdown signaling cascade, and membrane-permeable DAG analogues, which affect only the DAG-dependent branch of this cascade (i.e., PKC activation and direct action on TRP channels), produced kinetically distinct [Ca\(^{2+}\)]i signals in LNCaP cells.

Both signals, however, were dependent on [Ca\(^{2+}\)]i and were sensitive to SK&F 96365. Thus, [Ca\(^{2+}\)]i measurements using DAG derivatives, and even more significantly, direct patch-clamp measurements of Phe- and OAG-induced membrane currents, unequivocally demonstrated that this subset of Ca\(^{2+}\)-permeable membrane channels, activated independently of store depletion, were present in LNCaP cells. Indeed, this agonist-induced Ca\(^{2+}\) entry and the corresponding currents were measured using Fura-2 Ca\(^{2+}\) imaging, conventional whole-cell patch-clamping, and perforated-patch techniques. The average density and response development time of \(I_{\text{pL}}\) were similar in both perforated and conventional whole-cell configurations. However, a longer (6-minute) latency period before \(I_{\text{pL}}\) activation was observed in the perforated-patch recordings. This prolonged latency may be explained by the wash-out of some intracellular factors in conventional whole-cell configuration, such as delayers or channel activation modulators. Indeed, we had previously verified the rate of intracellular perfusion in LNCaP cells (38): it took about 3–4 minutes to replace half the cell cytoplasmic volume with pipette solution. In the Fura-2 experiments, the [Ca\(^{2+}\)]i response latency was even more prolonged (at least 20 minutes). Although the Ca\(^{2+}\) component was essential to the overall cationic current measured by patch-clamp recordings, therefore allowing Ca\(^{2+}\) ions to enter the cell, we have not yet established the spatiotemporal profile of intracellular calcium signals in epithelial prostate cancer cells. This spatiotemporal profile is determined by the flux of calcium ions across several biological membranes (e.g., endoplasmic reticulum or mitochondrial membranes), as well as by the diffusion mobility of Ca\(^{2+}\) and Ca\(^{2+}\) buffers in the cell (the so-called "buffered diffusion problem") (39).

As the cytosol may have heterogeneous Ca\(^{2+}\) buffering properties and intracellular membrane localization,
probably constituting a highly differentiated medium for spatial and temporal Ca\(^{2+}\) signals, it was essential to assess this property in a spatially resolved manner. Therefore, the different calcium signaling kinetics measured by patch-clamp and Ca\(^{2+}\) imaging techniques may be explained by the spatiotemporal properties of Ca\(^{2+}\) diffusion in the cytosol of prostate epithelial cells. Indeed, the channels revealing the agonist-activated cationic current in LNCaP cells may represent only a first step in the signal transduction pathway leading to [Ca\(^{2+}\)]\(_i\), increase and the subsequent stimulation of cell proliferation. Further studies using different imaging techniques and dyes are required in order to understand this problem.

Our results demonstrate that Phe and OAG activate nearly identical cationic membrane currents in LNCaP cells. This therefore suggests that they may be transferred through the same population of ion channels. Indeed, both Phe- and DAG analogue–evoked currents shared the same electrophysiological properties (voltage dependence, preferential permeation of Ca\(^{2+}\) and Cs\(^+\) compared with Na\(^+\), current density, and reversal potential) and pharmacological properties (sensitivity to 2-APB and SK&F 96365). Moreover, these channels seem to be insensitive to PKC, as PKC inhibitors did not interfere with the ability of OAG to induce Ca\(^{2+}\) entry, suggesting direct OAG gating. The strongest argument that both agonists target the same channel is the fact that neither of them was able to elicit additional current when applied during a maximal agonist-induced response. This would imply not only a common origin for the channels, but also that, at least under our experimental conditions, the \(\alpha_1\)-AR agonist Phe activates only those channels directly gated by DAG.

Our RT-PCR analysis of primary hPCE cells from prostate biopsies and LNCaP cells showed the presence of specific mRNA’s for three TRP channels (TRPC1, TRPC3, and TRPC6) that may be implicated in both direct DAG gating and \(\alpha_1\)-AR signaling (16, 27–30). It is important to note that OAG induces exactly the same oscillatory [Ca\(^{2+}\)]\(_i\) response in LNCaP cells as the \(\alpha_1\)-AR agonist Phe does in primary hPCE cells. As OAG is apparently capable of activating only store-independent Ca\(^{2+}\) entry, this strongly suggests that \(\alpha_1\)-AR-stimulated signaling in primary hPCE cells is preferentially coupled to store-independent TRP channels, whereas the major role in this signaling in LNCaP cells is played by store-operated TRP channels. Considering also that, according to our data, the TRPC1A splice variant and (to a lesser extent) TRPC3 may be DAG-gated channels common to both cell types (remember that primary hPCE cells express TRPC1A and TRPC6 strongly and TRPC3 weakly, whereas LNCaP cells express TRPC1A and TRPC3), a homo- or hetero-trimeric assembly of these TRPs probably forms the endogenous DAG-gated cationic channel in prostate cancer epithelial cells.

Clinical implications. Targeting cell proliferation and apoptosis in an attempt to control prostate growth emerges as a potentially powerful therapeutic approach for the effective treatment of prostate cancer (40, 41).

Although \(\alpha_1\)-ARs are abundantly expressed in the prostate and the expression of some TRPs increases considerably during the progression to prostate cancer (42–44), no functional link between \(\alpha_1\)-ARs and TRPs has been firmly established, nor has their role in prostate cancer cell proliferation been elucidated. At the same time, all members of the signaling cascade from \(\alpha_1\)-ARs to the TRP channel may potentially serve as targets for therapeutic interventions aimed at cell proliferation. In this study, we establish a direct link between \(\alpha_1\)A-AR stimulation, the activation of TRP-mediated Ca\(^{2+}\) entry, and the proliferation of hPCE cells. Furthermore, we demonstrate that uroselective \(\alpha_1\)A antagonists such as prazosin and WB4101, as well as SK&F 96365, a known inhibitor of endogenous plasmalemmal cationic and TRP channels, suppress \(\alpha_1\)AR–induced cell proliferation. All together, our findings strongly indicate that the blockade of the \(\alpha_1\)-AR–stimulated intracellular signaling pathway, not only at the receptor level, but also at the level of the affected channel, might be used for the treatment of prostate cancer. Effective testing of this possibility must await the development of potent and isoform-specific inhibitors of TRP channels.

Acknowledgments

We thank P. Delcourt and G. Lepage for their excellent technical assistance. This work was supported by grants from INSERM, the Ministère de l’Éducation Nationale, the Ligue Nationale Contre le Cancer, the Association pour la Recherche Contre le Cancer, and INTAS-99-01248. Y. Shuba was supported by INSERM and the Ministère de l’Éducation Nationale.

