T. Lapidot and I. Petit, Current understanding of stem cell mobilization, Experimental Hematology, vol.30, issue.9, pp.973-981, 2002.
DOI : 10.1016/S0301-472X(02)00883-4

S. Gordon and P. R. Taylor, Monocyte and macrophage heterogeneity, Nature Reviews Immunology, vol.33, issue.12, pp.953-964, 2005.
DOI : 10.1038/nri1733

S. Gordon, The macrophage, BioEssays, vol.56, issue.11, pp.977-986, 1995.
DOI : 10.1002/bies.950171111

R. D. Stout and J. Suttles, Functional plasticity of macrophages: reversible adaptation to changing microenvironments, Journal of Leukocyte Biology, vol.76, issue.3, pp.509-513, 2004.
DOI : 10.1189/jlb.0504272

S. Gordon, Alternative activation of macrophages, Nature Reviews Immunology, vol.3, issue.1, pp.23-35, 2003.
DOI : 10.1038/nri978

URL : https://hal.archives-ouvertes.fr/hal-00474829

S. Utikal and . Goerdt, Mphi1 and Mphi2 can be re-polarized by Th2 or Th1 cytokines, respectively, and respond to exogenous danger signals, Immunobiology, vol.211, pp.473-486, 2006.

F. Porcheray, S. Viaud, A. C. Rimaniol, C. Leone, B. Samah et al., Macrophage activation switching: an asset for the resolution of inflammation, Clinical and Experimental Immunology, vol.72, issue.0, pp.481-489, 2005.
DOI : 10.1159/000028079

R. D. Stout, C. Jiang, B. Matta, I. Tietzel, S. K. Watkins et al., Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences, The Journal of Immunology, vol.175, issue.1, pp.342-349, 2005.
DOI : 10.4049/jimmunol.175.1.342

F. Geissmann, S. Jung, and D. R. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

P. Ancuta, L. Weiss, and N. Haeffner-cavaillon, CD14+CD16++ cells derivedin vitro from peripheral blood monocytes exhibit phenotypic and functional dendritic cell-like characteristics, European Journal of Immunology, vol.30, issue.7, pp.1872-1883, 2000.
DOI : 10.1002/1521-4141(200007)30:7<1872::AID-IMMU1872>3.0.CO;2-2

C. Sunderkotter, T. Nikolic, M. J. Dillon, N. Van-rooijen, M. Stehling et al., Subpopulations of Mouse Blood Monocytes Differ in Maturation Stage and Inflammatory Response, The Journal of Immunology, vol.172, issue.7, pp.4410-4417, 2004.
DOI : 10.4049/jimmunol.172.7.4410

F. Tacke, D. Alvarez, T. J. Kaplan, C. Jakubzick, R. Spanbroek et al., Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques, Journal of Clinical Investigation, vol.117, issue.1, pp.185-194, 2007.
DOI : 10.1172/JCI28549

F. K. Swirski, P. Libby, E. Aikawa, P. Alcaide, F. W. Luscinskas et al., Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata, Journal of Clinical Investigation, vol.117, issue.1, pp.195-205, 2007.
DOI : 10.1172/JCI29950

G. Fingerle, A. Pforte, B. Passlick, M. Blumenstein, M. Strobel et al., The novel subset of CD14+/CD16+ blood monocytes is expanded in sepsis patients, Blood, vol.82, pp.3170-3176, 1993.

F. Tacke, F. Ginhoux, C. Jakubzick, N. Van-rooijen, M. Merad et al., Immature monocytes acquire antigens from other cells in the bone marrow and present them to T cells after maturing in the periphery, The Journal of Experimental Medicine, vol.6, issue.3, pp.583-597, 2006.
DOI : 10.1084/jem.191.9.1605

C. Varol, L. Landsman, D. K. Fogg, L. Greenshtein, B. Gildor et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells, J.Exp.Med, vol.104, pp.171-180, 2006.
DOI : 10.1083/jcb1761oia3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2118434

I. S. Mclennan, Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions, J.Anat, vol.188, pp.17-28, 1996.

A. Pimorady-esfahani, M. D. Grounds, and P. G. Mcmenamin, Macrophages and dendritic cells in normal and regenerating murine skeletal muscle, Muscle & Nerve, vol.105, issue.2, pp.158-166, 1997.
DOI : 10.1002/(SICI)1097-4598(199702)20:2<158::AID-MUS4>3.0.CO;2-B

L. M. Kuziel, P. K. Mcmanus, and . Shireman, Fat Accumulation with Altered Inflammation and Regeneration in Skeletal Muscle of CCR2 -/-Mice Following Ischemic Injury, Am. J. Physiol Cell Physiol, vol.292, pp.953-967, 2007.

M. Mcmanus, MCP-1 deficiency causes altered inflammation with impaired skeletal muscle regeneration, J. Leukoc. Biol, 2006.

M. Summan, G. L. Warren, R. R. Mercer, R. Chapman, T. Hulderman et al., Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study, AJP: Regulatory, Integrative and Comparative Physiology, vol.290, issue.6, pp.1488-1495, 2006.
DOI : 10.1152/ajpregu.00465.2005

P. P. Kuziel and . Simeonova, Chemokine receptor CCR2 involvement in skeletal muscle regeneration, FASEB J, vol.19, pp.413-415, 2004.

M. D. Grounds, Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice, The Journal of Pathology, vol.248, issue.1, pp.71-82, 1987.
DOI : 10.1002/path.1711530110

T. A. Robertson, M. A. Maley, M. D. Grounds, and J. M. Papadimitriou, The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis, Pathology, vol.26, issue.1, pp.321-331, 1993.
DOI : 10.1016/S0031-3025(16)35564-7

M. Cantini and U. Carraro, Macrophage-released Factor Stimulates Selectively Myogenic Cells in Primary Muscle Culture, Journal of Neuropathology and Experimental Neurology, vol.54, issue.1, pp.121-128, 1995.
DOI : 10.1097/00005072-199501000-00014

P. A. Authier, R. K. Dreyfus, and . Gherardi, Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, 2003.

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-2507, 2006.
DOI : 10.1242/jcs.02988

B. A. St-pierre and J. G. Tidball, Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension, 1994.

V. Horsley, K. M. Jansen, S. T. Mills, and G. K. Pavlath, IL-4 Acts as a Myoblast Recruitment Factor during Mammalian Muscle Growth, Cell, vol.113, issue.4, pp.483-494, 2003.
DOI : 10.1016/S0092-8674(03)00319-2

E. Song, N. Ouyang, M. Horbelt, B. Antus, M. Wang et al., Influence of Alternatively and Classically Activated Macrophages on Fibrogenic Activities of Human Fibroblasts, Cellular Immunology, vol.204, issue.1, pp.19-28, 2000.
DOI : 10.1006/cimm.2000.1687

A. Savill and . Lacy-hulbert, Requirements for Apoptotic Cell Contact in Regulation of Macrophage Responses, J.Immunol, vol.177, pp.4047-4054, 2006.

M. Cvetanovic and D. S. Ucker, Innate Immune Discrimination of Apoptotic Cells: Repression of Proinflammatory Macrophage Transcription Is Coupled Directly to Specific Recognition, The Journal of Immunology, vol.172, issue.2, pp.880-889, 2004.
DOI : 10.4049/jimmunol.172.2.880

K. D. Haegeman, P. Herde, and . Vandenabeele, Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production, Mol.Biol.Cell, vol.15, pp.1089-1100, 2004.

V. A. Fadok, D. L. Bratton, L. Guthrie, and P. M. Henson, Differential Effects of Apoptotic Versus Lysed Cells on Macrophage Production of Cytokines: Role of Proteases, The Journal of Immunology, vol.166, issue.11, pp.6847-6854, 2001.
DOI : 10.4049/jimmunol.166.11.6847

M. L. Huynh, V. A. Fadok, and P. M. Henson, Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-??1 secretion and the resolution of inflammation, Journal of Clinical Investigation, vol.109, issue.1, pp.41-50, 2002.
DOI : 10.1172/JCI0211638

J. Savill and V. Fadok, Corpse clearance defines the meaning of cell death, Nature, vol.407, issue.6805, pp.784-788, 2000.
DOI : 10.1038/35037722

W. Xu, A. Roos, N. Schlagwein, A. M. Woltman, M. R. Daha et al., IL-10-producing macrophages preferentially clear early apoptotic cells, Blood, vol.107, issue.12, pp.4930-4937, 2006.
DOI : 10.1182/blood-2005-10-4144

R. Wu, J. P. Lang, and . Iredale, Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair, J.Clin.Invest, vol.115, pp.56-65, 2005.

D. Rossi, M. , P. Bernasconi, F. Baggi, R. De-waal-malefyt et al., Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation., International Immunology, vol.12, issue.9, pp.1329-1335, 2000.
DOI : 10.1093/intimm/12.9.1329

A. Hirata, S. Masuda, T. Tamura, K. Kai, K. Ojima et al., Expression Profiling of Cytokines and Related Genes in Regenerating Skeletal Muscle after Cardiotoxin Injection, The American Journal of Pathology, vol.163, issue.1, pp.203-215, 2003.
DOI : 10.1016/S0002-9440(10)63644-9

. Hoffman, Slug is a novel downstream target of MyoD Temporal profiling in muscle regeneration, J.Biol.Chem, vol.277, pp.30091-30101, 2002.

C. N. Lumeng, J. L. Bodzin, and A. R. Saltiel, Obesity induces a phenotypic switch in adipose tissue macrophage polarization, Journal of Clinical Investigation, vol.117, issue.1, pp.175-184, 2007.
DOI : 10.1172/JCI29881

N. Fujiwara and K. Kobayashi, Macrophages in Inflammation, Current Drug Target -Inflammation & Allergy, vol.4, issue.3, pp.281-286, 2005.
DOI : 10.2174/1568010054022024

C. N. Serhan and J. Savill, Resolution of inflammation: the beginning programs the end, Nature Immunology, vol.14, issue.12, pp.1191-1197, 2005.
DOI : 10.1038/ni1276

U. A. Hirt and M. Leist, Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells, Cell Death and Differentiation, vol.10, issue.10, pp.1156-1164, 2003.
DOI : 10.1038/sj.cdd.4401286

A. Celada and R. A. Maki, Transforming growth factor-beta enhances the M- CSF and GM-CSF-stimulated proliferation of macrophages, J.Immunol, vol.148, pp.1102-1105, 1992.

A. F. Valledor, M. Comalada, J. Xaus, and A. Celada, The Differential Time-course of Extracellular-regulated Kinase Activity Correlates with the Macrophage Response toward Proliferation or Activation, Journal of Biological Chemistry, vol.275, issue.10, pp.7403-7409, 2000.
DOI : 10.1074/jbc.275.10.7403

J. Xaus, M. Cardo, A. F. Valledor, C. Soler, J. Lloberas et al., Interferon ?? Induces the Expression of p21waf-1 and Arrests Macrophage Cell Cycle, Preventing Induction of Apoptosis, Immunity, vol.11, issue.1, pp.103-113, 1999.
DOI : 10.1016/S1074-7613(00)80085-0

S. Gordon, Macrophage-restricted molecules: role in differentiation and activation, Immunology Letters, vol.65, issue.1-2, pp.5-8, 1999.
DOI : 10.1016/S0165-2478(98)00116-3

M. Gonzalez-juarrero and I. M. Orme, Characterization of Murine Lung Dendritic Cells Infected with Mycobacterium tuberculosis, Infection and Immunity, vol.69, issue.2, pp.1127-1133, 2001.
DOI : 10.1128/IAI.69.2.1127-1133.2001

G. Liu, X. P. Xia, S. L. Gong, and Y. Zhao, The macrophage heterogeneity: Difference between mouse peritoneal exudate and splenic F4/80+ macrophages, Journal of Cellular Physiology, vol.10, issue.2, 2006.
DOI : 10.1002/jcp.20732

R. Raivich and . Martini, The role of macrophages in demyelinating peripheral nervous system of mice heterozygously deficient in p0, J.Cell Biol, vol.152, pp.301-308, 2001.

M. Wehling, M. J. Spencer, and J. G. Tidball, A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice, The Journal of Cell Biology, vol.94, issue.1, pp.123-131, 2001.
DOI : 10.1038/384349a0

S. L. Pull, J. M. Doherty, J. C. Mills, J. I. Gordon, and T. S. Stappenbeck, Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury, Proceedings of the National Academy of Sciences, vol.99, issue.23, pp.99-104, 2004.
DOI : 10.1073/pnas.192574799

R. M. Rai, S. Loffreda, C. L. Karp, S. Q. Yang, H. Z. Lin et al., Kupffer cell depletion abolishes induction of interleukin-10 and permits sustained overexpression of tumor necrosis factor alpha messenger RNA in the regenerating rat liver, Hepatology, vol.25, issue.4, pp.889-895, 1997.
DOI : 10.1002/hep.510250417

O. Rapalino, O. Lazarov-spiegler, E. Agranov, G. J. Velan, E. Yoles et al., Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats, Nature Medicine, vol.336, issue.7, pp.814-821, 1998.
DOI : 10.1016/0361-9230(90)90264-Z

Y. Sadahira and M. Mori, Role of the macrophage in erythropoiesis, Pathology International, vol.49, issue.10, pp.841-848, 1999.
DOI : 10.1038/sj/leu/2401275

L. T. Diemel, S. J. Jackson, and M. L. Cuzner, Role for TGF-beta1, FGF-2 and PDGF-AA in a myelination of CNS aggregate cultures enriched with macrophages, 2003.

O. Butovsky, Y. Ziv, A. Schwartz, G. Landa, A. E. Talpalar et al., Microglia activated by IL-4 or IFN-?? differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells, Molecular and Cellular Neuroscience, vol.31, issue.1, pp.149-160, 2006.
DOI : 10.1016/j.mcn.2005.10.006

R. C. Langen, J. L. Van-der-velden, A. M. Schols, M. C. Kelders, E. F. Wouters et al., Tumor necrosis factor-alpha inhibits myogenic differentiation through MyoD protein destabilization, The FASEB Journal, vol.18, issue.2, pp.227-237, 2004.
DOI : 10.1096/fj.03-0251com

Y. P. Li, TNF-?? is a mitogen in skeletal muscle, AJP: Cell Physiology, vol.285, issue.2, pp.370-376, 2003.
DOI : 10.1152/ajpcell.00453.2002

R. Johnson, K. W. Dantzer, and . Kelley, IL-1beta impairs insulin-like growth factor i-induced differentiation and downstream activation signals of the insulin-like growth factor i receptor in myoblasts, J.Immunol, vol.172, pp.7713-7720, 2004.

J. P. Lefaucheur and A. Sebille, Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor ??1 or insulin-like growth factor I, Journal of Neuroimmunology, vol.57, issue.1-2, pp.85-91, 1995.
DOI : 10.1016/0165-5728(94)00166-L

B. A. Bondesen, S. T. Mills, and G. K. Pavlath, The COX-2 pathway regulates growth of atrophied muscle via multiple mechanisms, AJP: Cell Physiology, vol.290, issue.6, pp.1651-1659, 2006.
DOI : 10.1152/ajpcell.00518.2005

V. Horsley and G. K. Pavlath, stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway, The Journal of Cell Biology, vol.259, issue.1, pp.111-118, 2003.
DOI : 10.1172/JCI200215681

W. Shen, V. Prisk, Y. Li, W. Foster, and J. Huard, Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2??, Journal of Applied Physiology, vol.101, issue.4, 2006.
DOI : 10.1152/japplphysiol.01331.2005

N. Van-rooijen and A. Sanders, Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications, Journal of Immunological Methods, vol.174, issue.1-2, 1994.
DOI : 10.1016/0022-1759(94)90012-4