J. Wijdenes, W. Vooijs, and C. Clement, A plasmocyte selective monoclonal antibody (B-B4) recognizes syndecan-1, British Journal of Haematology, vol.94, issue.2, pp.318-323, 1996.
DOI : 10.1046/j.1365-2141.1996.d01-1811.x

V. Costes, V. Magen, and E. Legouffe, The Mi15 monoclonal antibody (anti-syndecan-1) is a reliable marker for quantifying plasma cells in paraffin-embedded bone marrow biopsy specimens, Human Pathology, vol.30, issue.12, pp.1405-1411, 1999.
DOI : 10.1016/S0046-8177(99)90160-0

K. Mahtouk, F. Cremer, and T. Reme, Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma, Oncogene, vol.83, issue.54, pp.7180-7191, 2006.
DOI : 10.1038/sj.onc.1209699

URL : https://hal.archives-ouvertes.fr/inserm-00128880

J. Couchman, Syndecans: proteoglycan regulators of cell-surface microdomains?, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.926-937, 2003.
DOI : 10.1038/nrm1257

K. Mahtouk, J. M. , D. Vos, and J. , An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis, Blood, vol.103, issue.5, pp.1829-1837, 2004.
DOI : 10.1182/blood-2003-05-1510

URL : https://hal.archives-ouvertes.fr/inserm-00130207

K. Mahtouk, D. Hose, and T. Reme, Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells, Oncogene, vol.83, issue.21, pp.3512-3524, 2005.
DOI : 10.1038/sj.onc.1208536

URL : https://hal.archives-ouvertes.fr/inserm-00130206

M. Dhodapkar, T. Kelly, A. Theus, A. Athota, B. Barlogie et al., Elevated levels of shed syndecan-1 correlate with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of patients with multiple myeloma [published erratum appears in, Br J Haematol Br J Haematol, vol.10199, issue.2, pp.398-368, 1997.

M. Dhodapkar, E. Abe, and A. Theus, Syndecan-1 is a multifunctional regulator of myeloma pathobiology: control of tumor cell survival, growth, and bone cell differentiation, Blood, vol.91, pp.2679-2688, 1998.

B. Klein, X. Li, and Z. Lu, Activation Molecules on Human Myeloma Cells
DOI : 10.1007/978-3-642-60162-0_41

C. Seidel, A. Sundan, and M. Hjorth, Serum syndecan-1: a new independent prognostic marker in multiple myeloma [published erratum appears in Blood, Blood, vol.9595, issue.7, pp.2197388-392, 2000.

R. Sanderson, Y. Yang, L. Suva, and T. Kelly, Heparan sulfate proteoglycans and heparanase???partners in osteolytic tumor growth and metastasis, Matrix Biology, vol.23, issue.6, pp.341-352, 2004.
DOI : 10.1016/j.matbio.2004.08.004

Y. Yang, S. Yaccoby, and W. Liu, Soluble syndecan-1 promotes growth of myeloma tumors in vivo, Blood, vol.100, issue.2, pp.610-617, 2002.
DOI : 10.1182/blood.V100.2.610

I. Vlodavsky, Y. Friedmann, and M. Elkin, Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis, Nature Medicine, vol.5, issue.7, pp.793-802, 1999.
DOI : 10.1038/10518

P. Kussie, J. Hulmes, and D. Ludwig, Cloning and functional expression of a human heparanase gene Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development, Biochem Biophys Res Commun. Semin Cancer Biol, vol.26112, issue.16, pp.183-187121, 1999.

M. Kato, H. Wang, and V. Kainulainen, Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2, Nature Medicine, vol.260, issue.6, pp.691-697, 1998.
DOI : 10.1083/jcb.101.3.976

I. Vlodavsky and Y. Friedmann, Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis, Journal of Clinical Investigation, vol.108, issue.3, pp.341-347, 2001.
DOI : 10.1172/JCI13662

T. Kelly, H. Miao, and Y. Yang, High heparanase activity in multiple myeloma is associated with elevated microvessel density, Cancer Res, vol.63, issue.20, pp.8749-8756, 2003.

Y. Yang, V. Macleod, and M. Bendre, Heparanase promotes the spontaneous metastasis of myeloma cells to bone, Blood, vol.105, issue.3, pp.1303-1309, 2005.
DOI : 10.1182/blood-2004-06-2141

J. Moreaux, F. Cremer, and T. Reme, The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature, Blood, vol.106, issue.3, pp.1021-1030, 2005.
DOI : 10.1182/blood-2004-11-4512

URL : https://hal.archives-ouvertes.fr/inserm-00129406

K. Tarte, G. Fiol, J. Rossi, and B. Klein, Extensive characterization of dendritic cells generated in serum-free conditions: regulation of soluble antigen uptake, apoptotic tumor cell phagocytosis, chemotaxis and T cell activation during maturation in vitro, Leukemia, vol.14, issue.12, pp.2182-2192, 2000.
DOI : 10.1038/sj.leu.2401925

X. Zhang, J. Gaillard, and N. Robillard, Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma, Blood, vol.83, pp.3654-3663, 1994.

C. Rebouissou, J. Wijdenes, and P. Autissier, A gp130 interleukin-6 transducer-dependent SCID model of human multiple myeloma, Blood, vol.91, pp.4727-4737, 1998.

W. Liu, R. Mei, and X. Di, Analysis of high density expression microarrays with signed-rank call algorithms, Bioinformatics, vol.18, issue.12, pp.1593-1599, 2002.
DOI : 10.1093/bioinformatics/18.12.1593

S. Benhamron, H. Nechushtan, and I. Verbovetski, Translocation of Active Heparanase to Cell Surface Regulates Degradation of Extracellular Matrix Heparan Sulfate upon Transmigration of Mature Monocyte-Derived Dendritic Cells, The Journal of Immunology, vol.176, issue.11, pp.6417-6424, 2006.
DOI : 10.4049/jimmunol.176.11.6417

B. Klein, K. Tarte, and M. Jourdan, Survival and Proliferation Factors of Normal and Malignant Plasma Cells, International Journal of Hematology, vol.276, issue.2, pp.106-113, 2003.
DOI : 10.1007/BF02983377

URL : https://hal.archives-ouvertes.fr/inserm-00130900

T. Standal, M. Borset, and S. Lenhoff, Serum insulinlike growth factor is not elevated in patients with multiple myeloma but is still a prognostic factor, Blood, vol.100, issue.12, pp.3925-3929, 2002.
DOI : 10.1182/blood-2002-05-1406

D. Vos, J. Hose, D. Reme, and T. , Microarray-based understanding of normal and malignant plasma cells, Immunological Reviews, vol.61, issue.1, pp.86-104, 2006.
DOI : 10.1074/jbc.M409807200

URL : https://hal.archives-ouvertes.fr/inserm-00149827

K. Mahtouk, D. Hose, and T. Reme, Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma, ASH Annual meeting abstract, p.31, 2006.
DOI : 10.1182/blood-2006-08-043232

URL : https://hal.archives-ouvertes.fr/inserm-00136105

N. Munshi and C. Wilson, Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis, Seminars in Oncology, vol.28, issue.6, pp.565-569, 2001.
DOI : 10.1016/S0093-7754(01)90025-9

G. Pruneri, M. Ponzoni, and A. Ferreri, Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients, British Journal of Haematology, vol.93, issue.3, pp.817-820, 2002.
DOI : 10.1046/j.1365-2141.2002.03654.x

C. Parish, C. Freeman, and M. Hulett, Syndecan-1 (CD138) immunoreactivity in bone marrow biopsies of multiple myeloma: shed syndecan-1 accumulates in fibrotic regions Heparanase: a key enzyme involved in cell invasion, Mod Pathol. Biochim Biophys Acta, vol.141471, issue.34, pp.1052-1058, 2001.

J. Whitelock, A. Murdoch, R. Iozzo, P. Underwood, S. Gingis-velitski et al., The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases Heparanase induces endothelial cell migration via protein kinase B/Akt activation, Heparanase affects adhesive and tumorigenic potential of human glioma cells, pp.10079-1008623536, 1996.

O. Goldshmidt, E. Zcharia, and M. Cohen, Heparanase mediates cell adhesion independent of its enzymatic activity, The FASEB Journal, vol.17, issue.9, pp.1015-1025, 2003.
DOI : 10.1096/fj.02-0773com

I. Sotnikov, R. Hershkoviz, and V. Grabovsky, Enzymatically Quiescent Heparanase Augments T Cell Interactions with VCAM-1 and Extracellular Matrix Components under Versatile Dynamic Contexts, The Journal of Immunology, vol.172, issue.9, pp.5185-5193, 2004.
DOI : 10.4049/jimmunol.172.9.5185

C. Parish, C. Freeman, K. Brown, D. Francis, and W. Cowden, Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity, Cancer Res. Cancer Res, vol.6659, issue.41, pp.1455-14633433, 1999.