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Abstract 

A new set of orthogonal moment functions for describing images is proposed. It 

is based on the generalized pseudo-Zernike polynomials that are orthogonal on 

the unit circle. The generalized pseudo-Zernike polynomials are scaled to 

ensure the numerical stability, and some properties are discussed. The 

performance of the proposed moments is analyzed in terms of image 

reconstruction capability and invariant character recognition accuracy. 

Experimental results demonstrate the superiority of generalized pseudo-Zernike 

moments compared with pseudo-Zernike and Chebyshev-Fourier moments in 

both noise-free and noisy conditions. 

OCIS codes: 100.5010, 100.2960, 100.5760. 

 

1. Introduction 

In the past decades, various moment functions due to their abilities to represent the 

image features have been proposed for describing images.1-10 In 1962, Hu2 first 

derived a set of moment invariants, which are position, size and orientation 

independent. These moment invariants have been successfully used in the field of 

pattern recognition.3-5 However, geometric moments are not orthogonal and as a 

consequence, reconstructing the image from the moments is deemed to be a difficult 

task. Based on the theory of orthogonal polynomials, Teague6 has shown that the 

image can be easily reconstructed from a set of orthogonal moments, such as 
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Legendre moments and Zernike moments. Teh and Chin7 evaluated various types of 

image moments in terms of noise sensitivity, information redundancy and image 

description capability, they found that pseudo-Zernike moments (PZMs) have the best 

overall performance. 

Recently, Ping et al.8 introduced Chebyshev-Fourier moments (CHFMs) for 

describing image. By analyzing the image-reconstruction error and image distortion 

invariance of the CHFMs, they concluded that CHFMs perform better than the 

orthogonal Fourier-Mellin moments (OFMMs), which was proposed by Sheng and 

Shen9 in 1994. Both CHFMs and OFMMs are orthogonal and invariant under image 

rotation. 

In this paper, we propose a new kind of orthogonal moments, known as 

generalized pseudo-Zernike moments (GPZMs), for image description. The GPZMs 

are defined in terms of the generalized pseudo-Zernike polynomials (GPZPs) that are 

an expansion of the classical pseudo-Zernike polynomials. The two-dimensional (2D) 

GPZPs, , are orthogonal on the unit circle with weights (1 – (zz*)1/2)α where 

α > –1 is a free parameter. The location of the zero points of real-valued radial GPZPs 

depends on the parameter α, so it is possible to choose appropriate values of α for 

different kinds of images. Experimental results demonstrate that the proposed 

moments perform better than the conventional PZMs and CHFMs in terms of image 

reconstruction capability and invariant pattern recognition accuracy in both noise-free 

and noisy conditions. 

),( ∗zzVpq
α

The paper is organized as follows. In Section 2, we first give a brief outline of 
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PZMs. The definition of GPZPs, the corresponding weighted polynomials and the 

GPZMs is also presented in this section. Experimental results are provided to validate 

the proposed moments and the comparison analysis with previous works is given in 

Section 3. Section 4 concludes the paper. 

2. Generalized pseudo-Zernike moments 

In this section, we first give a brief outline of PZMs, they will also serve as a 

reference to compare the performance of GPZMs. We then present the GPZPs and 

establish some useful properties of them in the second subsection. The definition of 

GPZMs is given in the last subsection. 

A. Pseudo-Zernike moments 

The 2D pseudo-Zernike moment (PZMs), Zpq, of order p with repetition q is defined 

using polar coordinates (r, θ) inside the unit circle as10, 

θθθ
π

π

rdrdrfrVpZ pqpq ),(),(1 2

0

1

0

*∫ ∫
+

= ,    p = 0, 1, 2, …, ∞; 0 ≤ |q| ≤ p.   (1) 

where * denotes the complex conjugate, and Vpq(r, θ) is the pseudo-Zernike 

polynomial given by 

)exp()(),( θθ jqrRrV pqpq =                               (2) 

Here R pq (r) is the real-valued radial polynomial defined as 

         ( ) ( )
sp

qp

s

k

pq r
sqpsqps
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=
∑ −++−−

−+−
=

0 !1||!||!
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The pseudo-Zernike polynomials satisfy the following orthogonality property 

 qkpllkpq p
rdrdrVrV δδπθθθ

π
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0

1

0
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+
=⋅∫ ∫                     (4) 
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where δnm denotes the Kronecker symbol. 

B. Generalized pseudo-Zernike polynomials 

Wünsche11 recently presented the notion of generalized Zernike polynomials in the 

mathematical domain. Enlightened by the research work of Wünsche, we introduce 

generalized pseudo-Zernike polynomials with the notation  in 

representation by a pair of complex conjugate variables (z = x + jy = r exp(jθ) and z* = 

x – jy = r exp(–jθ)) and with real parameter α > –1 by the following definition 

),( ∗zzVpq
α
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 (5)               

where  denotes the Jacobi polynomials and 2F1(a, b; c; x) is the 

hypergeometric function given by12 

)(),( uPn
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Here (a)k is the Pochhammer symbol defined as 

      )1)...(2)(1()( −+++= kaaaaa k  with (a)0 = 1                      (7) 

  Using Eqs. (6) and (7), we obtain the following basic representation of GPZPs 
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In polar coordinate system (r, θ), Eq. (8) can be expressed as 

)exp()())exp(),exp((),( θθθθ ααα jqrRjrjrVrV pqpqpq =−≡               (9) 

where the real-valued radial polynomials  are given by )(rRpq
α

- 5 - 

H
A

L author m
anuscript    inserm

-00133663, version 1



∑
−

=

−−+

++ −++−−

+−

+
++

=
||

0

12

1|| )!1||()!||(!
)1()1(

)1(
)!1||()(

qp

s

spsp
s

qp
pq r

sqpsqps
qprR

α
α

α          (10) 

Comparing Eq. (3) with Eq. (10), it is obvious that 

                                  (11) )12()()( )1||2,0(
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||0 −== +
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Eq. (11) shows that the conventional pseudo-Zernike polynomials are a particular case 

of GPZPs with α = 0. 

We now give some useful properties of radial polynomials . )(rRpq
α

a) Recurrence relations 

The recurrence relations can be effectively used to compute the polynomial 

values. For radial polynomials given by Eq. (10), we derive the following three-term 

recurrence relations 
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For the cases where p = q or p = q + 1, we have 

                                            (16) q
qq rrR =)(α

qq
qq rqrqrR )1(2)23()( 1

,1 +−++= +
+ αα                        (17) 

Note that the real-valued radial polynomials  satisfy the symmetry )(rRpq
α
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property about the index q, i.e., = , so that only the case where q ≥ 0 

needs to be considered. 

)(rRpq
α

)(r

)(, rR qp
α
−

The use of recurrence relations does not need to compute the factorial function 

involved in the definition of radial polynomials given by Eq. (10), thus decreasing the 

computational complexity and avoiding large variation in the dynamic range of 

polynomial values for higher order of p. 

 

b) Orthogonality 

   The radial polynomials  satisfy the following orthogonality over the unit 

circle 

Rpq
α
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Eq. (18) leads to the following orthogonality of the GPZPs 
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The above equation shows that (1 – r)α is the weight function of the orthogonal 

relation on the unit circle, the integrals with such weight functions over polynomials 

within the unit circle converge in usual sense only for α > –1. 

A usual way to avoid the numerical fluctuation in moment computation is by 

means of normalization by the norm. According to Eq. (18), we define the normalized 

radial polynomials as follows 

1||2)1|
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qq
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Fig. 1 shows the plots of )(~ rRpq
α  with q = 10 and p varying from 10 to 14 for α being 
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0, 1 and 2, respectively. It can be observed that the set of radial polynomials )(~ rRpq
α  

is not suitable for defining moments because the range of values of the polynomials 

expands rapidly with a slight increase of the order. This may cause some numerical 

problems in the computation of moments, and therefore affects the extracted features 

from moments. To remedy this problem, we define the weighted generalized 

pseudo-Zernike radial polynomials by further introducing the square root of the 

weight as a scaling factor as 

   2/

1||2

1||2 )1(
)1||(2

|)|1)(22(
)()( ααα

π
αα

r
qp

qpp
rRrR

q

q
pqpq −

+−

−++++
=

+

+         (21) 

Fig. 2 shows the plots of weighted radial polynomials )(rRpq
α  for some given orders 

with different values of α. It can be seen that the values of the functions for various 

orders are nearly the same. This property is good for describing an image because 

there are no dominant orders in the set of functions ),( θα rVpq  that will be defined 

below, therefore, each order of the proposed moments makes an independent 

contribution to the reconstruction of the image. Table 1 shows the zero point values of 

some weighted polynomials. It can be seen that the first zero point is shifted to small 

value of r as α increases. Moreover, the distribution of zero points for α between 10 

and 30 is more uniform than α = 0. These properties could be useful for image 

description and pattern recognition tasks. 

Let 

)exp()(),( θθ αα jqrRrV pqpq =                               (22) 

we have 
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C. Generalized pseudo-Zernike moments 

The 2D GPZMs α
pqZ of order p with repetition q are defined as 

   θθθ
π
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The corresponding inverse transform is 
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If only the moments of order up to M are available, Eq. (25) is usually approximated 

by 
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For a digital image of size N × N, Eq. (24) is approximated by13, 14 
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where the image coordinate transformation to the interior of the unit circle is given by 

  
2
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3. Experimental results 

In this section, we evaluate the performance of the proposed moments. Firstly, we 
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address the problem of reconstruction capability of the proposed method, and 

compare it with that of CHFM. The recognition accuracy of GPZMs is then tested and 

compared with CHFM. 

A. Image reconstruction 

In this subsection, the image representation capability of GPZMs is first tested using a 

set of binary images. The GPZMs are computed with Eq. (28) and the image 

representation power is verified by reconstructing the image using the inverse 

transform (26). An objective measure is used to quantify the error between the 

original image f(x, y) and the reconstructed image , and it is defined as ),(ˆ yxf

                                   (30) ∑∑
−

=

−

=

−=
1

0

1

0
|)),(ˆ(),(|

N

x

N

y
yxfTyxfε

where T(.) is the threshold operator 

                                   (31) 
⎩
⎨
⎧

<
≥

=
5.00
5.01

)(
u
u

uT

The uppercase English letter “E” of size 31 × 31 and a Chinese character of size 63 

× 63 are first used as test images. Tables 2 and 3 show the reconstructed images as 

well as the relative errors for GPZMs with α = 0, 4, 8, 12, and CHFMs respectively. 

Other values of α have also been tested in this experiment, the detail reconstruction 

errors for GPZMs with α = 0, 10, 20, and CHFMs are shown in Figs. 3 and 4, 

respectively. As can be seen from the figures, the reconstruction error decreases for 

the same order of moment when the value of α increases. It can also be observed that 

the GPZMs (except for α = 0) perform better than the CHFMs, and the difference 

becomes more important when higher order of moments is used. 
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We then test the robustness of GPZMs in the presence of noise. To do this, we add 

respectively 5% and 10% of salt-and-pepper noise to the original image “E”, as shown 

in Figs. 5 and 6. The reconstruction errors for these two cases are shown in Figs. 7 

and 8, respectively. The results show that the GPZMs with larger value of α produce 

less error when the maximum order of moments M is relative lower. Conversely, when 

the maximum order of moments used in the reconstruction is higher, the 

reconstruction error re-increases for larger value of α. This may be because the term 

(1 – r)α/2 appeared in the weighted radial polynomials is more sensitive to noise for 

large value of α. Another phenomenon that can be observed from these figures is that 

for a fixed value of α, the reconstruction error increases when the maximum order of 

moments M is higher. This is consistent with the conclusion made in the papers by 

Pawlak et al.15, 16 The reason is that higher order moments contribute to noise 

reconstruction rather than to the image. 

B. Invariant pattern recognition 

This subsection provides the experimental study on the recognition accuracy of 

GPZMs in both noise-free and noisy conditions. From the definition of the GPZMs, it 

is obvious that the magnitude of GPZMs remains invariant under image rotation, thus 

they are useful features for rotation-invariant pattern recognition. Since the scale and 

translation invariance of image can be achieved by normalization method, we do not 

consider them in this paper. Note that it is also possible to construct the rotation 

moment invariants that are derived from a product of appropriate powers of GPZMs17. 

However, the moment invariants constructed in such a way will have a large dynamic 
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range, this may cause problem in pattern classification. In our recognition task, we 

have decided to use the following feature vector taken into account the symmetry 

property of radial polynomials )(rRpq
α  

       V= |]||,||,||,||,||,||,[| 33323130222120
ααααααα ZZZZZZZ                 (32) 

where α
pqZ  are the weighted GPZMs defined by Eq. (24). The Euclidean distance is 

utilized as the classification measure 

         d (Vs, V t
(k))                           (33) 2

1

)( )(∑
=

−=
T

j

k
tjsj vv

where Vs is the T-dimensional feature vector of unknown sample, and V t
(k) is the 

training vector of class k. The minimum distance classifier is used to classify the 

images. We define the recognition accuracy η as 18 

       %100
 testin the used images ofnumber   totalThe

images classifiedcorrectly  ofNumber 
×=η             (34) 

Two experiments are carried out. In the first experiment, a set of similar binary 

Chinese characters shown in Fig. 9 is used as the training set. Six testing sets are used, 

each with different densities of salt-and-pepper noises added to the rotational version 

of each character. Each testing set consists of 120 images, which are generated by 

rotating the training images every 15 degrees in the range [0, 360) and then by adding 

different densities of noises. Fig. 10 shows some of the testing images. The feature 

vector based on the weighted GPZMs with different values of parameter α is used to 

classify these images and the corresponding recognition accuracy is compared. The 

results of the classification are depicted in Table 4. One can see from this table that 

100% recognition results are obtained, with α being 18 or 20, for noise-free images. 
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Note that the recognition accuracy decreases when the noise is high. Table 4 shows 

that the better recognition accuracy can be achieved for α between 20 to 30, and the 

corresponding results are much better than those with CHFMs. 

In the second experiment, we use a set of grayscale images composed of some 

Arab numbers and uppercase English characters {0, 1, 2, 5, I, O, Q, U, V} as training 

set (see Fig. 11). The reason for choosing such a character set is that the elements in 

subset {0, O, Q}, {2, 5}, {1, I} and {U, V} can be easily misclassified due to the 

similarity. Five testing sets are used, which are generated by adding different densities 

of Gaussian white noises to the rotational version of images in the training set. Each 

testing set is composed of 216 images. Fig. 12 shows some of the testing images, and 

the classification results are depicted in Table 5. Table 5 shows that the better results 

are obtained with α varying from 24 to 30. 

4. Conclusion 

 We have presented a new type of orthogonal moments based on the generalized 

pseudo-Zernike polynomials for image description. We showed that the proposed 

moments are an extension of the conventional pseudo-Zernike moments, and are more 

suitable for image analysis. Experimental results demonstrated that the generalized 

Pseudo-Zernike moments perform better than the traditional pseudo-Zernike moments 

and Chebyshev-Fourier moments in terms of rotation invariant pattern recognition 

accuracy and image reconstruction error in both noise-free and noisy conditions. 

Therefore, GPZMs could be useful as new image descriptors. 
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Tables 

Table 1. Comparison of positions of the radial real-valued GPZP zeros with 

different α 

The value 

of p 

(q=10) 

α =0 α =10 α =20 α =30 α =40 

10 - - - - - 

11 0.956563 0.666563 0.511562 0.415312 0.349063 

12 0.864688 

0.975313 

0.575938 

0.738438 

0.435937 

0.586562 

0.350937 

0.485312 

0.294063 

0.413438 

13 0.772813 

0.910313 

0.983438 

0.508125 

0.654375 

0.783438 

0.382812 

0.510937 

0.638125 

0.307813 

0.419063 

0.53625 

0.257188 

0.355312 

0.461875 

14 0.690313 

0.836563 

0.93375 

0.987188 

0.45375 

0.587813 

0.706563 

0.815625 

0.341562 

0.455937 

0.565313 

0.677813 

0.274688 

0.372188 

0.470625 

0.577187 

0.229688 

0.315000 

0.402813 

0.501563 
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Table 2. Image Reconstruction of the letter “E” of size 31×31 without noises 

 

Original Image 

 

Reconstructed Images 

α=0 

Error ε 

 

56 

 

46 

 

27 

 

14 

 

4 

 

3 

 

2 

 

2 

 

0 

α=4 

Error ε 

 

47 

 

31 

 

16 

 

4 

 

3 

 

2 

 

2 

 

0 

 

0 

α=8 

Error ε 

 

42 

 

18 

 

5 

 

4 

 

3 

 

2 

 

0 

 

0 

 

0 

α=12 

Error ε 

 

29 

 

13 

 

4 

 

4 

 

2 

 

0 

 

0 

 

0 

 

0 

CHFM 

Error ε 

 

45 

 

39 

 

13 

 

10 

 

11 

 

9 

 

11 

 

8 

 

7 

 Max 

Order 
4 6 8 10 12 14 16 18 20 
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Table 3. Image Reconstruction of a Chinese character of size 63×63 without noise 

Original Image 

 

Reconstructed Images 

α=0 

 

Error ε 

 

262 

 

182 

 

98 

 

27 

 

3 

α=4 

 

Error ε 

 

260 

 

164 

 

74 

 

19 

 

4 

α=8 

 

Error ε 

 

242 

 

151 

 

60 

 

19 

 

2 

α=12 

 

Error ε 

 

223 

 

136 

 

54 

 

12 

 

2 

CHFM 

 

Error ε 

 

230 

 

162 

 

120 

 

96 

 

90 

Max 

Order 
10 20 30 40 50 
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Table 4. Classification results of the first experiment 

Recognition accuracy ( %) under different salt and pepper noises Parameter 

α for 

GPZMs 

noise free 5% 9% 10% 15% 18% 

0 93.3333 60.8333 48.3333 41.6667 41.6667 36.6667 

2 93.3333 86.6667 55.83333 50.8333 31.6667 30.8333 

4 93.3333 59.1667 25.83333 23.3333 20.0000 20.0000 

6 96.6667 55.0000 29.1667 25.0000 20.0000 20.0000 

8 96.6667 59.1667 25.0000 24.1667 20.0000 20.0000 

10 96.6667 94.1667 81.6667 66.6667 33.3333 30.0000 

12 96.6667 85.8333 57.5000 48.3333 38.3333 36.6667 

14 93.3333 75.8333 32.5000 30.8333 22.5000 20.0000 

16 96.6667 81.6667 45.0000 37.5000 25.0000 20.8333 

18 100 85.0000 69.1667 59.1667 42.5000 27.5000 

20 100 86.6667 79.1667 67.5000 55.0000 45.0000 

22  96.6667 88.3333 80.8333 71.6667 60.8000 50.8333 

24 96.6667 91.6667 87.5000 75.0000 67.5000 58.3333 

26 96.6667 91.6667 90.8333 79.1667 71.6667 60.8333 

28 96.6667 90.8333 91.6667 78.3333 70.0000 62.5000 

30 93.3333 85.0000 84.1667 74.1667 70.0000 59.1667 

CHFMs  100 60 40 60 40 40 
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Table 5. Classification results of the second experiment 

Recognition accuracy ( %) under different σ2 Gaussian white noises Parameter α for 

GPZMs noise free 0.01 0.03 0.05 0.10 

0 100 83.7963 62.0370 44.4444 22.2222 

2 100 99.0741 90.2778 77.7778 46.7593 

4 100 96.7593 52.3148 31.4815 21.7593 

6 100 94.9074 30.0926 6.94444 0 

8 100 93.0556 32.8704 17.5926 12.5 

10 100 99.5370 57.4074 33.7963 13.8889 

12 100 100 74.5370 43.5185 23.1481 

14 100 100 87.0370 66.2037 43.0556 

16 100 100 95.8333 62.5000 46.2963 

18 100 100 96.7593 84.2593 67.5926 

20 100 100 98.1481 93.5185 65.2778 

22 100 100 99.5370 96.7593 68.0556 

24 100 100 100 96.2963 70.3704 

26 100 100 100 97.2222 73.1481 

28 100 100 100 98.6111 77.7778 

30 100 100 100 98.6111 81.4815 

CHFMs 100 100 77.7778 55.5556 22.2222 
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Figure lists 

1. Fig.1. The plots of normalized radial polynomials )(~ rRpq
α . 

Fig.1. a)  α = 0;  

Fig.1. b)  α = 1; 

Fig.1. c)  α = 2. 

2.  Fig. 2. The plots of weighted radial polynomials )(rRpq
α and their zero distributions with 

different values of α 

Fig.2. a)  α = 0;  

Fig.2. b)  α = 10; 

Fig.2. c)  α = 20; 

Fig.2. d)  α = 30; 

Fig.2. e)  α = 40. 

3. Fig. 3. Plot of reconstruction error for “E” without noise 

4. Fig. 4. Plot of reconstruction error for the Chinese character without noise 

5. Fig. 5. “E” added with 5% salt and pepper noises 

6. Fig. 6. “E” added with 10% salt and pepper noises 

7. Fig. 7. Reconstruction error for “E” with 5% salt and pepper noises 

8. Fig. 8. Reconstruction error for “E” with 10% salt and pepper noises 

9. Fig.9. Binary images as training set for rotation invariant character recognition in the first 

experiment 

10. Fig.10. Part of the images of the testing set with 15% salt and pepper noises in the first 

experiment 
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11. Fig.11. Grayscale Images of the training set used in the second experiment 

12. Fig.12. Part of the images of the testing set with σ2=0.10 Gaussian white noises in the 

second experiment 
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a) α =0  

 

b) α=1  

 

c) α=2  

 Fig.1. The plots of normalized 

radial polynomials )(~ rRpq
α .  
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Fig.2. a)  α=0  

 

 

 Fig.2. b)  α=10 

 

 

Fig.2. c)  α=20  
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 Fig.2. d)  α=30 

 

 

Fig.2. e)  α=40  

 

 Fig.2. The plots of weighted radial polynomials and 

their zero distributions with different values of α  
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Fig.3. Plot of reconstruction error 

for “E” without noise 
 

 

 

 

 

Fig.4. Plot of reconstruction error for 

the Chinese character without noise 
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Fig.5. “E” added with 5% salt 

and pepper noises 

 

 

 

 

Fig.6. “E” added with 10% salt and 

pepper noises 

 

 

 

 

Fig.7. Reconstruction error for “E” 

with 5% salt and pepper noises 
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Fig.8. Reconstruction error for “E” 

with 10% salt and pepper noises 

 

 

 

 

 

 

 

 

Fig.9. Binary images as training set for rotation 

invariant character recognition in the first 

experiment 
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Fig.10. Part of the images of the testing set with 

15% salt and pepper noises in the first 

experiment 

 

 

 

 

Fig.11. Grayscale Images of the training set 

used in the second experiment 

 

 
 

Fig.12. Part of the images of the testing set 

with σ2=0.10 Gaussian white noises in the 

second experiment 
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