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Abstract 

Background/Aims: Complex mutants may be selected under sequential anti-VHB 

pressures. We analyzed the genotypic and phenotypic evolution of the viral quasi-

species of a patient who developed resistance to entecavir following lamivudine 

breakthrough.  

Methods: The polymerase gene was amplified, cloned and sequenced at different 

time points. Hepatoma cell lines were transfected to compare the replication capacity 

of HBV mutants and their drug susceptibility. 

Results: A mixture of lamivudine-resistant HBV strains coexisted following viral 

breakthrough to lamivudine, all harboring the rtM204V mutation. The 

rtV173L+L180M+M204V dominant mutant displayed strong lamivudine-resistance 

and the highest replication capacity. Following the switch to entecavir, the viral load 

dropped but the lamivudine-resistant strains continued to be selected. Three years 

later, the viral load rose again, and a complex mixture of entecavir-resistant strains, 

all harboring the lamivudine-resistance signature rtL180M+M204V and the rtS202G 

mutation were observed. Although the rtL180M+S202G+M204V variant, that 

prevailed at the end of entecavir therapy, did not show the highest viral genome 

replication capacity, it conferred one of the strongest resistance level to entecavir.  

Conclusion: We report the selection of complex HBV mutants that escaped 

lamivudine and entecavir antiviral pressures. Genotypic and phenotypic analysis 

provided additional information to understand the process of HBV variant selection. 

 

Keywords : entecavir; antiviral-resistance; HBV variants; selection process; genome 

evolution 
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Introduction 

Hepatitis B infection affects two billion people worldwide and nearly 400 million 

people are chronically infected [1], resulting in severe liver disease with eventual 

progression to cirrhosis and hepatocellular carcinoma [2]. Alpha interferon 

administration has been the only treatment option for many years, and is associated 

with a sustained response in approximatively 30% of patients. However, dose-

dependent side effects are also frequent [3,4]. The development of polymerase 

inhibitors for the treatment of Human Immunodeficiency Virus (HIV) infection has 

provided a new hope for the treatment of Chronic Hepatitis B. There are currently 

three approved nucleos(t)ide analogs for chronic HBV infection: Lamivudine (L-

deoxycitydine analog), adefovir (adenosine monophosphate analog), and entecavir 

(deoxyguanosine analog). They all target the HBV reverse transcriptase (RT) activity, 

thus inhibiting viral replication and resulting in improvement in virologic, biochemical 

and histologic status in most of the patients [5-7]. However, lamivudine treatment 

results in the frequent emergence of drug-resistance HBV, approximatively 20% after 

1 year of treatment with a progressive increase to 70% at year 4. The main mutations 

associated with resistance are located in the YMDD catalytic motif of the HBV RT C 

domain (rtM204V/I) [8]. Compensatory mutations associated with lamivudine-

resistance (rtV173L, rtL180M) are found in the B domain [9,10]. The rtM204V 

mutation induces a 1000-fold decrease in susceptibility to lamivudine in vitro in 

comparison to wt HBV  [11]. Adefovir-resistance occurs at a lower rate, with 

resistance described in 3% of patients after 2 years of treatment; this increases up to 

29% by year 5 of therapy [12,13]. Resistance to adefovir is associated with the 

selection of the rtN236T mutation within the D domain of the viral enzyme [14-16] or 

with a rtA181V amino acid change in the B domain [14,17,18]. The rtN236T mutation 
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results in a 3- to 6-fold reduction in susceptibility to adefovir in vitro [14-16,19]. 

Concerning entecavir, virologic breakthrough confirmed by genotypic analysis has 

been observed during phase II and III clinical trials in 5.8% of patients treated by 

entecavir for lamivudine failure for one year and 10% for 2 years [20-22]. The two 

patients reported with resistance to entecavir had two signature lamivudine-

resistance mutations resulting in rtL180M and rtM204V with additional mutations of 

rtM250V or rtS202I. To date, phenotypic analysis revealed no de novo entecavir-

resistance in the absence of preexisting lamivudine-resistance  [21]. 

In this report, we describe a new case of a patient who developed resistance to 

entecavir following lamivudine breakthrough. A longitudinal genotypic analysis of 

HBV strains isolated from the patient revealed the presence of new resistance 

mutations to entecavir and the persistence of lamivudine-resistance signature after 

three years of entecavir therapy.  In vitro assays were performed to analyze the 

replication level and drug susceptibility of the major HBV strains. Results showed that 

the lamivudine-resistance signature mutations, in addition to rtS202G substitution, 

are necessary to induce HBV resistance to entecavir in vitro, but remain sensitive to 

adefovir. These results led us to gain new insight in the mechanism involved in the 

process of selection of entecavir-resistant mutants. 
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Material and Methods 

 

Patient 

A 69 year-old Canadian man with a chronic hepatitis B and cirrhosis, was started on 

an Interferon therapy in May 1997. The patient was HBsAg positive and HBeAg 

positive. After 7 months of interferon treatment, serum HBV DNA had decreased by 

half. He then received lamivudine (100 mg daily). After 5 months of lamivudine-

treatment, serum HBV DNA was consistently undetectable by Digene-I quantification 

method (<1.4x105 copies/ml), but increased to its initial level 11 months later. He was 

rapidly switched to entecavir (1 mg daily). After one year of entecavir therapy, HBV-

DNA had decreased by three logs but viral breakthrough (more than 1-log increase) 

was observed two years later. The patient is currently being treated with lamivudine 

and adefovir combination therapy, and HBV DNA has decreased progressively by 3 

logs in 2 years. The evolution of viral load over time, quantified by Digene assay 

(Digene, Gaithersburg, MD) during the first 84 months and by bDNA assay (Versant 

HBV DNA 3.0 assay; Bayer Corporation, Tarrytown, NY) the following months, is 

shown in figure 1. The “rebound” observed under lamivudine+adefovir bitherapy 

corresponds to the change in HBV DNA detection method. 

 

Clonal analysis of the HBV polymerase gene 

HBV DNA was extracted from 200 l of serum sample by using QIAamp Ultrasens 

virus kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany). The 

HBV polymerase gene domain between amino acid position 323 to 770  [23], 

encompassing the whole RT domain, was amplified by PCR using primers and 

thermocycling conditions described by Villet et al. [14,24]. PCR products were cloned 
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into the pGEMt easy vector system (Promega, Madison, WI) according to the 

manufacturer’s protocol. Following transformation into DH5 cells (Promega), 20 

colonies per serum sample were picked and the plasmid DNA inserts were 

sequenced. 

 

HBV constructs for phenotypic analysis 

A replication competent 1.1 HBV genome unit length vector containing HBV genome 

isolated from the baseline clinical sample was constructed as previously described 

[14,24]. The sequence and the replication capacity of these vectors containing HBV 

genome were verified.  

Subsequently, the HBV polymerase mutants identified by the clonal analysis were 

inserted in the baseline viral genome by replacing the 1092bp KpnI-NcoI fragment of 

the vector containing HBV from baseline by the corresponding KpnI-NcoI fragment 

from selected pGEMt-HBV polymerase plasmids. The newly obtained plasmids were 

verified by DNA sequencing prior to cell transfection. 

 

Construction of the rtS202G single mutant by site-directed mutagenesis 

Plasmid pGEMt containing the 1320bp wt HBV RT sequence isolated from the 

baseline clinical sample was engineered with the Quick Change kit (Stratagene, La 

Jolla, CA) to install the rtS202G mutation. The construct was sequenced to confirm 

this modification. The 1092bp KpnI-NcoI fragment containing the main RT domain 

was then transferred to the vector containing HBV genome from the baseline clinical 

sample. 
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Analysis of HBV genome replication and drug susceptibility 

Huh-7 cells were cultured in DMEM (Eurobio, Courtaboeuf, France) supplemented 

with 10% fetal bovine serum. Lamivudine, tenofovir and adefovir were obtained from 

Gilead Sciences and entecavir from Bristol-Myers. 

HBV genome replication capacity was measured by co-transfecting transiently 

recombinant pTriex-HBV clones with a luciferase reporter plasmid (pGL3, Promega) 

as previously described [14]. Five days after transfection, purification of HBV DNA 

from intracellular core particles was performed following the protocol described by 

Summers et al. [25]. Intracellular HBV DNA was submitted to Southern blot analysis, 

quantified using PhosphorImager analysis, and adjusted for the efficiency of 

transfection according to the results of the luciferase assay. 

The analysis of drug susceptibility was performed after transient transfection of 

HepG2 cells with recombinant wt and mutant pTriex-HBV clones. Sixty hours after 

transfection, the medium was changed and reincubated with drug-free medium or 

medium containing 0.01, 0.1, 10, 100, 500 M of lamivudine, or 10, 20, 50, 100, 200 

nM (for lamivudine-resistant clones) or 10, 50, 200, 1000, 5000 nM of entecavir (for 

entecavir-resistant clones), or 6.25, 12.5, 25, 50, 100 M of adefovir or tenofovir. 

Treatments were renewed every day for 5 days. Then, intracellular HBV DNA was 

purified and was subjected to Southern blot analysis as described above. For each 

drug, the concentration inhibiting by 50% the amount of intracellular viral DNA (IC50) 

detected in treated cells at the end of the treatment, compared with untreated cells, 

was determined by phosphorImager analysis. 
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Results 

Evolution of the viral RT gene in the viral quasi-species 

Viral genome analysis was performed for serum samples #1 to #6 throughout the 

clinical course of the patient (Figure 1). The DNA sequences from 20 clones per 

serum sample were analyzed. The sequence of the viral RT gene at baseline of 

lamivudine monotherapy was wild-type (wt). Five months after the beginning of 

lamivudine therapy, the HBV DNA titer was undetectable by Digene I assay but 

increased to its initial level 11 months later. At this time, surprisingly, the wt 

population was dominant, representing 43% of the viral population. In addition, 3 

different mutants were also found to coexist: rtM204V, rtL180M+M204V and 

rtV173L+L180M+M204V representing 19, 9 and 29% of the viral population 

respectively (Figure 2). The patient was switched to entecavir and one year later, 

HBV DNA decreased by approximatively 3 logs. This decrease of viral load was 

associated with the selection of the rtV173L+L180M+M204V variant which became 

the major variant species representing 88% of the viral population. When viral load 

increased significantly 3 years after the start of entecavir therapy, the sequence 

analysis revealed a complex mixture of variants. All the clones maintained the 

lamivudine-resistance signature mutations rtL180M+M204V despite the cessation of 

lamivudine treatment, but also harbored the rtS202G change, not already described 

in the literature. The rtL180M+S202G+M204V triple mutant emerged alone or in 

combination with the rtI169L, rtV173L+P177S or rtA181G mutations. The triple 

mutant represented the major variant species, with 41% and 50% of the HBV 

population at months 34 and 38 of entecavir therapy respectively. More complex 

mutants also coexisted during this period like the rtL180M+A181G+S202G+M204V 

and rtV173L+P177S+L180M+S202G+M204V variants that represented 
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approximatively 30% and 15% of the HBV population respectively. Entecavir was 

switched to lamivudine+adefovir bitherapy, and viral load decreased very rapidly (1 

log in 1 month) and then progressively (3 logs in 2 years). Ten months after the start 

of lamivudine+adefovir bitherapy, we observed a more pronounced dominance of the 

triple mutant, and an increased proportion of the 

rtV173L+P177S+L180M+S202G+M204V mutant over the 

rtL180M+A181G+S202G+M204V variant. 

 

Viral genome replication capacity of the major HBV mutants 

To gain insight into the selection process of the different mutants, the genome 

replication capacity of the major HBV variants identified at each time point, was 

analyzed in a Huh-7 transient transfection cell culture assay as described in Material 

and methods (Figure 3). 

We selected the 3 main mutants that emerged at the end of lamivudine monotherapy, 

and compared their replication capacity with that of a mixture of 10 clones, obtained 

from the pre-therapeutic serum, and considered as wt. The results were consistent 

with the data from literature, showing a higher replication capacity of the 

rtV173L+L180M+M204V triple mutant, compared to rtM204V and rtL180M+M204V 

variants (Figure 3A). Indeed, the addition of the rtL180M mutation to the rtM204V 

mutant induced a 1.8-fold increase of viral replication level, and the addition of 

rtV173L to the rtL180M+M204V a 1.7-fold increase. 

The replication capacity of the four main mutants that emerged under entecavir 

therapy was also analyzed (Figure 3B). The last mutant selected 

(rtL180M+S202G+M204V) showed a slightly decreased replication capacity (71%) 

compared to wt HBV. The addition of the rtA181G change to this triple mutant 
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resulted in a 1.5-fold replication impairment, whereas the addition of rtI169L and 

rtV173L+P177S increased by 1.3- and 1.8-fold respectively the replication capacity of 

the same triple mutant. The rtV173L+P177S+L180M+S202G+M204V mutant even 

showed an increased replication efficiency (by 1.3-fold) compared to wt HBV. 

 

Drug susceptibility of the major HBV mutants 

The three main mutants previously described during lamivudine monotherapy were 

analyzed for their susceptibility to lamivudine and entecavir in the HepG2 cell line. 

Results showed that the rtL180M+M204V and rtV173L+L180M+M204V mutants were 

strongly resistant to lamivudine with IC50s >10,000-fold than that of wt HBV, and also 

induced a slight decrease of susceptibility to entecavir with IC50s 19-fold 

(rtL180M+M204V) and 30-fold (rtV173L+L180M+M204V) higher than that of wt HBV 

(Table 1). The rtM204V single mutant, that coexisted at low levels under lamivudine 

therapy and disappeared during entecavir treatment, induced only a 30- and 2.4-fold 

decrease in susceptibility to lamivudine and entecavir respectively (Table 1). 

We also analyzed the drug susceptibility of the four main mutants that emerged 

during entecavir therapy. As shown in table 2, all the tested mutants were strongly 

resistant to lamivudine with IC50s >500M. The triple mutant 

(rtL180M+S202G+M204V), which became the dominant strain at the end of entecavir 

and at the beginning of lamivudine+adefovir therapies, displayed with the 

rtI169L+L180M+S202G+M204V the highest resistance to entecavir (~1,300- and 

~1200-fold compared to wt HBV). We also analyzed a mixture of the different HBV 

clones coexisting just before the switch from entecavir to adefovir (serum sample #5), 

with the same proportion of each clone observed in serum sample #5 by genotypic 

analysis. We tested the phenotype of this polyclonal mixture to adefovir and tenofovir, 
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and showed the susceptibility of the mixture as well as the triple mutant to both drugs 

(Table 3). 

 

Implication of the rtS202G mutation in entecavir-resistance 

To determine if the rtS202G mutation alone could induce resistance to entecavir, we 

constructed HBV mutant by site-directed mutagenesis harboring only this mutation, 

and analyzed its phenotype in tissue culture. Results showed that the rtS202G 

mutant had a similar replication capacity and does not induce any change in 

entecavir susceptibility when compared to wt HBV (Table 4). Therefore, in the 

absence of rtL180M+M204V lamivudine-resistant substitutions, the rtS202G change 

is not sufficient to induce entecavir-resistance. However, the addition of rtS202G 

change to the rtL180M+M204V mutant resulted in a ~1,300-fold increase in 

entecavir-resistance. 
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Discussion 

This report describes virologic breakthrough after prolonged entecavir therapy in a 

patient who failed lamivudine therapy. A detailed clonal HBV genome analysis was 

performed on serum samples harvested during sequential therapies, which allowed 

the evolution of the viral quasi-species under the successive antiviral pressures to be 

shown. 

Sequence analysis of HBV clones isolated from the patient’s sera revealed the 

coexistence of 3 main populations during lamivudine therapy, all harboring the 

rtM204V mutation. Twenty seven months after the start of lamivudine therapy, the 

rtV173L+L180M+M204V triple mutant was the dominant HBV strain (30% of HBV 

population). Phenotypic analysis demonstrated that this triple mutant showed the 

highest replicative capacity (higher than wt HBV) compared to the other lamivudine-

resistant variants. These results are consistent with previously published studies 

[10,11,26]. Interestingly, the triple mutant also induced a slight increase in entecavir-

resistance compared to the other HBV variants (30-fold versus 2.4- and 19-fold for 

rtM204V and rtL180M+M204V respectively). This result, in addition to a high 

replicative capacity, may have contributed to its selection (>80% of the viral quasi-

species) when lamivudine was replaced by entecavir therapy. This suggests that 

entecavir exhibits a positive selective pressure on lamivudine-resistant mutants in 

vivo. 

Approximatively 3 years after the beginning of entecavir therapy, we observed the 

coexistence of 3 or 4 mutants, all harboring the rtL180M+S202G+M204V mutations. 

The rtS202G change, located in the C domain of the RT, has recently been observed 

in a patient who developed a resistance to entecavir following lamivudine 

breakthrough [27], in addition to lamivudine-resistance substitutions. Like the rtS202I 
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mutation described by Tenney et al. [21], the rtS202G mutation has never been 

found alone in patients who failed entecavir therapy. This observation is consistent 

with our phenotypic analysis showing no decrease of entecavir susceptibility for the 

single rtS202G mutant, compared to wt HBV. However, the addition of rtS202G 

mutation to the rtL180M+M204V variant induced a ~1,300-fold decrease in 

susceptibility to entecavir. This result suggests that the association of the lamivudine-

resistance substitutions with rtS202G mutation was essential for the development of 

entecavir-resistance in this patient. The rtS202G change, located near the RT 

catalytic site, may induce a conformational perturbation of the dNTP binding pocket, 

preventing the binding of entecavir dGTP-TP analog [28]. This conformational 

change may not restore the fixation of lamivudine-TP analog, since the 

rtL180M+S202G+M204V mutant remained resistant to lamivudine. These data 

suggest that entecavir-resistance may require a two-step process with the first 

selection of lamivudine-resistance mutations, followed by the addition of new 

mutations conferring a higher replication capacity in the presence of entecavir. It is 

important to note that this triple mutant remains sensitive to adefovir and tenofovir in 

vitro (Table 3). This susceptibility to adefovir was confirmed in vivo with the decrease 

of viral load following a switch to adefovir. 

New mutations were also found in some HBV clones from this patient in association 

with rtL180M+S202G+M204V mutations. The rtA181G substitution, was present in 30 

to 40% of the HBV population at the end of entecavir therapy, but the proportion of 

this mutation decreased when entecavir was replaced by lamivudine+adefovir. This 

alanine in 181 position seems to be critical in the development of resistance to 

nucleos(t)ide analogs, since i) it is located in helix adjacent to the nucleotide 

binding site [29], and ii) rtA181V and rtA181T were already described to confer 
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resistance to lamivudine and adefovir [28]. Interestingly, phenotypic assays 

demonstrated that the rtL180M+A181G+S202G+M204V mutant does not reduce 

susceptibility to adefovir (data not shown), and has a slightly lower replication 

capacity when compared to the triple mutant, which may explain the decrease of 

proportion of this mutant under lamivudine+adefovir treatment.  

The rtP177S mutation was always found in association with rtV173L in addition to 

rtL180M+S202G+M204V changes in the patient, except for one clone (data not 

shown). This mutant harboring five closed mutations in RT protein represented 

approximatively 15% of the population at the end of entecavir therapy, and its 

proportion slightly increased after the switch from entecavir to lamivudine+adefovir. A 

mutation at this position in leucine, but not serine, has already been described for 

resistance to famciclovir [30]. This proline at the 177 position is conserved in HIV RT 

(P157), and seems to directly interact with M184 in HIV RT or M204 in HBV RT [28]. 

This substitution, like the mutation at the 181 position, could alter the positioning of 

the nucleic acid template strand relative to the catalytic region. In our phenotypic 

analysis, we found that rtP177S, in association with rtV173L, did not increase 

resistance of the triple mutant to entecavir, but induced a 1.8-fold increase in 

replication capacity of the same mutant. Since rtV173L was already described to 

support replication of the rtL180M+M204V lamivudine-resistant mutant, it would be 

interesting to study the implication of each mutation rtV173L or rtP177S in this 

phenomenon. 

A third new mutation, rtI169L, was also found in a few HBV clones isolated from the 

patient, but only at one time point (34 months after the start of entecavir therapy). 

The mutation of this position was already described in the two patients described by 

Tenney et al., who developed entecavir resistance, but threonine and not leucine 
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substituted the isoleucine [21]. This rtI169L seems to induce a modest increase in the 

triple mutant replication level (1.3-fold), but did not increase entecavir-resistance 

level. 

When we compared the phenotype of these mutants coexisting during entecavir 

therapy in our tissue culture assay, we observed that the rtL180M+S202G+M204V 

triple mutant that was dominant during entecavir therapy, conferred one of the 

highest resistance to entecavir in vitro (~1,300-fold). This mutant did not show the 

highest replication level, but its replication capacity was only slightly impaired 

compared to wt HBV (by approximatively 30%). Therefore, we can hypothesize that 

entecavir pressure selected the viral mutant that was the best fit in the presence of 

entecavir. 

In conclusion, we report a case of resistance to entecavir following lamivudine 

breakthrough. Viral breakthrough was associated with the emergence of the 

entecavir-resistance substitution rtS202G, in addition to lamivudine-resistant 

mutations. There is currently no observation of entecavir-resistance in the absence of 

previous lamivudine treatment failure. The longitudinal genotypic analysis of HBV 

clones, combined with the in vitro phenotypic analysis of the major HBV variants, 

allows insight into the understanding of the selection process of the entecavir-

resistant mutants, which followed a two-step model in our patient. Our findings 

highlight the importance of in vitro cross resistance testing, since adefovir was shown 

to inhibit in vitro the replication of these entecavir-resistant and reduced the viral load 

after the development of entecavir-resistance. 
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 Figure legends 

Figure 1. Evolution of the viral load during the course of antiviral therapies. The 

duration of therapies is indicated by bars above the graph and the serum samples 

from the patient by the numbers below the graph. Lamivudine, entecavir, and 

adefovir dipivoxil were administred to the patient. The evolution of viral load over time 

was quantified by Digene assay (Digene, Gaithersburg, MD) during the first 84 

months and by bDNA assay (Versant HBV DNA 3.0 assay; Bayer Corporation, 

Tarrytown, NY) the following months. The rebound observed under 

lamivudine+adefovir bitherapy corresponds to the change in HBV DNA detection 

method. 

 

Figure 2. Genotypic analysis of HBV mutants evolution during sequential 

therapies. The different bars correspond to the percentage of each HBV RT mutant 

in the viral population. On the left are indicated the serum sample numbers.  

 

Figure 3. Replicative capacity in Huh-7 cells of wt and HBV RT mutants isolated 

from the patient during lamivudine (A) and entecavir therapy (B).  Viral DNA 

synthesis was analyzed as described in Material and Methods. After phosphorimager 

analysis, values obtained for each mutant were divided by wt HBV value that was 

assumed to represent 100% of viral replication. Values are reported as the mean and 

standard deviation from six independent experiments. 

 


