S. Anderson, M. Qiu, A. Bulfone, D. Eisenstat, J. Meneses et al., Mutations of the Homeobox Genes Dlx-1 and Dlx-2 Disrupt the Striatal Subventricular Zone and Differentiation of Late Born Striatal Neurons, Neuron, vol.19, issue.1, pp.27-37, 1997.
DOI : 10.1016/S0896-6273(00)80345-1

S. A. Anderson, C. E. Kaznowski, C. Horn, J. L. Rubenstein, and S. K. Mcconnell, Distinct Origins of Neocortical Projection Neurons and Interneurons In Vivo, Cerebral Cortex, vol.12, issue.7, pp.702-709, 2002.
DOI : 10.1093/cercor/12.7.702

J. Angevine and R. Sidman, Autoradiographic Study of Cell Migration during Histogenesis of Cerebral Cortex in the Mouse, Nature, vol.13, issue.4804, pp.766-768, 1961.
DOI : 10.1038/192766b0

Y. Arimatsu, Latexin: a molecular marker for regional specification in the neocortex, Neuroscience Research, vol.20, issue.2, pp.131-136, 1994.
DOI : 10.1016/0168-0102(94)90030-2

S. Assimacopoulos, E. A. Grove, and C. W. Ragsdale, Identification of a Pax6 dependent epidermal growth factor family signaling source at the lateral edge of the embryonic cerebral cortex, J. Neurosci, vol.23, pp.6399-6402, 2003.

I. Bar, C. Lambert-de-rouvroit, and A. M. Goffinet, The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway, Trends in Neurosciences, vol.23, issue.12, pp.633-638, 2000.
DOI : 10.1016/S0166-2236(00)01675-1

S. Bayer and J. Altman, Development of layer I and the subplate in the rat neocortex, Experimental Neurology, vol.107, issue.1, pp.48-62, 1990.
DOI : 10.1016/0014-4886(90)90062-W

B. Bernier, I. Bar, G. D-'arcangelo, T. Curran, and A. M. Goffinet, Reelin mRNA expression during embryonic brain development in the chick, The Journal of Comparative Neurology, vol.181, issue.3, pp.448-463, 2000.
DOI : 10.1002/1096-9861(20000703)422:3<448::AID-CNE10>3.0.CO;2-4

B. Bernier, I. Bar, C. Pieau, C. Lambert-de-rouvroit, and A. M. Goffinet, Reelin mRNA expression during embryonic brain development in the turtleEmys orbicularis, The Journal of Comparative Neurology, vol.125, issue.3, pp.463-479, 1999.
DOI : 10.1002/(SICI)1096-9861(19991025)413:3<463::AID-CNE8>3.0.CO;2-F

F. Bielle, A. Griveau, N. Narboux-neme, S. Vigneau, M. Sigrist et al., Multiple origins of Cajal-Retzius cells at the borders of the developing pallium, Nature Neuroscience, vol.106, issue.8, pp.1002-1012, 2005.
DOI : 10.1016/0925-4773(94)90089-2

M. G. Blanton and A. R. Kriegstein, Appearance of putative amino acid neurotransmitters during differentiation of neurons in embryonic turtle cerebral cortex, The Journal of Comparative Neurology, vol.125, issue.4, pp.571-592, 1991.
DOI : 10.1002/cne.903100406

M. G. Blanton, J. M. Shen, and A. R. Kriegstein, Evidence for the inhibitory neurotransmitter ?-aminobutyric acid in aspiny and sparsely spiny nonpyramidal neurons of the turtle dorsal cortex, The Journal of Comparative Neurology, vol.373, issue.2, pp.277-297, 1987.
DOI : 10.1002/cne.902590208

L. L. Bruce and T. J. Neary, The Limbic System of Tetrapods: A Comparative Analysis of Cortical and Amygdalar Populations, Brain, Behavior and Evolution, vol.46, issue.4-5, pp.224-234, 1995.
DOI : 10.1159/000113276

A. Butler and Z. Molnár, Development and evolution of the collopallium in amniotes: a new hypothesis of field homology, Brain Research Bulletin, vol.57, issue.3-4, pp.3-4475, 2002.
DOI : 10.1016/S0361-9230(01)00679-7

A. B. Butler, The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis, Brain Research Reviews, vol.19, issue.1, pp.29-65, 1994.
DOI : 10.1016/0165-0173(94)90003-5

A. B. Butler and W. Hodos, Comparative vertebrate neuroanatomy, 2005.
DOI : 10.1002/0471733849

R. Carney, Thalamocortical Development and Cell Proliferation in Fetal Primate and Rodent Cortex, 2005.

R. S. Carney, Z. Molnar, P. Giroud, V. Cortay, M. Berland et al., Thalamocotical projections in the developing primate cortex, 2002.

R. Carney, I. Bystron, C. Blakemore, Z. Molnár, and G. López-bendito, Radial glial cell proliferation outside the proliferative zone: a quantitative study in fetal rat and human cortex. FENS Abstract A145, 2004.

I. Cobos, L. Puelles, and S. Martinez, The Avian Telencephalic Subpallium Originates Inhibitory Neurons That Invade Tangentially the Pallium (Dorsal Ventricular Ridge and Cortical Areas), Developmental Biology, vol.239, issue.1, pp.30-45, 2001.
DOI : 10.1006/dbio.2001.0422

H. M. Cooper and H. Kennedy, Thalamic projections to area 17 in a prosimian primate,Microcebus murinus, The Journal of Comparative Neurology, vol.79, issue.1, pp.145-167, 1979.
DOI : 10.1002/cne.901870109

A. Costagli, M. Kapsimali, S. W. Wilson, and M. Mione, Conserved and divergent patterns ofReelin expression in the zebrafish central nervous system, The Journal of Comparative Neurology, vol.97, issue.1, pp.73-93, 2002.
DOI : 10.1002/cne.10292

D. 'arcangelo, G. Miao, G. G. Chen, S. C. Soares, H. D. Morgan et al., A protein related to extracellular matrix proteins deleted in the mouse mutant reeler, Nature, vol.374, issue.6524, pp.719-723, 1995.
DOI : 10.1038/374719a0

J. De-carlos, L. Lopez-mascaraque, and F. Valverde, Dynamics of cell migration from the lateral ganglionic eminence in the rat, J Neurosci, vol.16, pp.6146-56, 1996.

C. Dehay and P. Giroud, Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: Effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex, The Journal of Comparative Neurology, vol.207, issue.1, pp.70-89, 1996.
DOI : 10.1002/(SICI)1096-9861(19960325)367:1<70::AID-CNE6>3.0.CO;2-G

C. Dehay and P. Savatier, Cell-cycle kinetics of neocortical precursors are influenced by embryonic thalamic axons, J Neurosci, vol.21, pp.201-214, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00023834

P. Derer, M. Derer, and A. Goffinet, Axonal secretion of reelin by cajal-retzius cells: Evidence from comparison of normal andRelnOrl mutant mice, The Journal of Comparative Neurology, vol.5, issue.2, pp.136-143, 2001.
DOI : 10.1002/cne.1375

V. Des-portes, F. Francis, J. Pinard, I. Desguerre, M. Moutard et al., Doublecortin Is the Major Gene Causing X-Linked Subcortical Laminar Heterotopia (SCLH), Human Molecular Genetics, vol.7, issue.7, pp.1063-1070, 1998.
DOI : 10.1093/hmg/7.7.1063

V. Des-portes, A Novel CNS Gene Required for Neuronal Migration and Involved in X-Linked Subcortical Laminar Heterotopia and Lissencephaly Syndrome, Cell, vol.92, issue.1, pp.51-61, 1998.
DOI : 10.1016/S0092-8674(00)80898-3

C. Dou, S. Li, and E. Lai, Dual Role of Brain Factor-1 in Regulating Growth and Patterning of the Cerebral Hemispheres, Cerebral Cortex, vol.9, issue.6, pp.543-550, 1999.
DOI : 10.1093/cercor/9.6.543

A. S. Fernandez, C. Pieau, J. Reperant, E. Boncinelli, and M. Wassef, Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes, Development, vol.125, pp.2099-2111, 1998.

F. Francis, A. Koulakoff, D. Boucher, P. Chafey, B. Schaar et al., Doublecortin Is a Developmentally Regulated, Microtubule-Associated Protein Expressed in Migrating and Differentiating Neurons, Neuron, vol.23, issue.2, pp.247-256, 1999.
DOI : 10.1016/S0896-6273(00)80777-1

J. M. Garcia-verdugo, S. Llahi, I. Ferrer, and C. Lopez-garcia, Postnatal neurogenesis in the olfactory bulbs of a lizard. A tritiated thymidine autoradiographic study, Neuroscience Letters, vol.98, issue.3, pp.247-252, 1989.
DOI : 10.1016/0304-3940(89)90408-4

A. Ghosh and C. J. Shatz, Involvement of subplate neurons in the formation of ocular dominance columns, Science, vol.255, issue.5050, pp.1441-1443, 1992.
DOI : 10.1126/science.1542795

J. G. Gleeson, P. T. Lin, L. A. Flanagan, and C. A. Walsh, Doublecortin Is a Microtubule-Associated Protein and Is Expressed Widely by Migrating Neurons, Neuron, vol.23, issue.2, pp.257-271, 1999.
DOI : 10.1016/S0896-6273(00)80778-3

J. G. Gleeson, doublecortin, a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex Syndrome, Encodes a Putative Signaling Protein, Cell, vol.92, issue.1, pp.63-72, 1998.
DOI : 10.1016/S0092-8674(00)80899-5

A. M. Goffinet, C. Daumerie, B. Langerwerf, and C. Pieau, Neurogenesis in reptilian cortical structures:3H-thymidine autoradiographic analysis, The Journal of Comparative Neurology, vol.203, issue.1, pp.106-116, 1986.
DOI : 10.1002/cne.902430109

A. M. Goffinet, The embryonic development of the cortical plate in reptiles: A comparative study inEmys orbicularis andLacerta agilis, The Journal of Comparative Neurology, vol.125, issue.491, pp.437-452, 1983.
DOI : 10.1002/cne.902150408

A. Goffinet, J. A. Berlin-gorski, T. Talley, M. Qiu, L. Puelles et al., Mouse brain development Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage, J Neurosci, vol.22, pp.6309-6314, 2000.

R. W. Guillery, Is postnatal neocortical maturation hierarchical?, Trends in Neurosciences, vol.28, issue.10, pp.512-517, 2005.
DOI : 10.1016/j.tins.2005.08.006

C. Hanashima, L. Shen, S. Li, and E. Lai, Brain factor-1 controls the proliferation and differentiation of neocortical progenitor cells through independent mechanisms, J Neurosci, vol.22, pp.6526-6562, 2002.

V. Hatini, W. Tao, and E. Lai, Expression of winged helix genes, BF-1 and BF-2, define adjacent domains within the developing forebrain and retina, Journal of Neurobiology, vol.16, issue.10, pp.1293-309, 1994.
DOI : 10.1002/neu.480251010

J. Hebert and S. K. Mcconnell, Targeting of cre to the Foxg1 (BF-1) Locus Mediates loxP Recombination in the Telencephalon and Other Developing Head Structures, Developmental Biology, vol.222, issue.2, pp.296-306, 2000.
DOI : 10.1006/dbio.2000.9732

V. Hastie and . Van-heyningen, Mouse small eye results from mutations in a paired-like homeobox-containing gene, Nature, vol.354, pp.522-527, 1991.

E. D. Jarvis, O. Gunturkun, L. Bruce, A. Csillag, H. Karten et al., Opinion: Avian brains and a new understanding of vertebrate brain evolution, Nature Reviews Neuroscience, vol.115, issue.2, pp.151-159, 2005.
DOI : 10.1002/(SICI)1097-4695(19971105)33:5<602::AID-NEU8>3.3.CO;2-4

L. Jones, G. Lopez-bendito, P. Gruss, A. Stoykova, and Z. Molnar, Pax6 is required for the normal development of the forebrain axonal connections, Development, vol.129, issue.21, pp.5041-52, 2002.

H. J. Karten, The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon Comparative and Evolutionary Aspects of Vertebrate Central Nervous System, Annals of the New York Academy of Sciences, vol.167, pp.146-179, 1969.

H. J. Karten, Evolutionary developmental biology meets the brain: The origins of mammalian cortex, Proc. Natl. Acad. Sci. USA, pp.2800-2804, 1997.
DOI : 10.1002/cne.901310403

H. P. Killackey, Neocortical Expansion: An Attempt toward Relating Phylogeny and Ontogeny, Journal of Cognitive Neuroscience, vol.6, issue.1, pp.1-17, 1990.
DOI : 10.1002/cne.901660205

A. S. Kim, S. A. Anderson, J. L. Rubenstein, D. H. Lowenstein, and S. J. Pleasure, Pax-6 regulates expression of SFRP-2 and Wnt-7b in the developing CNS, J Neurosci, vol.21, p.132, 2001.

D. R. Kornack, R. , and P. , Changes in cell-cycle kinetics during the development and evolution of primate neocortex, Proceedings of the National Academy of Sciences, vol.94, issue.7, pp.1242-1246, 1998.
DOI : 10.1073/pnas.94.7.3357

I. Kostovic and P. Rakic, Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain, The Journal of Comparative Neurology, vol.50, issue.1, pp.441-470, 1990.
DOI : 10.1002/cne.902970309

T. K. Kroll and D. D. O´leary, Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate, Proceedings of the National Academy of Sciences, vol.23, issue.14, pp.7384-79, 2005.
DOI : 10.1038/sj.emboj.7600278

L. Krubitzer and J. Kaas, The evolution of the neocortex in mammals: how is phenotypic diversity generated?, Current Opinion in Neurobiology, vol.15, issue.4, pp.444-53, 2005.
DOI : 10.1016/j.conb.2005.07.003

L. Krubitzer and D. Kahn, Nature versus nurture revisited: an old idea with a new twist, Progress in Neurobiology, vol.70, issue.1, pp.33-52, 2003.
DOI : 10.1016/S0301-0082(03)00088-1

C. Lai, S. Fisher, J. Hurst, F. Vargha-khadem, and A. Monaco, A forkhead-domain gene is mutated in a severe speech and language disorder, Nature, vol.9, issue.6855, pp.519-542, 2001.
DOI : 10.1038/35097076

C. Lambert-de-rouvroit and A. M. Goffinet, The reeler mouse as a model of brain development, 1998.
DOI : 10.1007/978-3-642-72257-8

A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. G. Parnavelas, The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex, J Neurosci, vol.19, pp.7881-7888, 1999.

O. Lehmann, J. Sowden, P. Carlsson, T. Jordan, and S. Bhattacharya, Fox's in development and disease, Trends in Genetics, vol.19, issue.6, pp.339-383, 2003.
DOI : 10.1016/S0168-9525(03)00111-2

K. Letinic, R. Zoncu, and P. Rakic, Origin of GABAergic neurons in the human neocortex, Nature, vol.23, issue.6889, 2002.
DOI : 10.1038/nn0901-931

K. Letinic, R. , and P. , Telencephalic origin of human thalamic GABAergic neurons, Nature Neuroscience, vol.4, issue.9, pp.931-936, 2001.
DOI : 10.1038/nn0901-931

C. Lois and A. Alvarez-buylla, Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia., Proceedings of the National Academy of Sciences, vol.90, issue.5, pp.2074-2077, 1993.
DOI : 10.1073/pnas.90.5.2074

C. Lois and A. Alvarez-buylla, Long-distance neuronal migration in the adult mammalian brain, Science, vol.264, issue.5162, pp.1145-1148, 1994.
DOI : 10.1126/science.8178174

. Dehay, G1 phase regulation, area-specific cell-cycle control and cytoarchitectonics in the primate cortex, Neuron, issue.47, pp.353-64, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00077619

M. B. Luskin and C. J. Shatz, Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones, J Neurosci, vol.5, issue.4, pp.1062-75, 1985.

O. Marín and J. Rubenstein, A long, remarkable journey: Tangential migration in the telencephalon, Nature Reviews Neuroscience, vol.73, issue.11, pp.780-90, 2001.
DOI : 10.1038/35097509

M. Marin-padilla, Dual origin of the mammalian neocortex and evolution of the cortical plate, Anatomy and Embryology, vol.2, issue.2, pp.109-125, 1978.
DOI : 10.1007/BF00315920

M. Marin-padilla, Cajal???Retzius cells and the development of the neocortex, Trends in Neurosciences, vol.21, issue.2, pp.64-71, 1998.
DOI : 10.1016/S0166-2236(97)01164-8

B. Martynoga, H. Morrison, D. Price, and J. Mason, Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis, Developmental Biology, vol.283, issue.1, pp.113-140, 2005.
DOI : 10.1016/j.ydbio.2005.04.005

S. K. Mcconnell and C. E. Kaznowski, Cell cycle dependence of laminar determination in developing neocortex, Science, vol.254, issue.5029, pp.282-285, 1991.
DOI : 10.1126/science.1925583

M. F. Mcmanus, I. M. Nasrallah, M. M. Pancoast, A. Wynshaw-boris, and J. A. Golden, Lis1 Is Necessary for Normal Non-Radial Migration of Inhibitory Interneurons, The American Journal of Pathology, vol.165, issue.3, pp.775-784, 2004.
DOI : 10.1016/S0002-9440(10)63340-8

M. Melendez-ferro, E. Perez-costas, B. Villar-cheda, X. M. Abalo, R. Rodriguez-munoz et al., Ontogeny of ??-aminobutyric acid-immunoreactive neuronal populations in the forebrain and midbrain of the sea lamprey, Journal of Comparative Neurology, vol.403, issue.Suppl, pp.360-376, 2002.
DOI : 10.1002/cne.10209

C. Métin, J. Baudoin, S. Raki?, and J. G. Parnavelas, Cell and molecular mechanisms involved in the migration of cortical interneurons, European Journal of Neuroscience, vol.100, issue.4, 2006.
DOI : 10.1111/j.1460-9568.2006.04630.x

G. Meyer and A. M. Goffinet, Prenatal development of reelin-immunoreactive neurons in the human neocortex, The Journal of Comparative Neurology, vol.380, issue.1, pp.29-40, 1998.
DOI : 10.1002/(SICI)1096-9861(19980720)397:1<29::AID-CNE3>3.0.CO;2-K

G. Meyer and T. González-hernández, Developmental changes in layer I of the human neocortex during prenatal life: A DiI-tracing and AChE and NADPH-d histochemistry study, Journal of Comparative Neurology, vol.68, issue.4, pp.317-336, 1993.
DOI : 10.1002/cne.903380302

G. Meyer, J. P. Schaaps, L. Moreau, and A. M. Goffinet, Embryonic and early fetal development of the human neocortex, J. Neurosci, vol.20, pp.1858-1868, 2000.

G. Meyer, C. G. Pérez-garcía, and J. G. Gleeson, Selective Expression of Doublecortin and LIS1 in Developing Human Cortex Suggests Unique Modes of Neuronal Movement, Cerebral Cortex, vol.12, issue.12, pp.1225-1236, 2002.
DOI : 10.1093/cercor/12.12.1225

Z. Molnár and A. Butler, The corticostriatal junction: A crucial region for forebrain development and evolution, BioEssays, vol.20, issue.6, pp.530-571, 2002.
DOI : 10.1002/bies.10100

Z. Molnár and A. Butler, Chapter 3 Neuronal changes during forebrain evolution in amniotes: an evolutionary developmental perspective, Prog Brain Res, vol.136, pp.21-38, 2002.
DOI : 10.1016/S0079-6123(02)36005-9

B. Nadarajah, P. Alifragis, R. O. Wong, and J. G. Parnavelas, Ventricle-directed migration in the developing cerebral cortex, Nature Neuroscience, vol.5, issue.3, pp.218-224, 2002.
DOI : 10.1038/nn813

B. Nadarajah and J. G. Parnavelas, Modes of neuronal migration in the developing cerebral cortex, Nature Reviews Neuroscience, vol.128, issue.6, pp.423-432, 2002.
DOI : 10.1038/nrn845

S. Noctor, V. Martinez-cerdeno, L. Ivic, and A. Kriegstein, Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nature Neuroscience, vol.7, issue.2, pp.136-180, 2004.
DOI : 10.1038/nn1172

R. G. Northcutt and J. H. Kaas, The emergence and evolution of mammalian neocortex, Trends in Neurosciences, vol.18, issue.9, pp.373-379, 1995.
DOI : 10.1016/0166-2236(95)93932-N

M. Ogawa, T. Miyata, K. Nakajima, K. Yagyu, M. Seike et al., The reeler gene-associated antigen on cajal-retzius neurons is a crucial molecule for laminar organization of cortical neurons, Neuron, vol.14, issue.5, pp.899-912, 1995.
DOI : 10.1016/0896-6273(95)90329-1

M. Pancoast, W. Dobyn, and J. Golden, Interneuron deficits in patients with the Miller-Dieker syndrome, Acta Neuropathologica, vol.20, issue.4, pp.400-404, 2005.
DOI : 10.1007/s00401-004-0979-z

J. Parnavelas, The origin and migration of cortical neurones: new vistas, Trends in Neurosciences, vol.23, issue.3, pp.126-157, 2000.
DOI : 10.1016/S0166-2236(00)01553-8

M. M. Perez-canellas and J. M. Garcia-verdugo, Adult neurogenesis in the telencephalon of a lizard: a [3H]thymidine autoradiographic and bromodeoxyuridine immunocytochemical study, Developmental Brain Research, vol.93, issue.1-2, pp.49-61, 1996.
DOI : 10.1016/0165-3806(96)00014-4

M. M. Perez-canellas, E. Font, and J. M. Garcia-verdugo, Postnatal neurogenesis in the telencephalon of turtles: evidence for nonradial migration of new neurons from distant proliferative ventricular zones to the olfactory bulbs, Developmental Brain Research, vol.101, issue.1-2, pp.125-137, 1997.
DOI : 10.1016/S0165-3806(97)00058-8

E. Perez-costas, M. Melendez-ferro, Y. Santos, R. Anadon, M. C. Rodicio et al., Reelin immunoreactivity in the larval sea lamprey brain, Journal of Chemical Neuroanatomy, vol.23, issue.3, pp.211-221, 2002.
DOI : 10.1016/S0891-0618(01)00156-9

F. Polleux, C. Dehay, A. Goffinet, K. , and H. , Pre- and Post-mitotic Events Contribute to the Progressive Acquisition of Area-specific Connectional Fate in the Neocortex, Cerebral Cortex, vol.11, issue.11, pp.1027-1039, 2001.
DOI : 10.1093/cercor/11.11.1027

T. Pratt, J. Quinn, T. Simpson, J. West, J. Mason et al., Disruption of early events in thalamocortical tract formation in mice lacking the transcription factors Pax6 or Foxg1, J Neurosci, vol.22, pp.8523-8554, 2002.

L. Puelles, E. Kuwana, E. Puelles, A. Bulfone, K. Shimamura et al., Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1, The Journal of Comparative Neurology, vol.21, issue.3, pp.409-438, 2000.
DOI : 10.1002/1096-9861(20000828)424:3<409::AID-CNE3>3.0.CO;2-7

E. Raedler and R. A. , Autoradiographic study of early neurogenesis in rat neocortex, Anatomy and Embryology, vol.123, issue.3, 1978.
DOI : 10.1007/BF00345657

P. Rakic, Less is more: progenitor death and cortical size, Nature Neuroscience, vol.17, issue.8, pp.981-983, 2005.
DOI : 10.1093/cercor/9.6.586

P. Rakic, Vive la difference! Neuron, pp.323-328, 2005.

P. Rakic, A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends in Neurosciences, vol.18, issue.9, pp.383-391, 1995.
DOI : 10.1016/0166-2236(95)93934-P

A. Reiner, A Comparison of Neurotransmitter-Specific and Neuropeptide-Specific Neuronal Cell Types Present in the Dorsal Cortex in Turtles with Those Present in the Isocortex in Mammals: Implications for the Evolution of Isocortex; pp. 53???72, Brain, Behavior and Evolution, vol.38, issue.2-3, pp.53-91, 1991.
DOI : 10.1159/000114379

A. Reiner, Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex, Comparative Biochemistry and Physiology Part A: Physiology, vol.104, issue.4, pp.735-748, 1993.
DOI : 10.1016/0300-9629(93)90149-X

A. Reiner, A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals Evolutionary Developmental Biology of the Cerebral Cortex, Novartis Fondation Symposium 228, pp.83-102, 2000.

A. Reiner, D. J. Perkel, L. L. Bruce, A. B. Butler, A. Csillag et al., Revised nomenclature for avian telencephalon and some related brainstem nuclei, The Journal of Comparative Neurology, vol.35, issue.3, pp.377-414, 2004.
DOI : 10.1002/cne.20118

A. Rockel, R. Hiorns, and T. Powell, THE BASIC UNIFORMITY IN STRUCTURE OF THE NEOCORTEX, Brain, vol.103, issue.2, pp.221-265, 1980.
DOI : 10.1093/brain/103.2.221

R. Scardigli, N. Bäumer, P. Gruss, F. Guillemot, and I. L. Roux, Direct and concentration-dependent regulation of the proneural gene Neurogenin2 by Pax6, Development, vol.130, issue.>14, pp.3269-81, 2003.
DOI : 10.1242/dev.00539

I. H. Smart, Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures, J Anat, vol.116, issue.1, pp.67-91, 1973.

I. H. Smart and G. M. Mcsherry, Growth patterns in the lateral wall of the mouse telencephalon: II. Histological changes during and subsequent to the period of isocortical neuron production, J Anat, vol.134, issue.3, pp.415-442, 1982.

I. H. Smart and G. M. Mcsherry, Gyrus formation in the cerebral cortex in the ferret. I. description of the external changes, J Anat, vol.146, pp.141-152, 1986.

I. H. Smart and G. M. Mcsherry, Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes, J Anat, vol.147, pp.27-43, 1986.

I. H. Smart and M. Smart, Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas, J Anat, vol.134, pp.273-298, 1982.

I. H. Smart and C. Dehay, Unique Morphological Features of the Proliferative Zones and Postmitotic Compartments of the Neural Epithelium Giving Rise to Striate and Extrastriate Cortex in the Monkey, Cerebral Cortex, vol.12, issue.1, pp.37-53, 2002.
DOI : 10.1093/cercor/12.1.37

URL : https://hal.archives-ouvertes.fr/inserm-00132484

A. Smith-fernandez, C. Pieau, J. Reperant, E. Boncinelli, and M. Wassef, Expression of the Emx1-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes, Development, vol.125, pp.2099-2111, 1988.

A. Stoykova, D. Treichel, M. Hallonet, and P. Gruss, Pax6 modulates the dorsoventral patterning of the mammalian telencephalon, J. Neurosci, vol.20, pp.8042-8050, 2000.

A. Stoykova, M. Götz, P. Gruss, and J. Price, Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain, Development, vol.124, pp.3765-77, 1997.

A. Stoykova, R. Fritsch, C. Walther, and P. Gruss, Forebrain patterning defects in Small eye mutant mice, Development, vol.122, pp.3453-65, 1996.

G. F. Striedter, Principles of brain evolution, 2005.

G. F. Striedter, The Telencephalon of Tetrapods in Evolution; pp. 179???194, Brain, Behavior and Evolution, vol.49, issue.4, pp.179-213, 1997.
DOI : 10.1159/000112991

T. Stuhmer, S. A. Anderson, M. Ekker, and J. L. And-rubenstein, Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression, Development, vol.129, pp.245-252, 2002.

L. Sussel, O. Marin, S. Kimura, and J. L. And-rubenstein, Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum, Development, vol.126, pp.3359-3370, 1999.

N. Tamamaki, K. Fujimori, and R. Takauji, Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone, J Neurosci, vol.17, issue.21, pp.8313-8336, 1997.

S. Tan, Developmental neurobiology: Cortical liars, Nature, vol.268, issue.6889, pp.605-611, 2002.
DOI : 10.1016/S0893-133X(01)00225-1

V. Tarabykin and A. Stoykova, Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression, Development, vol.128, issue.11, pp.1983-93, 2001.

F. Tissir, C. Lambert-de-rouvroit, J. Y. Sire, G. Meyer, and A. M. Goffinet, Reelin expression during embryonic brain development inCrocodylus niloticus, The Journal of Comparative Neurology, vol.97, issue.3, pp.250-262, 2003.
DOI : 10.1002/cne.10573

S. Tole, R. Remedios, S. Bhaskar, and A. Stoykova, Selective Requirement of Pax6, But Not Emx2, in the Specification and Development of Several Nuclei of the Amygdaloid Complex, Journal of Neuroscience, vol.25, issue.10, pp.25-2753, 2005.
DOI : 10.1523/JNEUROSCI.3014-04.2005

H. Toresson, S. S. Potter, and K. Campbell, Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2, Development, vol.127, pp.4361-71, 2000.

F. Tuorto, P. Alifragis, V. Failla, J. G. Parnavelas, and M. Gulisano, Tangential migration of cells from the basal to the dorsal telencephalic regions in the chick, European Journal of Neuroscience, vol.126, issue.12, pp.3388-3393, 2003.
DOI : 10.1038/8131

D. C. Van-essen, A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature, vol.385, issue.6614, pp.313-321, 1997.
DOI : 10.1038/385313a0

C. L. Veenman and A. Reiner, The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets, The Journal of Comparative Neurology, vol.31, issue.2, pp.209-250, 1994.
DOI : 10.1002/cne.903390205

C. Walther and P. Gruss, Pax-6, a murine paired box gene, is expressed in the developing CNS, Development, vol.113, pp.1435-1484, 1991.

W. Wang and Z. Molnár, Dynamic pattern of mRNA expression of plasticity-related gene-3 (PRG-3) in the mouse cerebral cortex during development, Brain Research Bulletin, vol.66, issue.4-6, pp.4-6454, 2005.
DOI : 10.1016/j.brainresbull.2005.05.010

N. Warren, D. Caric, T. Pratt, J. A. Clausen, P. Asavaritikrai et al., The Transcription Factor, Pax6, is Required for Cell Proliferation and Differentiation in the Developing Cerebral Cortex, Cerebral Cortex, vol.9, issue.6, pp.627-635, 1999.
DOI : 10.1093/cercor/9.6.627

H. Wichterle, J. M. Garcia-verdugo, D. G. Herrera, and A. Alvarez-buylla, Young neurons from medial ganglionic eminence disperse in adult and embryonic brain, Nature Neuroscience, vol.2, issue.5, pp.461-466, 1999.
DOI : 10.1038/8131

S. Wiese, D. Murphy, A. Schlung, P. Burfeind, D. Schmundt et al., The genes for human brain factor 1 and 2, members of the fork head gene family, are clustered on chromosome 14q, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1262, issue.2-3, pp.105-117, 1995.
DOI : 10.1016/0167-4781(95)00059-P

N. Tamamaki, Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone, Proc Natl Acad Sci U S A, vol.102, issue.47, pp.17172-17179, 2005.

M. Wullimann, E. Rink, P. Vernier, and G. Schlosser, Secondary neurogenesis in the brain of the African clawed frog,Xenopus laevis, as revealed by PCNA,Delta-1,Neurogenin-related-1, andNeuroD expression, The Journal of Comparative Neurology, vol.129, issue.3, pp.387-402, 2005.
DOI : 10.1002/cne.20634

Q. Xu, I. Cobos, E. De-la-cruz, J. L. Rubenstein, A. et al., Origins of Cortical Interneuron Subtypes, Journal of Neuroscience, vol.24, issue.11, pp.2612-2622, 2004.
DOI : 10.1523/JNEUROSCI.5667-03.2004

S. Xuan, C. Baptista, G. Balas, W. Tao, V. Soares et al., Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres, Neuron, vol.14, issue.6, pp.1141-52, 1995.
DOI : 10.1016/0896-6273(95)90262-7

K. Yun, S. Potter, and J. L. Rubenstein, Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon, Development, vol.128, pp.193-205, 2001.