H. Ameln, T. Gustafsson, C. J. Sundberg, K. Okamoto, E. Jansson et al., Physiological activation of hypoxia inducible factor-1 in human skeletal muscle, The FASEB Journal, vol.19, pp.1009-1011, 2005.
DOI : 10.1096/fj.04-2304fje

A. Asakura, M. Komaki, and M. Rudnicki, Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation, Differentiation, vol.68, issue.4-5, pp.245-53, 2001.
DOI : 10.1046/j.1432-0436.2001.680412.x

N. Arsic, S. Zacchigna, L. Zentilin, G. Ramirez-correa, L. Pattarini et al., Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo, Molecular Therapy, vol.10, issue.5, pp.844-854, 2004.
DOI : 10.1016/j.ymthe.2004.08.007

J. R. Beauchamp, L. Heslop, D. S. Yu, S. Tajbakhsh, R. G. Kelly et al., Expression of Cd34 and Myf5 Defines the Majority of Quiescent Adult Skeletal Muscle Satellite Cells, The Journal of Cell Biology, vol.85, issue.6, pp.1221-1234, 2000.
DOI : 10.1093/nar/19.23.6433

R. Bischoff and C. Franzini-armstrong, Satellite and stem cells in muscle regeneration, pp.66-86, 2004.

S. Carpenter and G. Karpati, Skeletal Muscle Pathology, Journal of Neuropathology and Experimental Neurology, vol.43, issue.2, 2001.
DOI : 10.1097/00005072-198403000-00010

B. Chazaud, L. Hittinger, C. Sonnet, S. Champagne, L. Corvoisier et al., Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage, Cardiovascular Research, vol.58, issue.2, 2003.
DOI : 10.1016/S0008-6363(02)00834-9

URL : http://cardiovascres.oxfordjournals.org/cgi/content/short/58/2/444

B. Chazaud, C. Sonnet, P. Lafuste, G. Bassez, A. C. Rimaniol et al., Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth, The Journal of Cell Biology, vol.47, issue.5, pp.1133-1143, 2003.
DOI : 10.1016/S0002-9440(10)62537-0

R. K. Gherardi, In vivo fusion of circulating fluorescent cells with dystrophindeficient myofibers results in extensive sarcoplasmic fluorescence expression but limited dystrophin sarcolemmal expression, Am. J. Pathol, vol.166, pp.1741-1748, 2005.

O. Cleaver and D. A. Melton, Endothelial signaling during development, Nature Medicine, vol.9, issue.6, 2003.
DOI : 10.1038/nm0603-661

J. E. Morgan, Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche, Cell, vol.122, pp.289-301, 2005.

A. Mauro, SATELLITE CELL OF SKELETAL MUSCLE FIBERS, The Journal of Cell Biology, vol.9, issue.2, pp.493-495, 1961.
DOI : 10.1083/jcb.9.2.493

T. Motoike, D. W. Markham, J. Rossant, and T. N. Sato, Evidence for novel fate of Flk1+ progenitor: Contribution to muscle lineage, genesis, vol.8, issue.3, pp.153-159, 2003.
DOI : 10.1002/gene.10175

G. Molnar, M. L. Ho, and N. A. Schroedl, Evidence for multiple satellite cell populations and a non-myogenic cell type that is regulated differently in regenerating and growing skeletal muscle, Tissue and Cell, vol.28, issue.5, pp.547-56, 1996.
DOI : 10.1016/S0040-8166(96)80057-7

F. P. Moss and C. P. Leblond, Satellite cells as the source of nuclei in muscles of growing rats, The Anatomical Record, vol.119, issue.4, pp.421-435, 1971.
DOI : 10.1002/ar.1091700405

B. Nico, P. Corsi, A. Vacca, L. Roncali, and D. Ribatti, Vascular endothelial growth factor and vascular endothelial growth factor receptor-2 expression in mdx mouse brain, Brain Research, vol.953, issue.1-2, pp.12-16, 2002.
DOI : 10.1016/S0006-8993(02)03219-5

T. D. Palmer, A. R. Willhoite, and F. H. Gage, Vascular niche for adult hippocampal neurogenesis, The Journal of Comparative Neurology, vol.4, issue.4, pp.479-494, 2000.
DOI : 10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3

S. S. Pearce, O. Hudlick, and M. D. Brown, Effect of indomethacin on capillary growth and microvasculature in chronically stimulated rat skeletal muscles, The Journal of Physiology, vol.69, issue.2, pp.435-478, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-1-00435.x

G. D. Phillips, D. Y. Lu, V. I. Mitashov, and B. M. Carlson, Survival of myogenic cells in freely grafted rat rectus femoris and extensor digitorum longus muscles, American Journal of Anatomy, vol.26, issue.4, pp.365-372, 1987.
DOI : 10.1002/aja.1001800407

B. D. Ripley, Statistical inference for spatial processes, 1988.
DOI : 10.1017/CBO9780511624131

K. Rouger, M. Brault, N. Daval, I. Leroux, L. Guigand et al., Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently, Cell and Tissue Research, vol.317, issue.3, pp.319-326, 2004.
DOI : 10.1007/s00441-004-0911-9

M. Sampaolesi, S. Blot, G. D-'antona, N. Granger, R. Tonlorenzi et al., Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs, Nature, vol.4, issue.7119, pp.574-579, 2006.
DOI : 10.1038/nature05282

H. Schmalbruch and U. Hellhammer, The number of nuclei in adult rat muscles with special reference to satellite cells, The Anatomical Record, vol.50, issue.2, pp.169-175, 1977.
DOI : 10.1002/ar.1091890204

E. Schultz and B. H. Lipton, Skeletal muscle satellite cells: Changes in proliferation potential as a function of age, Mechanisms of Ageing and Development, vol.20, issue.4, pp.377-383, 1982.
DOI : 10.1016/0047-6374(82)90105-1

E. Schultz, D. J. Albright, D. L. Jaryszak, and T. L. David, Survival of satellie cells in whole muscle transplants, The Anatomical Record, vol.175, issue.1, pp.12-17, 1988.
DOI : 10.1002/ar.1092220104

M. A. Rudnicki, Pax7 is required for the specification of myogenic satellite cells, Cell, vol.102, pp.777-786, 2000.

Q. Shen, S. K. Goderie, L. Jin, N. Karanth, Y. Sun et al., Endothelial Cells Stimulate Self-Renewal and Expand Neurogenesis of Neural Stem Cells, Science, vol.304, issue.5675, pp.1338-1340, 2004.
DOI : 10.1126/science.1095505

R. I. Sherwood, J. L. Christensen, I. M. Conboy, M. J. Conboy, T. A. Rando et al., Isolation of Adult Mouse Myogenic Progenitors, Cell, vol.119, issue.4, pp.543-554, 2004.
DOI : 10.1016/j.cell.2004.10.021

T. T. Rissanen, I. Vajanto, M. O. Hiltunen, J. Rutanen, M. I. Kettunen et al., Expression of Vascular Endothelial Growth Factor and Vascular Endothelial Growth Factor Receptor-2 (KDR/Flk-1) in Ischemic Skeletal Muscle and Its Regeneration, The American Journal of Pathology, vol.160, issue.4, pp.1393-1403, 2002.
DOI : 10.1016/S0002-9440(10)62566-7

V. Shinin, B. Gayraud-morel, D. Gomes, and S. Tajbakhsh, Asymetric division and cosegregation of template DNA strands in adult muscle satellite cells, 2006.

S. V. Shmelkov, S. Meeus, N. Moussazadeh, P. Kermani, W. K. Rashbaum et al., Cytokine Preconditioning Promotes Codifferentiation of Human Fetal Liver CD133+ Stem Cells Into Angiomyogenic Tissue, Cytokine preconditioning promotes codifferentiation of human fetal liver CD133+ stem cells into angiomyogenic tissue, pp.1175-1183, 1038.
DOI : 10.1161/01.CIR.0000157155.44008.0F

M. H. Snow, Myogenic cell formation in regenerating rat skeletal muscle injured by mincing II. An autoradiographic study, The Anatomical Record, vol.133, issue.2, pp.201-217, 1977.
DOI : 10.1002/ar.1091880206

M. Solursh, C. Drake, and S. Meier, The migration of myogenic cells from the somites at the wing level in avian embryos, Developmental Biology, vol.121, issue.2, pp.389-396, 1987.
DOI : 10.1016/0012-1606(87)90175-8

C. Sonnet, P. Lafuste, L. Arnold, M. Brigitte, F. Poron et al., Human macrophages rescue myoblasts and myotubes from apoptosis through a set of adhesion molecular systems, Journal of Cell Science, vol.119, issue.12, pp.2497-507, 2006.
DOI : 10.1242/jcs.02988

H. M. Blau, Localized arteriole formation directly adjacent to the site of VEGFinduced angiogenesis in muscle, Mol. Ther, vol.7, pp.441-449, 2003.

T. Suda, F. Arai, and A. Hirao, Hematopoietic stem cells and their niche, Trends in Immunology, vol.26, issue.8, pp.426-459, 2005.
DOI : 10.1016/j.it.2005.06.006

S. Tajbakhsh, E. Bober, C. Babinet, S. Pournin, H. Arnold et al., Gene targeting the myf???5 locus with nlacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle, Developmental Dynamics, vol.206, issue.3, pp.291-300, 1996.
DOI : 10.1002/(SICI)1097-0177(199607)206:3<291::AID-AJA6>3.3.CO;2-S

T. Tamaki, A. Akatsuka, K. Ando, Y. Nakamura, H. Matsuzawa et al., Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle, The Journal of Cell Biology, vol.10, issue.4, pp.571-578, 2002.
DOI : 10.1038/nm0901-1028

T. Tamaki, Y. Uchiyama, Y. Okada, T. Ishikawa, M. Sato et al., Functional Recovery of Damaged Skeletal Muscle Through Synchronized Vasculogenesis, Myogenesis, and Neurogenesis by Muscle-Derived Stem Cells, Circulation, vol.112, issue.18, pp.2857-66, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.554832

R. Tordjman, S. Delaire, J. Plouet, S. Ting, P. Gaulard et al., Erythroblasts are a source of angiogenic factors, Blood, vol.97, issue.7, pp.1968-74, 2001.
DOI : 10.1182/blood.V97.7.1968

Y. Torrente, M. Belicchi, M. Sampaolesi, F. Pisati, M. Meregalli et al., Human circulating AC133+ stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle, Journal of Clinical Investigation, vol.114, issue.2, pp.182-195, 2004.
DOI : 10.1172/JCI20325

V. Van-weel, M. M. Deckers, J. M. Grimbergen, K. J. Van-leuven, J. H. Lardenoye et al., Vascular Endothelial Growth Factor Overexpression in Ischemic Skeletal Muscle Enhances Myoglobin Expression In Vivo, Circulation Research, vol.95, issue.1, pp.58-66, 2004.
DOI : 10.1161/01.RES.0000133247.69803.c3

R. S. Williams and B. H. Annex, Plasticity of Myocytes and Capillaries: A Possible Coordinating Role for VEGF, Circulation Research, vol.95, issue.1, 2004.
DOI : 10.1161/01.RES.0000136345.81719.37

P. Zammit and J. Beauchamp, The skeletal muscle satellite cell: stem cell or son of stem cell?, Differentiation, vol.68, issue.4-5, pp.193-204, 2001.
DOI : 10.1046/j.1432-0436.2001.680407.x