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SHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and 

is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and 

Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on 

chromosome 22q13 can result in language and/or social communication disorders. These 

mutations concern only a small number of individuals, but they shed light on one gene dosage-

sensitive synaptic pathway that is involved in autism spectrum disorders. 

 

Autism spectrum disorders (ASD) affect about 6 of every 1000 children and are characterized by 

impairments in reciprocal social interaction and communication as well as restricted and stereotyped 

patterns of interests and activities1. ASD ranges from severe (in the case of autistic disorder with 

moderate or severe cognitive impairment) to a milder variant (Asperger syndrome with higher 

cognitive ability). Although the causative genes remain largely unknown2, familial and twin studies 

indicate that ASD is one of the most genetic neuropsychiatric disorders. Standard karyotype analyses 

show chromosomal rearrangements in 3%-6% of cases, the most common being deletions and 

duplications on chromosomes 15q, 22q and 7q3. One of the most frequent rearrangements associated 

with cognitive deficits, the 22q13.3 microdeletion syndrome is characterized by neonatal hypotonia, 

global developmental delay, normal to accelerated growth, absent to severely delayed speech, autistic 

behavior, and minor dysmorphic features4. The loss of terminal 22q13.3 can be subtle and can go 

undetected by routine chromosome analysis; FISH is often required to confirm the presence of this 

deletion. 

Among the three genes (ACR, RABL2B, SHANK3) located in the minimal telomeric region5, 

SHANK3 (also known as ProSAP2) is the strongest candidate for the neurobehavioral symptoms 

observed in patients with 22q13 deletions. SHANK3 is a scaffolding protein found in excitatory 

synapses directly opposite to the presynaptic active zone. Shank proteins are believed to function as 

master organizers of the postsynaptic density (PSD), owing to their ability to form multimeric 

complexes with postsynaptic receptors, signaling molecules and cytoskeletal proteins present in 

dendritic spines and PSDs6,7. SHANK3 can bind to the cell adhesion proteins neuroligins8; we have 

previously found genes encoding neuroligins (NLGN3 and NLGN4) to be mutated in individuals with 

autism and Asperger syndrome9. SHANK3 was disrupted by a de novo balanced translocation in a 

child with all the features of the 22q13.3 deletion syndrome10. In this paper, we report evidence 

showing that abnormal gene dosage of SHANK3 is associated with severe cognitive deficits, including 

language and speech disorder and ASD.  

We used FISH analysis (n=97) and/or direct sequencing (n=227) to investigate chromosome 

22q13 and SHANK3 in patients with ASD (Supplementary Methods). We also sequenced all 

SHANK3 exons in a minimum of 190 controls to ascertain the diversity of SHANK3 nonsynonymous 

variations in the general population. SHANK3 spans 57 kb and contains 24 exons. Seven exons are 

alternatively spliced, including exon 18, which is detected mostly in the brain (Supplementary Fig. 

1). During our screening, three families with ASD showed unambiguous alteration of 22q13 or 
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SHANK3. In family ASD 1, the proband with autism, absent language and moderate mental retardation 

carried a de novo deletion of 22q13 (the clinical description of all patients is provided in the 

Supplementary Note). The deletion breakpoint was located in intron 8 of SHANK3 and removed 142 

kb of the terminal 22q13 (Fig. 1a). This deletion had been "repaired" by addition of telomeric repeats 

and was similar to the minimum deleted region described previously5. The recurrent deletions in this 

region may be due to the quadruplex-forming G-rich sequence (QGRS) surrounding the breakpoint 

(Supplementary Fig. 2), which provides a structural substrate for inappropriate telomere formation.  

In family ASD 2, two brothers with autism were heterozygous for an insertion of a guanine 

nucleotide in exon 21 (Fig. 1b). Both brothers had severely impaired speech and severe mental 

retardation. The mutation was absent in an unaffected brother and the unaffected parents. Using 14 

informative SNPs, we found that the mutation was located on the same maternal haplotype in the two 

affected brothers and that the unaffected brother did not have this haplotype (Supplementary Fig. 3). 

The mutation was absent in the DNA isolated from blood leukocytes and mouth cells of the mother. 

These results strongly suggest a germinal mosaicism in the mother. The guanine insertion creates a 

frameshift at nucleotide 3680, modifying the C–terminal sequence of the protein (Fig. 1b). This 

putative truncated protein lacks several crucial domains involved in mGluR and actin binding (Homer, 

AbP1, cortactin) and in the synaptic targeting and postsynaptic assembly of SHANK3 multimers11,12. 

Consistent with the loss of these domains, when we over-expressed the truncated protein in rat 

hippocampal neuronal cells, we did not observe any synaptic localization compared with the wild-type 

sequence (Supplementary Fig. 4).  

In family ASD 3, we identified a terminal 22q deletion in a girl with autism and severe language 

delay and a 22qter partial trisomy in her brother with Asperger syndrome, who demonstrated 

precocious language development and fluent speech (Fig. 1c). We found that these unbalanced 

cytogenetic abnormalities were inherited from a paternal translocation, t(14;22)(p11.2;q13.33). The 

chromosome 14p11.2 breakpoint fell within the heterochromatic DNA sequence characteristic of 

acrocentric chromosomes and did not contain any putative transcripts or genes. On chromosome 

22q13.33, using informative SNPs and quantitative PCR, we mapped the breakpoint between ALG12 

and MLC1 (Fig. 1d). The deletion and duplication rearrangement observed in both siblings involved 

25 genes, including SHANK3, located in the 800-kb terminal sequence of 22q13. No other SHANK3 

deletions or duplications were observed after screening 155 individuals by quantitative PCR (58 with 

autism, 38 with Asperger syndrome and 59 controls). 

In the remaining individuals with ASD, we identified seven who had rare nonsynonymous 

variations, which were not observed in controls (n=270-333; Fig. 2 and Supplementary Table 1). 

However, all these variations were inherited from healthy parents, ruling out their direct involvement 

as dominant mutations in the disorder. Notably, for two substitutions modifying highly conserved 

amino acids (R12C and R300C; Supplementary Fig. 3), we observed that the overexpressed mutated 

GFP Shank3 fusion proteins clustered but showed significantly less colocalization with the presynaptic 

marker protein Bassoon, suggesting nonsynaptic clustering (Supplementary Fig. 4). These 
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observations might reflect posttranslational modifications or abnormal folding of the protein. Thus, 

although these genetic variations cannot be considered as causal mutations, they might nevertheless 

modify the synaptic scaffolding and represent risk factors for ASD in interaction with other 

susceptibility genes.  

In this study, we show that a SHANK3 heterozygous mutation can cause ASD. Notably, in the boy 

with Asperger syndrome in family ASD 3, the presence of an additional copy of 22q13/SHANK3 did 

not impair his language ability but seems to have led to a severe impairment in social communication. 

These results, together with previous reports13,14, highlight the importance of a fine gene dosage for the 

development of speech/language and/or social communication in humans.  

The mutations identified in these patients are thought to affect the function and localization of 

SHANK3 at PSD and dendritic spines. These results are consistent with the alterations of dendritic 

spines in individuals with learning disabilities15. In mice, Shank-3 promotes the maturation and the 

enlargement of dendritic spine heads and is even able to induce spine formation in aspiny neurons11. In 

ASD, an abnormality of synapse formation and maintenance was first suggested by the identification 

of mutations in X-linked NLGN3 and NLGN49, and next confirmed by functional studies of the 

causative mutations. Therefore, we hypothesize that the protein complex including neuroligins and 

SHANK participates in the assembly of specialized postsynaptic structures required for the 

development of language and social communication.  
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Figure 1. Genetic analyses of three families with ASD and SHANK3 mutations. (a) In family ASD 1, the proband 
carries a de novo terminal deletion of the paternal chromosome 22q13. The deletion breakpoint is located in intron 8 of 
SHANK3. The breakpoint was sequenced after amplification of the proband DNA using primer 1 in SHANK3 and 
primer 2 in the telomeric repeats. The heterogenous smear in the proband is likely due to the difference in telomere 
length from chromosome to chromosome and/or priming at different locations by the telomeric primer. (b) In family 
ASD 2, the two probands carry the same de novo SHANK3 frame-shift mutation on the maternal chromosome 22q13. 
The mutation is absent from the mother blood and buccal cells, suggesting a germinal mosaicism. The guanine insertion 
is located in exon 21 of SHANK3, leading to a premature truncated protein. (c) In family ASD 3, the father carries a 
balanced translocation t(14,22)(p11.2;q13.33), proband A (Asperger syndrome) presents a partial 22qter trisomy and 
proband B (autism) has a 22qter deletion. (d) Using quantitative fluorescent PCR, we mapped the breakpoint between 
the genes ALG12 and MLC1. The dosage quotient has a theoretical value of 0.5 for a deletion and 1.5 for a duplication. 
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Figure 2. Localization of rare nonsynonymous variations or truncating SHANK3 mutations identified 
in families with ASD. ANK: ankyrin repeats; SH3: Src homology 3 domain; PDZ: postsynaptic 
density 95/Discs large/zona occludens-1 homology domain; SAM: sterile alpha motif domain. 




