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Abstract

Background: Retinoic acid receptors (RARs) are ligand-regulated transcription factors controlling

cellular proliferation and differentiation. Receptor-interacting proteins such as corepressors and

coactivators play a crucial role in specifying the overall transcriptional activity of the receptor in

response to ligand treatment. Little is known however on how receptor activity is controlled by

intermediary factors which interact with RARs in a ligand-independent manner.

Results: We have identified the promyelocytic leukemia zinc finger protein (PLZF), a

transcriptional corepressor, to be a RAR-interacting protein using the yeast two-hybrid assay. We

confirmed this interaction by GST-pull down assays and show that the PLZF N-terminal zinc finger

domain is necessary and sufficient for PLZF to bind RAR. The RAR ligand binding domain displayed

the highest affinity for PLZF, but corepressor and coactivator binding interfaces did not contribute

to PLZF recruitment. The interaction was ligand-independent and correlated to a decreased

transcriptional activity of the RXR-RAR heterodimer upon overexpression of PLZF. A similar

transcriptional interference could be observed with the estrogen receptor alpha and the

glucocorticoid receptor. We further show that PLZF is likely to act by preventing RXR-RAR

heterodimerization, both in-vitro and in intact cells.

Conclusion: Thus RAR and PLZF interact physically and functionally. Intriguingly, these two

transcription factors play a determining role in hematopoiesis and regionalization of the hindbrain

and may, upon chromosomal translocation, form fusion proteins. Our observations therefore

define a novel mechanism by which RARs activity may be controlled.

Background
atRA receptors (RARs) α, β and γ and 9-cis retinoic acid
receptors α, β and γ (RXRs) are encoded by three different
genes and are members of the nuclear receptor super-
family. They function as ligand-inducible transcription

factors in the form of RAR/RXR heterodimers. RAR is acti-
vated by atRA and binding of this ligand induces receptor
conformational changes that switch on transcription of
genes containing RA Response Elements (RAREs) by
favoring coactivator tethering to regulated promoters.
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This protein complex assembly at regulated promoters
induces chromatin remodeling and increased binding of
RNA polymerase II to these promoters, thereby inducing
a variety of biological effects (reviewed in [1,2]). While a
detailed understanding of the ligand-dependent activa-
tion of RARs has been achieved by structural and func-
tional studies, little is known about factors regulating the
activity of the unliganded receptor. We therefore under-
took a 2-hybrid screen in yeast using an AF2-inactivated
hRARα as a bait, thus unable to respond transcriptionally
to ligand, to identify proteins potentially able to regulate
RAR functions in a ligand-independent manner. Among
the identified proteins, PLZF was found to physically
interact with RARα through its zinc finger domain.

The human promyelocytic leukemia zinc finger (PLZF)
protein is a 673 amino acid (AA) transcriptional repressor
belonging to a large protein family characterized by a 120
AA N-terminal bric-à-brac, tramtrack, brad complex
(BTB)/poxvirus zinc finger (POZ) domain. Proteins con-
taining this BTB/POZ domain are associated to multiple
functions such as development, embryogenesis and chro-
matin remodeling. The BTB/POZ domain allows protein
homodimerization [3] and is involved in the recruitment
of transcriptional corepressor complexes (NCoR) harbor-
ing histone deacetylases (HDAC) activity [4,5]. In addi-
tion, this multimeric NCoR complex has been shown to
provide a docking site for eight-twenty one (ETO), a non-
DNA binding transcriptional repressor fused to the tran-
scriptional activator AML1 in acute myelogenous leuke-
mia [6,7]. Another structural feature of PLZF is its C-
terminal DNA binding domain made of nine C2H2 Krup-
pel-like zinc fingers that binds the consensus sequence
GTACAGTTSCAU [8]. The first two zinc fingers are dispen-
sable for DNA binding [9,10], although other domains of
the protein seem to contribute to the DNA binding specif-
icity by restricting the DNA binding repertoire of PLZF [8].
Finally, a proline-rich and an acidic domains are found in
the central part of the molecule (see also Figure 1 for more
details).

The exact biological role of PLZF remains to be estab-
lished. However, its localization to nuclear bodies [11],
which are nuclear structures associated to a central, tran-
scriptional regulatory role [12], as well as its down regula-
tion upon myeloid cell differentiation hint at a crucial role
in cell growth control [13]. Indeed, genetic ablation of the
PLZF gene in mice led to aberrant limb modeling resulting
from deregulated cell proliferation and apoptosis, and
also suggested that PLZF is, like all trans retinoic acid
(atRA), a critical regulator of the linear expression of the
Hox gene cluster [14]. Another strong argument for the
biological importance of PLZF is the association of the
chromosomal translocation t(11;17) to a rare variant of
acute promyelocytic leukemia (APL), which fuses the

PLZF protein to retinoic acid receptor " (RARα, [15–17]).
The PLZF-RARα fusion protein maintains most of the
DNA and dimerization properties of both moieties, and
PLZF-RAR binds to retinoic acid response elements
(RAREs) as a heterodimeric partner of RXR, interfering
with RARα functions by exerting a dominant negative
effect [16,18]. The resistance of t(11;17) APL to pharma-
cological doses of atRA contrasts with the sensitivity of the
more common t(15;17) APL, which is characterized by a
fusion between the promyelocytic leukemia transcription
factor PML and the RARα proteins [19]. Thus the highly
stable, targeted recruitment of NCoRs and HDACs to
PLZF-RAR, mostly through the BTB/POZ domain, is likely
to underlie the pathogenesis of the t(11;17) APL and
renders it refractory to atRA chemotherapy, although
additional factors are involved in the t(11;17)-induced
leukemogenesis [20].

Interestingly, the PML protein acts either as a corepressor
or a coactivator in a DNA-binding independent manner.
PML gene inactivation leads to a strongly decreased tran-
scriptional activation of the p21 gene and to impaired
myeloid differentiation in response to retinoid stimula-
tion [21]. Consistent with its role of coactivator, it has
been shown to be integrated in the DRIP complex [22]
and to interact with CBP [23].

Thus, quite intriguingly, PML and RAR have a functional
relationship during transcriptional regulatory processes,
and are chromosomal translocation partners. In this
paper, we describe the physical interaction of PLZF with
RARα and explore the functional consequences of this
interaction on retinoid-regulated transcription.

Results and Discussion
PLZF interacts with RARα in-vitro

In a search for proteins that could interact with the unlig-
anded, transcriptionally inactive RARα, we set up a yeast
two hybrid screen using a mutated receptor (Figure 1A).
Mutations were designed on the basis of the three-dimen-
sional structure of the RARα ligand binding domain
(LBD). It defines K262 as establishing salt bridges with
E412 and E415 of the RARα activating function 2 (AF2)
activating domain (AD) upon agonist binding [24,25].
Mutation of K262 and of the neighboring K244 into
alanine residues (RARα 2 K) prevents the ligand-induced
folding of RARα AF2, impedes coactivator recruitment,
weakens corepressor interaction (Figure 1A) and inacti-
vates the transcriptional activity of RARα [26].

A human ovary cDNA library was screened for interaction
with RARα 2 K and twelve positive clones were isolated
and further characterized by DNA sequencing. A BLAST
search indicated that we isolated, among these clones, a
cDNA encoding amino acids 389 to 658 of human
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promyelocytic leukemia zinc finger protein (PLZF, Figure
1B), thus encompassing the first three N-terminal zinc fin-
gers (ZF) of the PLZF DNA-binding domain. Although
PLZF has been reported to interact specifically with LexA
consensus binding sequences [10], the two N-terminal ZF
are dispensable for this activity [9]. We therefore carried
out in-vitro protein interaction assays (Figure 2) using the
three PLZF Nt-ZF fused to glutathione-S-transferase (GST-

PLZF 3ZF) to determine its ability to bind to full length
RARα, RARα 2 K, or various deletion mutants of this
receptor [AF1: RARα AF1 (AAs 1–88); LBD: RARα LBD
(AAs 152–462); RARα)403 (AAs 1 to 403)]. As a control
for specificity, we used RXRα, a nuclear receptor display-
ing strong sequence homologies with RAR in the DNA
binding domain, but harboring significant sequence
divergence in both the AF1 and AF2 regions. As expected,

Structure and properties of the bait RAR mutant and of one of the identified preys, PLZFFigure 1
Structure and properties of the bait RAR mutant and of one of the identified preys, PLZF. A) Schematic represen-
tation of the nuclear receptor RARα and structural localization of the two mutations K262A and K244A. These mutations 
weaken the interaction with the corepressor SMRT and abolish the interaction with the coactivator SRC-1, as visualized by 
GST pull-down assays (insert). B) Structure of the transcription factor PLZF identified by the two-hybrid screening of an ovary 
cDNA library with pLex12-RAR K244A-K262A used as a bait.
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PLZF 3ZF interacted with RARα in a ligand-independent
manner, as well as with the AF2-inactivated RARα 2 K
mutant. Thus ligand-induced structural transitions do not
affect PLZF/RARα interactions and are not conditioned by
AF2-AD positioning, as confirmed by the interaction of
RARα)403 with PLZF (Figure 2). The isolated RARα AF1
domain did not retain a strong affinity for PLZF 3ZF, how-
ever, a weak but reproducible interaction was detected
with the LBD moiety of the receptor. RXRα did not bind
to PLZF 3ZF, suggesting that some degree of specificity
may be achieved in the PLZF/nuclear receptors interac-
tion. Reciprocal protein interaction assays were then car-

ried out using wild type RARα or RARα 2 K, and
functional domains of human PLZF (Figure 3). Full length
PLZF interacted with wild type RARα and RARα 2 K in a
ligand-independent manner, suggesting that intra molec-
ular interactions do not affect PLZF affinity for RARα. The
DNA binding domain of PLZF, comprising 9 C2H2 zinc
fingers, interacted significantly with wild type RARα and
RARα 2 K, demonstrating that this domain is necessary
and sufficient to promote the physical association of
RARα with PLZF. None of the other isolated structural
domains (BTB/POZ, acidic or proline-rich) demonstrated
detectable binding to RARα or to RARα 2 K.

Interaction of RARα with the first three N-terminal zinc fingers of the DNA-binding domain of PLZFFigure 2
Interaction of RARα with the first three N-terminal zinc fingers of the DNA-binding domain of PLZF. A) Bacte-
rially expressed GST-PLZF 3ZF fusion protein was used to generate an affinity matrix with which (panel B) 35S-labeled full 
length RARα, RARα 2 K, isolated functional domains (RARα AF1, RARα AF2) or RARα deleted of its AF2-AD and the domain 
F (RARα ∆403) were incubated in the absence or presence of 1 µM atRA. Receptors bound to PLZF 3ZF resin were then 
resolved by SDS-polyacrylamide gel electrophoresis and quantified by autoradiography using the ImageQuant software (Molec-
ular Dynamics, Inc.).
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PLZF interacts functionally and physically with RARα and 

other nuclear receptors

We further assayed the ability of PLZF and PLZF 3ZF to
interfere with the transcriptional activity of RARα (Figure
4A). HeLa cells were transfected with a chimeric retinoid-
responsive reporter gene insensitive to endogenous recep-
tors, a derivative of RXRα able to bind to glucocorticoid
response elements (GRE) and RARα [27]. Adding increas-
ing amounts of PLZF 3ZF efficiently repressed the retin-
oid-induced activity of RARα, and full length PLZF
exhibited a similar property, albeit to a lesser extent (Fig-
ure 4A). Overexpression of β-galactosidase did not alter
the responsiveness of the system, suggesting that the
observed effect is specific for PLZF and its derivatives. A
likely explanation for this functional interference would
be that PLZF interaction prevents RARα-lignad interac-

tion. We excluded this possibility by carrying out ligand
binding experiments which showed no interference of
PLZF with the ligand binding activity of RARα (Figure 7,
see Additional file 1).

We then investigated whether PLZF acts similarly on other
nuclear receptor-controlled systems. The transcriptional
activity of ERα, GR and VDR was thus evaluated in condi-
tions analogous to those described above. As for RARα,
increasing amounts of PLZF 3ZF repressed the ligand
induced activity of ERα, GR and to a lesser extent that of
VDR (Figure 4B). This ligand activity was similarly
decreased when full length PLZF is added for VDR and
GR. ERα turned out to be less sensitive to full length-PLZF
mediated inhibition, which was only detectable at high
doses of transfected expression vector (Figure 4B). As a

The Zn fingers domain of PLZF is sufficient for the RAR-PLZF interactionFigure 3
The Zn fingers domain of PLZF is sufficient for the RAR-PLZF interaction. Full length PLZF and isolated domains of 
PLZF (BTB/POZ, Acidic, intermediary, Proline-rich, Zn Fingers) were synthesized and labeled by in-vitro coupled transcription/
translation and then incubated either with a GST-RARα or with RAR K244A-K262A-Sepharose matrix in the absence or pres-
ence of 1 µM atRA. Complexes were then resolved and quantified as in Figure 2.
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PLZF interferes with the transcriptional activity of RARα and of ERα, GR and VDRFigure 4
PLZF interferes with the transcriptional activity of RARα and of ERα, GR and VDR. A) Transcriptional activation of 
RARα is decreased upon overexpression of PLZF 3ZF or of full length PLZF. HeLa cells were transiently transfected with the 
p(GRARE)tkLuc reporter gene, the pSG5-RARα and the pSG5-RXGR expression vectors together with increasing amounts of 
pCMV-PLZF 3ZF or pSG5-PLZF expression vectors as indicated. Cells were treated with 1 µM atRA and luciferase activity was 
assayed 16 h later as described under "Experimental Procedures". Results are expressed as the mean +/- S.D. of at least three 
individual experiments, with the basal level of luciferase activity arbitrarily set to 1. B) PLZF inhibits the transcriptional activity 
of ERα, GR and VDR. HeLa cells were transiently transfected with the luciferase reporter genes p(ERE)3tkLuc, pVDREtkLuc or 
pCF3tkLuc and the pSG5-ERα, pSG5-VDR and pSG5-RXR or pRSV-GR expression vectors respectively. Cells were treated 
with 1 µM estradiol (E2), 0.1 µM Dexamethasone (Dex), or 1 µM vitamin D3 (Vit D3) respectively. Luciferase activity was 
assayed 16 h later.
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control, overexpression of β-galactosidase did not alter
the responsiveness of the system (Figure 4A), suggesting
that the observed effect is specific for PLZF and its
derivatives.

We then wanted to establish whether this transcriptional
inhibition was correlated or not to a physical interaction
between these proteins. In vitro GST pull-down assays
using GST-PLZF 3ZF and 35S radiolabelled GR or ERα
were performed. As shown in Figure 5, PLZF 3ZF inter-
acted significantly with ERα and GR in a ligand independ-
ent manner. As previously reported [28], we observed that
VDR interacted with PLZF (data not shown). These results
thus demonstrate that PLZF interacts physically with oth-
ers nuclear receptors and can interfere with their transcrip-
tional activity, although there is not a strict relationship
between dimerization in-vitro and transcriptional
inhibition.

PLZF interferes with the dimerization of RARα with RXRα
PLZF interference with the RXRα:RARα heterodimer tran-
scriptional activity suggested that one plausible mecha-

nism for the observed inhibition is a PLZF-triggered
decrease of RARα dimerization with RXRα. To test this
hypothesis, we first used a mammalian two-hybrid assay
(Figure 6A) which reflects the ability of RARs to interact
with RXRs [27]. HeLa cells were transfected with a Gal4
responsive gene, the RARα gene fused to the VP16 activa-
tion domain gene and the RXRα gene fused to the Gal4
DNA binding domain gene as described before [27]. In
the presence of Am580, a selective agonist of RARα, we
observed a stronger luciferase activity in our system,
reflecting a more stable interaction between RARα and
RXRα. Adding increasing amounts of PLZF 3ZF, as well as
full length PLZF reduced the luciferase activity (Figure
6A), suggesting that PLZF interferes with the dimerization
of RARα with RXRα. Overexpression of the LacZ gene did
not alter the responsiveness of the system, suggesting that
the observed effect is specific for PLZF. We then tested the
ability of PLZF to prevent RXR:RAR dimer formation by in
vitro protein interaction assays by using a GST-RARα
fusion protein and radiolabeled RXRα. As shown in Figure
6B, RARα and RXRα interacted constitutively, however,
this interaction was potentiated in the presence of 1 µM
atRA. Adding increasing amounts of in vitro translated
PLZF protein inhibited both the ligand-independent and
the ligand-dependent dimerization between RARα and
RXRα, whereas similar amounts of control protein (luci-
ferase) did not alter the interaction between RARα and
RXRα. Thus the dimerization of RAR with RXR is specifi-
cally inhibited by PLZF in a dose-dependent manner, and
the inhibition occurs irrespective of the presence of the
ligand. In this respect, we also observed that the ligand-
dependent dimerization occured in the presence of
TTNPB and Am580, two synthetic retinoids. Moreover,
the complexation of RARα to Ro41-5253, a synthetic
antagonist, did not modify the PLZF-mediated inhibition
of RXR-RAR dimerization, strongly suggesting that PLZF
binding to RARα is not affected by ligand-induced struc-
tural transitions (Figure 7, see additional file 1).

Conclusions
In this report we show that PLZF engages functional inter-
action with several nuclear receptors, acting as a general
repressor of their ligand-induced transcriptional activity
as assayed by transient transfection experiments. A more
detailed analysis of the PLZF-RARα interaction showed
that this functional interaction stems from a direct, phys-
ical interaction of RAR with PLZF. We also noted that bcl6,
a transcriptional repressor [29] sharing structural and
functional similarities with PLZF, also interacted with
RARα (data not shown). Alignment of PLZF and bcl-6
sequences did not however reveal significant homologies
that could represent a conserved motif of interaction.
While the domain of PLZF required for the interaction
with RAR maps, and is limited to, the 3 N-terminal zinc
fingers, the structural integrity of RAR seems to be

PLZF interacts physically with nuclear receptorsFigure 5
PLZF interacts physically with nuclear receptors. 
RARα, ERα and GR were synthesized and labeled by in-vitro 
coupled transcription/translation and then incubated with a 
GST-PLZF 3ZF-Sepharose matrix in the absence or presence 
of ligand, which were 1 µM atRA, 1 µM E2 and 0.1 µM Dex 
as indicated.
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PLZF decreases the dimerization of RARα with RXRαFigure 6
PLZF decreases the dimerization of RARα with RXRα. A) PLZF decreases the interaction of RAR with RXR in intact 
cells. HeLa cells were transiently transfected with the UAS-tkLuc reporter gene, the pCMV-Gal4-RXRα and the pCMV-VP16-
RARα expression vectors and the pSG5-PLZF or the pCMV-PLZF 3ZF as indicated. The pRSV-βGal expression was used as a 
control in this 2-hybrid assay. Cells were treated with 0.1 µM of the RARα-selective ligand Am580, and luciferase activity was 
assayed 16 h later as described in Figure 4. B) PLZF inhibits the dimerization of RARα with RXRα in-vitro. RXRα was synthe-
sized in vitro as a 35S-labeled protein, by coupled transcription/translation, in rabbit reticulocyte lysate and was incubated with 
increasing amounts of PLZF or of control protein (luciferase) as non-labeled proteins. Protein mixes were then incubated with 
a GST-RARα-Sepharose affinity matrix with 1 µM atRA or not. Proteins were then separated and quantified as indicated in Fig-
ure 1. Representative autoradiographs are shown. Bar graphs show data averaged from 2 independent experiments.
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required for a strong interaction, although the isolated lig-
and binding domain is able to interact significantly with
PLZF. The AF2 activation domain (helix H12) is not
required for this interaction, as shown by the interaction
observed with the hRARα ∆AF2 and the hRARα 2 K
mutants. This further suggests that PLZF is unlikely to
interact with the coactivator binding interface. Further-
more, PLZF exerted a similar effect when a mutation pre-
venting the association of corepressors to RARα was
introduced. This mutation is located in the domain D
(RARα AHT, see [27]). Thus, our data instead suggest that
PLZF interferes with the RXR-RAR dimerization process,
and not with the ligand binding activity of RARα, based
on experiments carried out in intact cells or in an acellular
system. This is in contrast with a previous report showing
that PLZF inhibits the VDR transcriptional activity by
forming a complex with the VDR-RXR dimer, the forma-
tion of which requiring the DNA binding domain of VDR
and the BTB/POZ domain of PLZF [28]. In this case,
increased recruitment of corepressors to the VDR-RXR
complex through the BTB/POZ domain is unlikely to be
the mechanism of repression, since histone deacetylase
inhibitors such as trichostatin A (TSA) did not perturb the
observed inhibition [28]. Similarly, we observed that the
addition of TSA or sodium butyrate did not alter the out-
come of PLZF overexpression on the RXR-RAR dimer tran-
scriptional activity, ruling out a possible inhibition
through increased corepressor binding to the RXR-RAR
complex.

Recently, Ward and collaborators [28] reported that RARα
was unable to bind to PLZF in GST pull down experiments
and to interfere with RAR-mediated transcriptional
activation in the lymphoma cell line U937. While the
activity of PLZF may be conditioned by cell-specific fac-
tors, it is not clear why in-vitro protein-protein interaction
assays did not reveal such an interaction. We showed that
domains involved in the PLZF-RAR interactions are clearly
distinct from these involved in PLZF-VDR interaction, and
it is likely that subtle differences in the experimental pro-
cedures make a direct comparison very difficult.

Alternative splicing of the PLZF pre mRNA species gener-
ates potentially several proteins deleted from the BTB/
POZ domain [30]. We also noted that the isolated 3ZF
molecule was a better inhibitor of the RXR-RAR response
when carrying out dose-response assays, and that the
interaction of full length PLZF with RAR is weak when
compared to other known interacting proteins such as
coactivators and corepressors. This suggests that a possible
functional interference will occur at high PLZF concentra-
tions. Although we have not evaluated the respective half-
lives of each PLZF species, it is interesting to note that P19
cells express only the spliced form corresponding to the
truncated protein, and that the full length transcript

appears upon atRA treatment. The ratio of spliced tran-
scripts to full length transcripts also varies in a tissue-spe-
cific manner [31], suggesting that the degree of
interference of PLZF with the RAR-RXR pathway may vary
similarly, although this point remains speculative at this
stage. PLZF mRNA expression is regulated both spatially
and temporally in the developping central nervous sys-
tem, suggesting that it may exert some control on the
retinoid pathway. Indeed, a high level of PLZF expression
indicates rhombomeric boundaries [31] and this up regu-
lation is observed concomitantly to a down regulation of
other markers of segmentation, and most notably Hox
genes and Krox-20, which are known to be regulated by
retinoic acid and to play a crucial role in hindbrain ante-
rioposterior patterning (reviewed in [32]).

Methods
Materials

atRA was obtained from Sigma. DNA restriction and mod-
ification enzymes were purchased from Promega (Char-
bonnières, France). Polyethyleneimine (ExGen 500) was
obtained from Euromedex (Souffelweyersheim, France),
and [35S]methionine from Amersham (Les Ulis, France).

Plasmids

The yeast expression plasmid pLex12-RARK244A-K262A
was generated by insertion of the RARK244A-K262A
cDNA [26] between the Bgl2 andXba1 sites of pLex10, a
LexA DBD fusion vector. pSG5-PLZF was a gift from J.D.
Licht, while p(GRARE)3tkLuc, pSG5-RXGR, pSG5-hRARα,
pSG5-RARα AHT, pSG5-RARα K244A-K262A, pSG5-
RARα AF1, pSG5-RARα AF2 and pSG5-RAR)403 were
described elsewhere [26,27,33]. pCMV-Gal4-hRXRα LBD
and pCMV-VP16-hRARα were obtained from Dr T. Perl-
mann [34]. The UAS-tk-Luc reporter gene was a gift from
V. K. Chatterjee and contains two 17 mer UAS Gal4
response elements upstream of the tk promoter [35]. The
pGST fusion plasmids (pGST-PLZF 3ZF, pGST-POZ,
pGST-Acidic, pGST-X, pGST-PRO, pGST-Zn) and the
expression vector pCMV-PLZF 3ZF were engineered using
the Gateway Cloning Technology kit (InVitrogen Life
Technologies, Carlsbad, CA). All constructs were checked
by automatic sequencing.

Yeast 2-hybrid library screen

An ovary cDNA library (in pACT2 vector, Clontech) was
screened using the L40a yeast strain transformed with the
pLex10-RARK244A-K262A vector, essentially as described
in [29].

Cell Culture and Transfections

HeLa Tet-On cells were cultured as monolayer in Dul-
becco's minimal essential medium supplemented with
10% fetal calf serum. Cells were treated for 16 h with atRA
or Am580 at a final concentration of 10-6M and 10-7M
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respectively as indicated. Transfections were performed
using the polyethyleneimine coprecipitation as described
previously [36]. The luciferase assay was performed with
the Bright-Glo Luciferase assay system from Promega
(Charbonnières, France).

GST pull-down experiments

The GST vectors were transformed into the Escherichia coli
strain BL21. GST fusion proteins (X-GST) were adsorbed
on glutathione (GSH)-sepharose beads as previously
described [36]. 35S-labeled proteins were synthesized with
the Quick T7 TnT kit (Promega). 5 µL of each reaction
were diluted in 150 µL of GST binding buffer (20 mM
Tris-HCl, pH7.4, 100 mM KCl, 0.05% NP40, 1 mM DTT,
20% glycerol, 1 mg/ml BSA) and agitated slowly on a
rotating wheel for 2 h at 4°C, in the presence or not of lig-
and, with 40 µL of a 50% X-GST-sepharose slurry.
Unbound material was removed by three successive
washes of Sepharose beads with 200 µL of GST wash
buffer (20 mM Tris-HCl, pH7.4, 100 mM KCl, 0.1%
NP40, 1 mM DTT, 20% glycerol). Resin-bound proteins
were then resolved by 10% sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis and quantified with a
Storm 860 phosphorimager (Molecular Dynamics). Val-
ues were averaged from at least three independent experi-
ments carried out with two different bacterial extracts.

Statistical analysis

All incubations or assays were performed at least in tripli-
cate. Measured values were used to calculate mean +/-
S.E.M. Calculations were carried out using the Prism soft-
ware (GraphPAD Inc., San Diego, CA).
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