Skip to Main content Skip to Navigation
Journal articles

Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles.

Abstract : BACKGROUND: The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. RESULTS: Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. CONCLUSIONS: This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.
Document type :
Journal articles
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://www.hal.inserm.fr/inserm-00112020
Contributor : Françoise Maylin <>
Submitted on : Tuesday, November 7, 2006 - 4:32:21 PM
Last modification on : Monday, July 16, 2018 - 3:10:58 PM
Long-term archiving on: : Thursday, September 20, 2012 - 2:26:10 PM

Identifiers

Collections

CEA | U823 | UGA

Citation

Nicolas Glade, Jacques Demongeot, James Tabony. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles.. BMC Cell Biology, BioMed Central, 2004, 5, pp.23. ⟨10.1186/1471-2121-5-23⟩. ⟨inserm-00112020⟩

Share

Metrics

Record views

212

Files downloads

171