Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel.

Abstract : The present work evaluates a newly developed silated hydroxypropylmethylcellulose (Si-HPMC)-based hydrogel as a scaffold for 3D culture of osteogenic cells. The pH variation at room temperature catalyzes the reticulation and self-hardening of the viscous polymer solution into a gelatine state. We designed reticulation time, final consistency and pH in order to obtain an easy handling matrice, suitable for in vitro culture and in vivo injection. Three human osteogenic cell lines and normal human osteogenic (HOST) cells were cultured in 3D inside this Si-HPMC hydrogel. We show here that osteosarcoma cells proliferate as clonogenic spheroids and that HOST colonies survive for at least 3 weeks. Mineralization assay and gene expression analysis of osteoblastic markers and cytokines, indicate that all the cells cultured in 3D into this hydrogel, exhibited a more mature differentiation status than cells cultured in monolayer on plastic. This study demonstrates that this Si-HPMC hydrogel is well suited to support osteoblastic survival, proliferation and differentiation when used as a new scaffold for 3D culture and represents also a potential basis for an innovative bone repair material.
Document type :
Journal articles
Complete list of metadatas

https://www.hal.inserm.fr/inserm-00110471
Contributor : Georges Carle <>
Submitted on : Monday, October 30, 2006 - 11:11:19 AM
Last modification on : Thursday, February 7, 2019 - 4:10:29 PM

Identifiers

Collections

Citation

Christophe Trojani, Pierre Weiss, Jean-François Michiels, Claire Vinatier, Jérôme Guicheux, et al.. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel.. Biomaterials, Elsevier, 2005, 26 (27), pp.5509-17. ⟨10.1016/j.biomaterials.2005.02.001⟩. ⟨inserm-00110471⟩

Share

Metrics

Record views

260