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Abstract

Background: Mathematical models are widely used for studying the dynamic of infectious agents such as

hepatitis C virus (HCV). Most often, model parameters are estimated using standard least-square procedures for

each individual. Hierarchical models have been proposed in such applications. However, another issue is the left-

censoring (undetectable values) of plasma viral load due to the lack of sensitivity of assays used for quantification.

A method is proposed to take into account left-censored values for estimating parameters of non linear mixed

models and its impact is demonstrated through a simulation study and an actual clinical trial of anti-HCV drugs.

Methods: The method consists in a full likelihood approach distinguishing the contribution of observed and left-

censored measurements assuming a lognormal distribution of the outcome. Parameters of analytical solution of

system of differential equations taking into account left-censoring are estimated using standard software.

Results: A simulation study with only 14% of measurements being left-censored showed that model parameters

were largely biased (from -55% to +133% according to the parameter) with the exception of the estimate of initial

outcome value when left-censored viral load values are replaced by the value of the threshold. When left-

censoring was taken into account, the relative bias on fixed effects was equal or less than 2%. Then, parameters

were estimated using the 100 measurements of HCV RNA available (with 12% of left-censored values) during the

first 4 weeks following treatment initiation in the 17 patients included in the trial. Differences between estimates

according to the method used were clinically significant, particularly on the death rate of infected cells. With the

crude approach the estimate was 0.13 day-1 (95% confidence interval [CI]: 0.11; 0.17) compared to 0.19 day-1 (CI:

0.14; 0.26) when taking into account left-censoring. The relative differences between estimates of individual

treatment efficacy according to the method used varied from 0.001% to 37%.

Conclusion: We proposed a method that gives unbiased estimates if the assumed distribution is correct (e.g.

lognormal) and that is easy to use with standard software.

Published: 01 August 2006

BMC Medical Research Methodology 2006, 6:38 doi:10.1186/1471-2288-6-38

Received: 14 February 2006
Accepted: 01 August 2006

This article is available from: http://www.biomedcentral.com/1471-2288/6/38

© 2006 Thiébaut et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.biomedcentral.com/1471-2288/6/38
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16879756
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Medical Research Methodology 2006, 6:38 http://www.biomedcentral.com/1471-2288/6/38

Page 2 of 9

(page number not for citation purposes)

Background
Dynamical models based on system of differential equa-
tions have been successfully used for a better understand-
ing of the pathogenesis of infectious diseases [1,2]. Two
landmark papers appeared in 1995 demonstrating the
high turnover of the human immunodeficiency virus
(HIV) and infected CD4+ T lymphocytes cells [3,4]. Using
such dynamical models, Neumann et al. [5] gave some
insight in the effect of interferon based therapy used to
treat patients infected by hepatitis C virus (HCV). Moreo-
ver, the estimate of the percentage of virus production
blocked by the therapy is now widely used in this field [6-
10] to evaluate the efficacy of treatment regimens in vari-
ous contexts such as patients co-infected with HIV and
HCV.

Although dynamical models parameters such as virus
clearance or treatment efficacy are very useful, their esti-
mation is most often performed for individual subjects
separately. The limitations of such statistical approach as
well as the interest of hierarchical models have already
been underlined [11,12]. The main advantage of hierar-
chical models (also called mixed/random effects models)
is their ability to estimate all parameters at the same time,
using all available data even in case of unbalanced data,
i.e. the number of measurements can vary from one
patient to another. Parameters can be estimated using a
Bayesian approach [13-15] or other approaches [16].
Another advantage working with analytical solutions of
the system of differential equations is that standard soft-
wares for non linear mixed models can be used [17].

Nonetheless, a major problem arises when using viral
load data. The assays used to quantify HIV or HCV RNA
are limited by a detection threshold that may lead to
undetectable values when the true viral load is below this
threshold. From a clinical point of view, the aim of any
treatment is to reduce the viral load as much as possible
[18]. Therefore, the practical definition of virological
response is the occurrence of sustained undetectable val-
ues. The threshold of undetectable values is changing with
the improvement of the assays for quantifying the viral
load. When analysing viral load as a continuous variable,
the left-censored measures are most often analyzed by
replacing their value by an arbitrary value (e.g. threshold
or half of the threshold). Although the sensitivity of the
assays is improving, this limitation still persists and has
already been underlined in the context of dynamical mod-
els [12,15]. Methods to take into account left-censored
repeated measures in linear mixed models [19-21] or in
non linear mixed models [15] have already been pro-
posed. In this paper, we show how such an approach can
be implemented using standard software in the case of
non linear mixed models. Furthermore, we evaluate the
impact of not taking into account undetectable values

when studying HCV dynamics in the context of a phase II
randomised clinical trial for the treatment of HCV infec-
tion in HIV co-infected patients.

Methods
Study example

The motivating study was a phase II randomised clinical
trial evaluating the efficacy of pegylated-interferon (PEG-
IFN)-α2a and Ribavirin (RBV) for the treatment of HCV
infection among 17 HIV co-infected patients who had
already been treated for HCV [22]. HCV RNA quantifica-
tion was performed at least three times within the first 4
weeks (W): W0 (treatment initiation), W2 and W4. In 8
patients, blood samples were collected more intensively
with additional measures at 6 hours (H6), H12, day 1
(D1), D2, D4, W1 and W3. Patients were followed until
W72 for final evaluation of the virological response but
the study of viral dynamics was restricted to the first 4
weeks because of model assumptions (see below). The
concentration of plasma HCV RNA was determined using
a quantitative reverse transcription polymerase chain reac-
tion (RT-PCR) assay (Cobas Amplicor HCV Monitor Test,
version 2.0; Roche Molecular Systems). The lower detec-
tion limit of this assay was 600 IU/mL, i.e. 2.78 log10 IU/
mL. Of note, one international unit (IU) equals approxi-
mately 2.2 copies/mL.

Mathematical model

The model used to estimate HCV dynamics was first
described by Neumann et al. [5] with the following differ-
ential equations:

where T is the number of target cells (i.e. hepatocytes), I
the number of productively infected cells and V the
plasma HCV viral load. Target cells are produced at rate s
(per day) and die at rate μ. The number of cells which
become infected per day is proportional to the number of
circulating virions and available target cells with a propor-
tionality constant β (infection rate). Infected cells die at
rate δ per day. HCV virions are produced at a rate p per
infected cells per day and are cleared at a rate c per day. In
the present model, the HCV treatment is supposed to
reduce the production of virions from infected cells by a
fraction (1-ε). The possible effect of IFN as well as RBV on
de novo rate of infection [5] or on infectivity by producing

dT

dt
s T VT= − − ( )µ β 1

dI

dt
VT I= − ( )β δ 2

dV

dt
pI cV= −( ) − ( )1 3ε
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a fraction of non-infectious virions [23] have been dis-
cussed. For the purpose of this paper, we assumed only a
combined effect of both drugs on production rate of new
virions because this measure was the most widely used by
other investigators [6-9].

When working on a short period of 2–4 weeks, it sounds
reasonable to consider that the number of uninfected
hepatocytes (T) remains constant (equal to the baseline
value) because of the slow turnover of these cells [5].
Therefore, assuming a pre-treatment steady-state, the ana-
lytical solution of the equations (2) and (3) with T con-
stant is:

for t>t0, where

λ1 = {(c + δ) + }, λ2 = {(c + δ) -

} and . The viral

decay is assumed to begin at t0 = 0.25 day (6 hours), cor-

responding to the drugs pharmacokinetics [5].

Hierarchical formulation

The previous notations do not account for patient/meas-
urement level. Most often parameters of such models are
estimated patient by patient assuming Gaussian, homo-
skedastic measurement error. A more valid and powerful
approach is based on a hierarchical formulation of the
model [11] that can distinguish at least two levels of vari-
ation. Hence, for the jth measurement of a subject i per-
formed at a time tij:

- Stage 1: intra-patient variation

yij = log10(V(tij, θi)) + e

with 

The outcome is the logarithm (base 10) of the true viral
load (function of tij and θi, the p-vector of model parame-
ters) plus a Gaussian measurement error e. Ini is a identity
matrix of dimension ni × ni, ni being the number of meas-
urements available for the subject i.

- Stage 2: inter-patient variation

θi = θ + γi

with γi ~ MVN(0, D)

θ = [V0, ε, δ, c] is the p-vector of average (fixed) effect in
the whole study population and γi is a q-vector (q ≤ p) of
random effects for correcting θ for each subject (random
effect). Actually, θ is a log-transformation of original
parameters that have several advantages including a posi-
tivity constraint for original parameters. Random effects γi

were assumed to be normally distributed with a variance-
covariance matrix D. θi are estimated through Empirical
Bayes estimates.

Model likelihood

As presented in more details elsewhere [24], the method

proposed to take into account left-censored values when

estimating parameters is to maximise a full likelihood dis-

tinguishing the contribution of observed measures (

for j = 1,... ) and left-censored measures (  for j =

1,... ) of viral load. The likelihood can be written:

with  being the univariate normal density of 

given the random effects γi and  is the cumulative

distribution function of the normal distribution of 

given the random effects. The calculation of this likeli-

hood leads to the integration over u = u1,u2,...uq, that is a

multiple integral of dimension q. Therefore, with this

method, rather than imputing a fixed value of undetecta-

ble viral load, one assumes that left-censored values are

completing the Gaussian distribution of Yi. A crude

approach assumes that left-censored values contribute

like observed values, being equal to the value of the

threshold or any other given value. In this case, the likeli-

hood is simply:

Algorithm and implementation

The maximisation of the likelihood function can be per-
formed with standard software such as NLMIXED in SAS®

[24]. Using this procedure, the default algorithm is a
quasi-newton algorithm and the calculation of the multi-
ple integral is performed by adaptative quadrature. An
example of code used for this paper is provided in appen-
dix.
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Simulation study

Simulations were performed to compare the bias on

parameter estimates when taking into account left-censor-

ing or not. Using the analytical solution (4) and allowing

a random individual variation for the initial viral load and

treatment efficacy, parameters to estimate were: QV0, ε, δ c,

, , N

with V0i = V0 + γ0i, εi = ε + γ1i and

To constraint parameters to be in the correct range, esti-
mations were performed on transformed parameters (for
the study on real data, as well) using a logarithm function
for δ, c and logit function for ε (bounding ε between 0 and
1). In the simulation study, we fixed t0 = 0 but results were
similar with t0 = 0.25.

Values for model parameters were defined according to
the results reported in the literature of HCV dynamics [6].
In our application where patients were previously treated
and dually infected by HIV and HCV, the estimate of treat-
ment efficacy is less than those usually reported in naïve
patients mono-infected with HCV [5].

The steps followed for the simulations were:

1) Sample V0i = V0 +γ0i and εi = ε + γ1i for a subject i

2) Simulate the differential equations (1)-(3) model and
keep measures at the time points: keep measures at H0,
H6, H12, D1, D2, D4, W1, W2, W3 and W4. Left-censor
measures below 2.78 IU/mL.

3) Repeat N times (for N = 20 subjects) steps 1 and 2

4) Estimate parameters with (5) when taking into account
left-censoring and with usual likelihood (6) replacing left-
censored values by the value of the threshold, i.e. 2.78 IU/
mL.

5) Calculate the relative bias for each parameter RB =
100*(estimate-true value)/true value

6) Repeat 1000 times steps 1 to 5 and average the relative
biases

Results
Simulation study

Results of the simulations are shown in Table 1. On aver-
age, 14% of simulated measures of HIV RNA were left-
censored when the treatment efficacy was ε = 80%. Crude
estimates provided by standard likelihood (6) maximisa-
tion, replacing left-censored values by the value of the
threshold, were dramatically biased with the exception of
V0. In particular, with only 14% of left-censored measures,
infected cells death rate δ and clearance of virus c were
underestimated by 55 and 45 percent, respectively. Treat-
ment efficacy (ε) was overestimated by 16%. Variances of
random effects were also significantly biased: +20% and -
19% for random effects on V0, and ε, respectively. The
residual variance was overestimated (+133%).
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Table 1: Relative bias of model parameters using non linear mixed models taking into account left-censored (undetectable) values 

(corrected) or not (crude) with simulated data. N = 20 patients, 1000 simulations, 14% left-censored measures in average.

Parameter and true value Crude estimate Corrected estimate

Estimates Relative bias (%) Estimates Relative bias (%)

Fixed effects

V0 6.16 log10 IU/mL 6.09 -1.1 6.16 -0.021δ 0.40 day-1 0.18 -55.2 0.40 +0.78

c 2.00 day-1 1.10 -44.8 2.03 +1.5ε 0.80 0.93 +15.8 0.79 -1.3

Variances

0.49 0.59 +20.3 0.46 -6.4

2.69 2.18 -18.8 2.31 -13.9

0.04 0.09 +133.2 0.039 -2.4

σγ 0

2

σγ1

2

σ e
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When taking into account left-censoring, the relative bias

on estimates was ≤ 2 % for all parameters but variance

parameters. However, the biases on variance parameters

significantly decreased (e.g. the bias on  changed from

-14% to -0.4%) when increasing the number of subjects

included in the sample (e.g. N = 200).

Application

Model parameters were estimated using the HCV RNA
data available during the first 4 weeks following treatment
initiation in the 17 patients included in the ROCO2 trial.
Among these 100 available measurements, 12 were unde-
tectable, i.e. left-censored.

Estimates of parameters taking into account left-censoring
or not are shown in Table 2. Differences between esti-
mates according to the method used were large on the
death rate infected cells, δ.

Using the crude approach, the estimate was 0.13 day-1

(95% confidence interval [CI]: 0.11; 0.17) compared to
0.19 day-1 (CI: 0.14; 0.26) when taking into account left-
censoring. These estimates correspond to half-life (t1/2) of
infected cells of 5.3 days (t1/2 = ln(2)/δ) and 3.6 days,
respectively. Differences between estimates for the other
fixed parameters were less important. Furthermore, the
confidence intervals of the estimates were larger when tak-
ing into account left-censoring (Table 2).

The impact of the method used to estimate the parameters
on individual viral load predictions is illustrated in Figure
1. For the first three patients (102, 108 and 201), the
decrease of the second part of the viral load slope was

more pronounced when taking into account left-censor-
ing. Actually, left-censoring tended to occur on the last
measurements depending on the treatment efficacy and
the baseline level of viral load. The apparent discrepancy
with observed values is obviously due to the fact that
undetectable values are plotted on the detection limit
(2.78 IU/mL) although the true value is below this thresh-
old. This result is expected as the slope after the shoulder
is proportional to the infected cell death rate (δ). As
expected for the last patient (206) who did not have any
undetectable viral load within 4 weeks, both predictions
were very close.

The relative differences between estimates of individual
treatment efficacy (εi = ε + γ1i) according to the method
used varied from 0.001% to 37%. As expected from simu-
lation results where treatment efficacy tended to be over-
estimated with the crude approach and from the estimate
of the average (fixed) effect ε, the estimated effect was
most often higher with the crude approach compared to
the corrected one. For instance, the estimate of treatment
efficacy in patient 101, was 36% and 45% when taking
into account left-censoring or not, respectively. On the
contrary, for the patient 201, the estimates were 97% and
93%, respectively. Of note, the model was able to predict
viral load changes for the patient 201 thanks to the infor-
mation provided by the other patients with more numer-
ous measurements available. This is an illustration of the
advantage of hierarchical models.

Discussion
In this paper, the impact of taking into account left-cen-
sored (undetectable) HCV RNA values was illustrated on
the estimation of dynamical models based on a system of
differential equations. Although, the proportion of unde-
tectable values was quite low (12%), there were clinically
significant differences, particularly in estimate of mean
half-life and individual treatment efficacy. Such a result is
important because all these parameters are of interest.
Treatment efficacy evaluation through dynamical model
is broadly used in HCV infection for instance.

We observed smaller biases from the crude approach
applied to the real dataset compared to simulation results.
However, some parameters values were different to those
used in the simulations such as δ (0.13 vs. 0.40). Simula-
tions using values estimated with real data led to smaller
biases as observed in the present application (data not
shown). The overestimation of the treatment efficacy by
the crude approach may appear counter-intuitive because
the imputation of the value of the threshold artificially
limits the decrease of viral load. However, it is difficult to
anticipate the impact of left-censoring in dynamical mod-
els because of the complex relationship between parame-
ters, particularly between ε and δ [23]. In the present

σγ i

2

Table 2: Estimates of model parameters using non linear mixed 

models taking into account left-censored (undetectable) values 

(corrected) or not (crude) with data from ROCO2 clinical trial. 

N = 17 patients, 100 measures, 12% left-censored.

Parameter Crude approach Corrected approach

Estimate 95% CI Estimate 95% CI

V0 6.13 5.78; 6.48 6.12 5.77; 6.47δ 0.13 0.11; 0.17 0.19 0.14; 0.26

c 1.73 1.15; 2.61 1.66 0.88; 3.13ε 0.89 0.74; 0.96 0.86 0.64; 0.95

0.42 0.082; 0.75 0.41 0.077; 0.74

3.23 0.38; 6.09 3.77 0.38; 7.16

0.071 0.045; 0.097 0.073 0.044; 0.10
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study, the imputation of the value of threshold level to
undetectable viral loads led to a higher level of HCV RNA
than the truth, particularly in the second part of the
dynamics. The death rate of infected cells (δ) is one of the

main parameters influencing viral load levels in this
period [5,25]. This explains the underestimation of this
parameter. On the other hand, an overestimation of treat-
ment effect on viral production (ε) is needed to obtain a

Observed and predicted HCV RNA values in four patientsFigure 1
Observed and predicted HCV RNA values in four patients. Predictions came from non linear mixed effect models taking into 
account left-censored (undetectable) values (right side) or not (left side). Observed undetectable HCV RNA measures (<2.78 
log10 IU/mL) are plotted at 2.78 log10 IU/mL.
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trajectory compatible with the first part of the viral
dynamics (high viral load without left-censored meas-
ures), given a high infected cells death and virions clear-
ance.

Half-life of infected cells helps in understanding how high
is the turnover [3,26,27]. Previously published results
[25] can be used to illustrate the size of the impact of left-
censoring on HIV infected cells turnover. Differences in
estimates of half-life of infected long-lived cells as large as
those we reported in HCV would lead to halve the time
needed to treat to achieve virus eradication (assuming no
viral reservoir). Compared to results with piecewise linear
mixed models commonly used with surveillance data
(monthly to 6-months intervals between measurements)
of HIV RNA [19,20], the estimates of the parameters are
more sensitive to undetectable values in the context of
dynamical models with highly repeated measurements.
Moreover, confidence intervals of estimates were larger
when taking into account left-censoring compared to sim-
ple imputation that tends to artificially decrease the varia-
bility, as previously reported with linear models [20].

The method presented in this paper is easy to implement
in standard software. One limitation is that it is based on
analytical solutions of the system of differential equa-
tions. However, looking at the applied papers on HCV
infection, the authors used most often the same model
with the same assumptions leading to the same analytical
solution. Using hierarchical models taking into account
left-censoring should improve the validity of estimation
and may help in case of convergence difficulty when using
individual data [9]. More complex mathematical models
have been proposed to fit additional markers such as liver
enzymes level [28] or pharmacokinetics data [29]. In this
case, more general approaches based directly on numeri-
cal solution of the differential equations should be used
[13,15]. Another limitation of the proposed methods is
the assumption of log-normal distribution of viral load
measures. In our experience, it is most often a reasonable
assumption in the case of circulating HIV virus and this
could be checked from residuals [20,30]. However, if this
assumption is not tenable, extensions based on mixture
distributions (log-normal and binary) can be used and are
also easily implementable in software [21].

Conclusion
Imputing a single value to left-censored measures of viral
load is a wrong assumption and stronger than assuming a
given distribution for the whole measurements. We pro-
posed a method that gives unbiased estimates if the
assumed distribution is correct (e.g. lognormal) and that
is easy to use with standard software.
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Appendix
Example of code using NLMIXED to fit the model pre-
sented in the methods section taking into account left cen-
soring.

proc nlmixed data = roco2 OPTCHECK;/* option for
checking convergence at the optimum */

/* declare the model parameters to estimate */

parms beta0 = 10 beta1 = -1.0 beta2 = 1 beta3 = 0.8 s2b0
= 1 s2b3 = 0.1 s2 = 0.1;

/* declare constraints for variance parameters */

bounds s2,s2b0,s2b3 > 0;

pi = 2*arsin(1);

/* model definition */

V0 = exp(beta0+b0);

d = exp(beta1);

c = exp(beta2);

e = beta3+b3;

t0 = 0.25;/* 6 hours */

th = sqrt((c-d)*(c-d)+4*(1-e)*c*d);

l1 = 0.5*(c+d+th);

l2 = 0.5*(c+d-th);

if tps le t0 then pred = V0;

if tps gt t0 then

pred = 0.5*V0*((1-(c+d-2*e*c)/th) * exp(-l1*((tps-
t0)))+
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(1+(c+d-2*e*c)/th) * exp(-l2*((tps-t0))));

logpred = log10(pred);

/* likelihood contribution according to the observed/cen-
sored status */

* observed ;

if detec = 1 then ll = (1/(sqrt(2*pi*s2)))

*exp(-(logCV-logpred)**2/(2*s2));

* censored ;

if detec = 0 then ll = probnorm((logCV-logpred)/
sqrt(s2));

L = log(ll);

model logCV ~ general(L);

/* definition of the random effects */

random b0 b3 ~ normal([0,0], [s2b0,0,s2b3]) subject
= id;

Example of code used for simulating data from dynamical
model

%do sim = 1 %to &S;

%do id = 1 %to &N;

Data_null_;

logCV0 = 6.16+0.70*rannor(-1);

CV0 = 10**(logCV0);call symput('CV0',CV0);

kmax = 1.39+1.64*rannor(-1);

e = exp(kmax)/(1+exp(kmax));call symput('e',e);

run;

Data sim; do time = 0 to 672 by 1;output;end; run;

Proc model data = sim;

dependent T I CV ;

parm b 0.00000003 d 0.0167 e &e p 4.16 c 0.0833;

if time = 0 then do;

CV = &CV0;

T = (c*d)/(p*b);

I = (c*CV)/p;

end;

if time ne 0 then do;

dert.T = 0;

dert.I = b*CV*T-d*I;

dert.CV = (1-e)*p*I-c*CV;

end;

solve T I CV/dynamic out = simul;

run ; quit;

Data pat;set simul;tps = time/24;id = &id;CV0 = &CV0;e =
&e;

if round(time) in
(0,6,12,24,48,96,168,336,504,672);run;

%if &id = 1 %then %do;

Data file; set pat;error = 0.2*rannor(-1);if CV gt 0 then
logCV = log10(CV)+error;run;

%end;

%else %do;

Data file; set file pat;error = 0.2*rannor(-1);if CV gt 0 then
logCV = log10(CV)+error;run;

%end;

/* truncation */

Data file; set file;

if logCV lt 2.778 then do;

logCV = 2.778;detec = 0;end;

else detec = 1;

run;

ods exclude none;
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%end;/* end of patients */
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