S. Grundy, Obesity, Metabolic Syndrome, and Cardiovascular Disease, The Journal of Clinical Endocrinology & Metabolism, vol.89, issue.6, pp.2595-600, 2004.
DOI : 10.1210/jc.2004-0372

S. Ozanne, D. Fernandez-twinn, and C. Hales, Fetal growth and adult diseases, Seminars in Perinatology, vol.28, issue.1, pp.81-88, 2004.
DOI : 10.1053/j.semperi.2003.10.015

J. Issa, Epigenetic variation and human disease, J Nutr, vol.132, pp.2388-2392, 2002.

S. Ozanne and C. Hales, Lifespan: Catch-up growth and obesity in male mice, Nature, vol.427, issue.6973, pp.411-413, 2004.
DOI : 10.1038/427411b

J. Armitage, I. Khan, and P. Taylor, Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?, The Journal of Physiology, vol.59, issue.Suppl. 2, pp.355-77, 2004.
DOI : 10.1113/jphysiol.2004.072009

I. Melzner, V. Scott, and K. Dorsch, Leptin Gene Expression in Human Preadipocytes Is Switched on by Maturation-induced Demethylation of Distinct CpGs in Its Proximal Promoter, Journal of Biological Chemistry, vol.277, issue.47, pp.45420-45427, 2002.
DOI : 10.1074/jbc.M208511200

N. Yokomori, M. Tawata, and T. Onaya, DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells, Diabetologia, vol.45, issue.1, pp.140-148, 2002.
DOI : 10.1007/s125-002-8255-4

G. Lund, L. Andersson, and M. Lauria, DNA Methylation Polymorphisms Precede Any Histological Sign of Atherosclerosis in Mice Lacking Apolipoprotein E, Journal of Biological Chemistry, vol.279, issue.28, pp.29147-54, 2004.
DOI : 10.1074/jbc.M403618200

M. Hiltunen, M. Turunen, and T. Hakkinen, DNA hypomethylation and methyltransferase expression in atherosclerotic lesions, Vascular Medicine, vol.7, issue.1, pp.5-11, 2002.
DOI : 10.1191/1358863x02vm418oa

N. Maclennan, S. James, and S. Melnyk, Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats, Physiological Genomics, vol.18, issue.1, pp.43-50, 2004.
DOI : 10.1152/physiolgenomics.00042.2004

J. Elmquist, J. Flier, and . Neuroscience, NEUROSCIENCE: The Fat-Brain Axis Enters a New Dimension, Science, vol.304, issue.5667, pp.63-67, 2004.
DOI : 10.1126/science.1096746

B. Blondeau, I. Avril, B. Duchene, and B. Breant, Endocrine pancreas development is altered in foetuses from rats previously showing intra-uterine growth retardation in response to malnutrition, Diabetologia, vol.45, issue.3, pp.394-401, 2002.
DOI : 10.1007/s00125-001-0767-4

M. Srinivasan, R. Aalinkeel, F. Song, and M. Patel, Programming of Islet Functions in the Progeny of Hyperinsulinemic/Obese Rats, Diabetes, vol.52, issue.4, pp.984-90, 2003.
DOI : 10.2337/diabetes.52.4.984

I. Weaver, N. Cervoni, and F. Champagne, Epigenetic programming by maternal behavior, Nature Neuroscience, vol.304, issue.8, pp.847-54, 2004.
DOI : 10.1016/S0031-9384(03)00149-5

M. Pembrey, Abstract, Acta geneticae medicae et gemellologiae: twin research, vol.53, issue.1-2, pp.111-136, 1996.
DOI : 10.1006/bbrc.1993.2542

C. L. Junien, empreinte parentale: de la guerre des sexes à la solidarité entre générations, Med Sci (Paris), vol.3, pp.336-344, 2000.

A. Beaudet and Y. Jiang, A Rheostat Model for a Rapid and Reversible Form of Imprinting-Dependent Evolution, The American Journal of Human Genetics, vol.70, issue.6, pp.1389-97, 2002.
DOI : 10.1086/340969

L. Young, Imprinting of Genes and the Barker Hypothesis, Twin Research, vol.4, issue.5, pp.307-324, 2001.
DOI : 10.1375/1369052012632

M. Constancia, G. Kelsey, and W. Reik, Resourceful imprinting, Nature, vol.38, issue.7013, pp.53-60, 2004.
DOI : 10.1093/molehr/gah080

E. Keverne, Chapter 20 Genomic imprinting and the maternal brain, Prog Brain Res, vol.133, pp.279-85, 2001.
DOI : 10.1016/S0079-6123(01)33021-2

A. Plagge, E. Gordon, and W. Dean, The imprinted signaling protein XL??s is required for postnatal adaptation to feeding, Nature Genetics, vol.69, issue.8, pp.818-844, 2004.
DOI : 10.1017/S0016672398003528

J. Curley, S. Barton, A. Surani, and E. Keverne, Coadaptation in mother and infant regulated by a paternally expressed imprinted gene, Proceedings of the Royal Society B: Biological Sciences, vol.271, issue.1545, pp.1303-1312, 2004.
DOI : 10.1098/rspb.2004.2725

R. Waterland and R. Jirtle, Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases, Nutrition, vol.20, issue.1, pp.63-71, 2004.
DOI : 10.1016/j.nut.2003.09.011

M. Delrue and J. Michaud, Fat chance: genetic syndromes with obesity, Clinical Genetics, vol.8, issue.2, pp.83-93, 2004.
DOI : 10.1111/j.0009-9163.2004.00300.x

W. Reik, C. M. Fowden, and A. , Regulation of supply and demand for maternal nutrients in mammals by imprinted genes, The Journal of Physiology, vol.547, issue.1, pp.35-44, 2003.
DOI : 10.1113/jphysiol.2002.033274

D. Umlauf, Y. Goto, and R. Cao, Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes, Nature Genetics, vol.125, issue.12, pp.1296-300, 2004.
DOI : 10.1038/nature02222

R. Moraes, A. Blondet, and K. Birkenkamp-demtroeder, Study of the Alteration of Gene Expression in Adipose Tissue of Diet-Induced Obese Mice by Microarray and Reverse Transcription-Polymerase Chain Reaction Analyses, Endocrinology, vol.144, issue.11, pp.4773-82, 2003.
DOI : 10.1210/en.2003-0456

M. Takahashi, Y. Kamei, and O. Ezaki, Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size, AJP: Endocrinology and Metabolism, vol.288, issue.1, pp.117-141, 2005.
DOI : 10.1152/ajpendo.00244.2004

G. Kaati, L. Bygren, and S. Edvinsson, Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period, European Journal of Human Genetics, vol.10, issue.11, pp.682-690, 2002.
DOI : 10.1038/sj.ejhg.5200859

M. Pembrey, Time to take epigenetic inheritance seriously, European Journal of Human Genetics, vol.10, issue.11, pp.669-71, 2002.
DOI : 10.1038/sj.ejhg.5200901

G. Egger, G. Liang, A. Aparicio, and P. Jones, Epigenetics in human disease and prospects for epigenetic therapy, Nature, vol.62, issue.6990, pp.457-63, 2004.
DOI : 10.1016/S1535-6108(02)00234-9

T. Kelly and J. Trasler, Reproductive epigenetics, Clinical Genetics, vol.24, issue.Suppl. 1, pp.247-60, 2004.
DOI : 10.1111/j.0009-9163.2004.00236.x

M. Mann, S. Lee, and A. Doherty, Selective loss of imprinting in the placenta following preimplantation development in culture, Development, vol.131, issue.15, pp.3727-3762, 2004.
DOI : 10.1242/dev.01241

G. Atp:-adénosine-triphosphate and . Bhmt, bétaïne-homocystéine méthyltransférase CBS: cystathionine ?-synthétase Cdkn1c: cyclin-dependent kinase inhibitor 1C (P57) CoA: coenzyme A dATP: désoxyadénosine triphosphate dGTP: désoxyguanosine triphosphate DHF: dihydrofolate DNMT: méthyltransférase de l'ADN dTMP: désoxythymidine monophosphate dUMP: désoxyuridine monophosphate GCP2: glutamate carboxypeptidase II Gnas: neuroendocrine secretory protein Grb10: growth factor receptor-bound protein 10 HAT: histone acétyltransférase HDAC: histone désacétylase HMT: histone méthyltransférase Igf2 P0: promoter 0 insulin like growth factor 2

/. Plagl1 and . Zac, pleiomorphic adenoma gene PPAR?: peroxisome proliferator activated receptor ? Rasgrf1: Ras protein-specific guanine nucleotide releasing factor 1

S. Sam, S-adénosylméthionine SCFA: small chain fatty acid SHMT: sérine hydroxyméthyltransférase SIRT1/Sir2: sirtuins Slc: solute carrier family TCN2: transcobalamine II THF: tétrahydrofolate TS: thymidylate synthétase xl: extra large isoform TIRÉS À PART C. Junien Tarifs d, 2005.

. Abonnez-vous-À-médecine, ans, grâce à m/s, vous vivez en direct les progrès des sciences biologiques et médicales Bulletin, 1985.