K. Thorneloe and M. Nelson, Ion channels in smooth muscle: regulators of intracellular calcium and contractility, Canadian Journal of Physiology and Pharmacology, vol.83, issue.3, pp.215-242, 2005.
DOI : 10.1139/y05-016

R. Inoue, T. Okada, H. Onoue, Y. Hara, S. Shimizu et al., The Transient Receptor Potential Protein Homologue TRP6 Is the Essential Component of Vascular ??1-Adrenoceptor-Activated Ca2+-Permeable Cation Channel, Circulation Research, vol.88, issue.3, pp.325-332, 2001.
DOI : 10.1161/01.RES.88.3.325

Y. Wang and M. Kotlikoff, Signalling pathway for histamine activation of non-selective cation channels in equine tracheal myocytes, The Journal of Physiology, vol.122, issue.1, pp.131-138, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-3-00131.x

V. Snetkov and J. Ward, Channel, Experimental Physiology, vol.84, issue.5
DOI : 10.1111/j.1469-445X.1999.01887.x

M. Kotlikoff and Y. Wang, Calcium Release and Calcium-Activated Chloride Channels in Airway Smooth Muscle Cells, American Journal of Respiratory and Critical Care Medicine, vol.158, issue.supplement_2, pp.109-123, 1998.
DOI : 10.1164/ajrccm.158.supplement_2.13tac600

J. Riordan, J. Rommens, B. Kerem, N. Alon, R. Rozmahel et al., Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, vol.245, issue.4922, pp.1066-1073, 1989.
DOI : 10.1126/science.2475911

J. Pilewski and R. Frizzell, Role of CFTR in airway disease, Physiol Rev, vol.79, pp.215-55, 1999.

I. Mitchell, M. Corey, R. Woenne, I. Krastins, and H. Levison, Bronchial hyperreactivity in cystic fibrosis and asthma, The Journal of Pediatrics, vol.93, issue.5, pp.744-748, 1978.
DOI : 10.1016/S0022-3476(78)81070-1

C. Fortner, J. Lorenz, and R. Paul, Chloride channel function is linked to epithelium-dependent airway relaxation, Am J Physiol Lung Cell Mol Physiol, vol.280, pp.334-375, 2001.

P. Levesque, P. Hart, J. Hume, J. Kenyon, and B. Horowitz, Expression of cystic fibrosis transmembrane regulator Cl- channels in heart, Circulation Research, vol.71, issue.4, pp.1002-1007, 1992.
DOI : 10.1161/01.RES.71.4.1002

D. Gadsby, G. Nagel, and T. Hwang, The CFTR Chloride Channel of Mammalian Heart, Annual Review of Physiology, vol.57, issue.1, pp.387-416, 1995.
DOI : 10.1146/annurev.ph.57.030195.002131

R. Weyler, K. Yurko-mauro, R. Rubenstein, W. Kollen, W. Reenstra et al., CFTR is functionally active in GnRH-expressing GT1-7 hypothalamic neurons, Am J Physiol, vol.277, pp.563-71, 1999.

L. Wei, M. Freichel, M. Jaspers, H. Cuppens, J. Cassiman et al., Functional interaction between TRP4 and CFTR in mouse aorta endothelial cells, BMC Physiology, vol.1, issue.1, p.3, 2001.
DOI : 10.1186/1472-6793-1-3

A. Tousson, B. Van-tine, A. Naren, G. Shaw, and L. Schwiebert, Characterization of CFTR expression and chloride channel activity in human endothelia, Am J Physiol, vol.275, pp.1555-64, 1998.

R. Robert, V. Thoreau, C. Norez, A. Cantereau, A. Kitzis et al., Regulation of the Cystic Fibrosis Transmembrane Conductance Regulator Channel by ??-Adrenergic Agonists and Vasoactive Intestinal Peptide in Rat Smooth Muscle Cells and Its Role in Vasorelaxation, Journal of Biological Chemistry, vol.279, issue.20, pp.21160-21168, 2004.
DOI : 10.1074/jbc.M312199200

R. Robert, C. Norez, and F. Becq, transport of mouse aortic smooth muscle cells, The Journal of Physiology, vol.507, issue.2, pp.483-495, 2005.
DOI : 10.1113/jphysiol.2005.085019

P. Berger, D. Perng, H. Thabrew, S. Compton, J. Cairns et al., Tryptase and agonists of PAR-2 induce the proliferation of human airway smooth muscle cells, J Appl Physiol, vol.91, pp.1372-1379, 2001.

C. Norez, G. Heda, T. Jensen, I. Kogan, L. Hughes et al., Determination of CFTR chloride channel activity and pharmacology using radiotracer flux methods, Journal of Cystic Fibrosis, vol.3, issue.2, pp.119-121, 2004.
DOI : 10.1016/j.jcf.2004.05.025

C. Marivingt-mounir, C. Norez, R. Derand, L. Bulteau-pignoux, D. Nguyen-huy et al., Synthesis, SAR, Crystal Structure, and Biological Evaluation of Benzoquinoliziniums as Activators of Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Channels, Journal of Medicinal Chemistry, vol.47, issue.4, pp.962-972, 2004.
DOI : 10.1021/jm0308848

D. Sheppard and M. Welsh, Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents, The Journal of General Physiology, vol.100, issue.4, pp.573-591, 1992.
DOI : 10.1085/jgp.100.4.573

B. Schultz, A. Singh, D. Devor, and R. Bridges, Pharmacology of CFTR chloride channel activity, Physiol Rev, vol.79, pp.109-153, 1999.

A. Singh, C. Venglarik, and R. Bridges, Development of chloride channel modulators, Kidney International, vol.48, issue.4, pp.985-993, 1995.
DOI : 10.1038/ki.1995.380

T. Ma, J. Thiagarajah, H. Yang, N. Sonawane, C. Folli et al., Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin???induced intestinal fluid secretion, Journal of Clinical Investigation, vol.110, issue.11, pp.1651-1658, 2002.
DOI : 10.1172/JCI0216112

R. Derand, L. Bulteau-pignoux, and F. Becq, The Cystic Fibrosis Mutation G551D Alters the Non-Michaelis-Menten Behavior of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel and Abolishes the Inhibitory Genistein Binding Site, Journal of Biological Chemistry, vol.277, issue.39, pp.35999-36004, 2002.
DOI : 10.1074/jbc.M206121200

S. Hays, R. Ferrando, R. Carter, H. Wong, and P. Woodruff, Structural changes to airway smooth muscle in cystic fibrosis, Thorax, vol.60, issue.3, pp.226-228, 2005.
DOI : 10.1136/thx.2004.028340

M. Sparrow, T. Omari, and H. Mitchell, The epithelial barrier and airway responsiveness, Canadian Journal of Physiology and Pharmacology, vol.73, issue.2, pp.180-190, 1995.
DOI : 10.1139/y95-027

E. Tschirhart and Y. Landry, Airway epithelium releases a relaxant factor: demonstration with substance P, European Journal of Pharmacology, vol.132, issue.1, pp.103-104, 1986.
DOI : 10.1016/0014-2999(86)90020-8

J. Kao, C. Fortner, L. Liu, G. Shull, and R. Paul, Ablation of the SERCA3 gene alters epithelium-dependent relaxation in mouse tracheal smooth muscle, Am J Physiol, vol.277, pp.264-70, 1999.

N. Frossard and F. Muller, Epithelial modulation of tracheal smooth muscle response to antigenic stimulation, J Appl Physiol, vol.61, pp.1449-1456, 1986.

M. Mhanna, T. Ferkol, R. Martin, I. Dreshaj, A. Van-heeckeren et al., Nitric Oxide Deficiency Contributes to Impairment of Airway Relaxation in Cystic Fibrosis Mice, American Journal of Respiratory Cell and Molecular Biology, vol.24, issue.5, pp.621-626, 2001.
DOI : 10.1165/ajrcmb.24.5.4313

I. Balfour-lynn, A. Laverty, and R. Dinwiddie, Reduced upper airway nitric oxide in cystic fibrosis., Archives of Disease in Childhood, vol.75, issue.4, pp.319-322, 1996.
DOI : 10.1136/adc.75.4.319

J. Dotsch, S. Demirakca, H. Terbrack, G. Huls, W. Rascher et al., Airway nitric oxide in asthmatic children and patients with cystic fibrosis, European Respiratory Journal, vol.9, issue.12, pp.2537-2540, 1996.
DOI : 10.1183/09031936.96.09122537

J. Lundberg, S. Nordvall, E. Weitzberg, H. Kollberg, and K. Alving, Exhaled nitric oxide in paediatric asthma and cystic fibrosis., Archives of Disease in Childhood, vol.75, issue.4, pp.323-326, 1996.
DOI : 10.1136/adc.75.4.323

T. Kelley and M. Drumm, Inducible nitric oxide synthase expression is reduced in cystic fibrosis murine and human airway epithelial cells., Journal of Clinical Investigation, vol.102, issue.6, pp.1200-1207, 1998.
DOI : 10.1172/JCI2357

P. Davis, M. Drumm, and M. Konstan, Cystic fibrosis., American Journal of Respiratory and Critical Care Medicine, vol.154, issue.5, pp.1229-1256, 1996.
DOI : 10.1164/ajrccm.154.5.8912731

A. Halayko and Y. Amrani, Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma, Respiratory Physiology & Neurobiology, vol.137, issue.2-3, pp.209-222, 2003.
DOI : 10.1016/S1569-9048(03)00148-4