P. Kim, A. Dutra, S. Chandrasekharappa, and J. Puck, Genomic structure and mapping of human FADD, an intracellular mediator of lymphocyte apoptosis, J Immunol, vol.157, pp.5461-5466, 1996.

M. Katoh, located within the CCND1-EMS1 locus on human chromosome 11q13, encodes the eighttransmembrane protein homologous to C12orf3, C11orf25 and FLJ34272 gene products, Int J Oncol, vol.22, pp.1375-1381, 2003.

J. Zhang and A. Winoto, A mouse Fas-associated protein with homology to the human Mort1/FADD protein is essential for Fas-induced apoptosis., Molecular and Cellular Biology, vol.16, issue.6, pp.2756-2763, 1996.
DOI : 10.1128/MCB.16.6.2756

A. Chinnaiyan, K. O-'rourke, M. Tewari, and V. Dixit, FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis, Cell, vol.81, issue.4, pp.505-512, 1995.
DOI : 10.1016/0092-8674(95)90071-3

C. Weber and C. Vincenz, The death domain superfamily: a tale of two interfaces?, Trends in Biochemical Sciences, vol.26, issue.8, pp.475-481, 2001.
DOI : 10.1016/S0968-0004(01)01905-3

M. Eberstadt, B. Huang, Z. Chen, R. Meadows, S. Ng et al., NMR structure and mutagenesis of the FADD (Mort1) death-effector domain, Nature, vol.392, pp.941-945, 1998.

C. Scaffidi, J. Volkland, I. Blomberg, I. Hoffmann, P. Krammer et al., Phosphorylation of FADD/ MORT1 at Serine 194 and Association with a 70-kDa Cell Cycle-Regulated Protein Kinase, The Journal of Immunology, vol.164, issue.3, pp.1236-1242, 2000.
DOI : 10.4049/jimmunol.164.3.1236

Z. Hua, S. Sohn, C. Kang, D. Cado, and A. Winoto, A Function of Fas-Associated Death Domain Protein in Cell Cycle Progression Localized to a Single Amino Acid at Its C-Terminal Region, Immunity, vol.18, issue.4, pp.513-521, 2003.
DOI : 10.1016/S1074-7613(03)00083-9

M. Gomez-angelats and J. Cidlowski, Molecular evidence for the nuclear localization of FADD, Cell Death and Differentiation, vol.10, issue.7, pp.791-797, 2003.
DOI : 10.1038/sj.cdd.4401237

R. Screaton, S. Kiessling, O. Sansom, C. Millar, K. Maddison et al., Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis, Proceedings of the National Academy of Sciences, vol.276, issue.32, pp.5211-5216, 2003.
DOI : 10.1074/jbc.M103838200

W. Yeh, J. Pompa, M. Mccurrach, H. Shu, A. Elia et al., FADD: Essential for Embryo Development and Signaling from Some, But Not All, Inducers of Apoptosis, Science, vol.279, issue.5358, pp.1954-1958, 1998.
DOI : 10.1126/science.279.5358.1954

J. Zhang, D. Cado, A. Chen, N. Kabra, and A. Winoto, Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1, Nature, vol.392, pp.296-300, 1998.

R. Watanabe-fukunaga, C. Brannan, N. Copeland, N. Jenkins, and S. Nagata, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature, vol.356, issue.6367, pp.314-317, 1992.
DOI : 10.1038/356314a0

M. Adachi, S. Suematsu, T. Kondo, J. Ogasawara, T. Tanaka et al., Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver, Nature Genetics, vol.7, issue.3, pp.294-300, 1995.
DOI : 10.1038/ng1195-294

A. Kuang, G. Diehl, J. Zhang, and A. Winoto, FADD Is Required for DR4- and DR5-mediated Apoptosis: LACK OF TRAIL-INDUCED APOPTOSIS IN FADD-DEFICIENT MOUSE EMBRYONIC FIBROBLASTS, Journal of Biological Chemistry, vol.275, issue.33, pp.25065-25068, 2000.
DOI : 10.1074/jbc.C000284200

S. Nagata, Apoptosis by Death Factor, Cell, vol.88, issue.3, pp.355-365, 1997.
DOI : 10.1016/S0092-8674(00)81874-7

F. Kischkel, D. Lawrence, A. Tinel, H. Leblanc, A. Virmani et al., Death Receptor Recruitment of Endogenous Caspase-10 and Apoptosis Initiation in the Absence of Caspase-8, Journal of Biological Chemistry, vol.276, issue.49, pp.46639-46646, 2001.
DOI : 10.1074/jbc.M105102200

J. Wang, H. Chun, W. Wong, D. Spencer, and M. Lenardo, Caspase-10 is an initiator caspase in death receptor signaling, Proceedings of the National Academy of Sciences, vol.13, issue.19, pp.13884-13888, 2001.
DOI : 10.1101/gad.13.19.2514

F. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/ CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, Embo J, vol.14, pp.5579-5588, 1995.

M. Muzio, A. Chinnaiyan, F. Kischkel, K. O-'rourke, A. Shevchenko et al., FLICE, A Novel FADD-Homologous ICE/CED-3???like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex, Cell, vol.85, issue.6, pp.817-827, 1996.
DOI : 10.1016/S0092-8674(00)81266-0

D. Martin, R. Siegel, L. Zheng, and M. Lenardo, Membrane Oligomerization and Cleavage Activates the Caspase-8 (FLICE/MACHalpha 1) Death Signal, Journal of Biological Chemistry, vol.273, issue.8, pp.4345-4349, 1998.
DOI : 10.1074/jbc.273.8.4345

M. Tibbetts, L. Zheng, and M. Lenardo, The death effector domain protein family: regulators of cellular homeostasis, Nature Immunology, vol.4, issue.5, pp.404-409, 2003.
DOI : 10.1038/ni0503-404

M. Thome, P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl et al., Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature, vol.386, issue.6624, pp.517-521, 1997.
DOI : 10.1038/386517a0

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, vol.388, pp.190-195, 1997.

R. Siegel, D. Martin, L. Zheng, S. Ng, J. Bertin et al., Death-effector Filaments: Novel Cytoplasmic Structures that Recruit Caspases and Trigger Apoptosis, The Journal of Cell Biology, vol.24, issue.5, pp.1243-1253, 1998.
DOI : 10.1126/science.275.5303.1129

K. Newton, A. Harris, M. Bath, K. Smith, and A. Strasser, A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes, The EMBO Journal, vol.17, issue.3, pp.706-718, 1998.
DOI : 10.1093/emboj/17.3.706

N. Kabra, C. Kang, L. Hsing, J. Zhang, and A. Winoto, T cell-specific FADD-deficient mice: FADD is required for early T cell development, Proceedings of the National Academy of Sciences, vol.164, issue.3, pp.6307-6312, 2001.
DOI : 10.4049/jimmunol.164.3.1236

A. Strasser and K. Newton, FADD/MORT1, a signal transducer that can promote cell death or cell growth, The International Journal of Biochemistry & Cell Biology, vol.31, issue.5, pp.533-537, 1999.
DOI : 10.1016/S1357-2725(99)00003-5

K. Newton, C. Kurts, A. Harris, and A. Strasser, Effects of a dominant interfering mutant of FADD on signal transduction in activated T cells, Current Biology, vol.11, issue.4, pp.273-276, 2001.
DOI : 10.1016/S0960-9822(01)00067-7

D. Beisner, I. Chu, A. Arechiga, S. Hedrick, and C. Walsh, The Requirements for Fas-Associated Death Domain Signaling in Mature T Cell Activation and Survival, The Journal of Immunology, vol.171, issue.1, pp.247-256, 2003.
DOI : 10.4049/jimmunol.171.1.247

J. Zhang, N. Kabra, D. Cado, C. Kang, and A. Winoto, FADD-deficient T Cells Exhibit a Disaccord in Regulation of the Cell Cycle Machinery, Journal of Biological Chemistry, vol.276, issue.32, pp.29815-29818, 2001.
DOI : 10.1074/jbc.M103838200

E. Alappat, J. Volkland, and M. Peter, Cell Cycle Effects by C-FADD Depend on Its C-terminal Phosphorylation Site, Journal of Biological Chemistry, vol.278, issue.43, pp.41585-41588, 2003.
DOI : 10.1074/jbc.C300385200

K. Shimada, S. Matsuyoshi, M. Nakamura, E. Ishida, M. Kishi et al., Phosphorylation of FADD is critical for sensitivity to anticancer drug-induced apoptosis, Carcinogenesis, vol.25, issue.7, pp.1089-1097, 2004.
DOI : 10.1093/carcin/bgh130

K. Newton, A. Harris, and A. Strasser, FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor, The EMBO Journal, vol.180, issue.5, pp.931-941, 2000.
DOI : 10.1093/emboj/19.5.931

L. Tourneur, S. Mistou, F. Michiels, V. Devauchelle, L. Renia et al., Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells, Oncogene, vol.22, issue.18, pp.2795-2804, 2003.
DOI : 10.1038/sj.onc.1206399

F. Michiels, B. Caillou, M. Talbot, F. Dessarps-freichey, M. Maunoury et al., Oncogenic potential of guanine nucleotide stimulatory factor alpha subunit in thyroid glands of transgenic mice., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.10488-10492, 1994.
DOI : 10.1073/pnas.91.22.10488

L. Tourneur, S. Delluc, V. Levy, F. Valensi, I. Radford-weiss et al., Absence or Low Expression of Fas-Associated Protein with Death Domain in Acute Myeloid Leukemia Cells Predicts Resistance to Chemotherapy and Poor Outcome, Cancer Research, vol.64, issue.21, pp.8101-8108, 2004.
DOI : 10.1158/0008-5472.CAN-04-2361

N. Iijima, K. Miyamura, T. Itou, M. Tanimoto, R. Sobue et al., Functional expression of Fas (CD95) in acute myeloid leukemia cells in the context of CD34 and CD38 expression: possible correlation with sensitivity to chemotherapy, pp.4901-4909, 1997.

A. Buzyn, F. Petit, M. Ostankovitch, S. Figueiredo, B. Varet et al., Membrane-bound Fas (Apo-1/CD95) ligand on leukemic cells: A mechanism of tumor immune escape in leukemia patients, Blood, vol.94, pp.3135-3140, 1999.

G. Laurent and J. Jaffrezou, Signaling pathways activated by daunorubicin, Blood, vol.98, issue.4, pp.913-924, 2001.
DOI : 10.1182/blood.V98.4.913

C. Friesen, S. Fulda, and K. Debatin, Cytotoxic drugs and the CD95 pathway, Leukemia, vol.13, issue.11, pp.1854-1858, 1999.
DOI : 10.1038/sj.leu.2401333

J. Wen, N. Ramadevi, D. Nguyen, C. Perkins, E. Worthington et al., Antileukemic drugs increase death receptor 5 levels and enhance Apo-2L-induced apoptosis of human acute leukemia cells, Blood, vol.96, pp.3900-3906, 2000.

L. Altucci, A. Rossin, W. Raffelsberger, A. Reitmair, C. Chomienne et al., Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL, Nature Medicine, vol.7, issue.6, pp.680-686, 2001.
DOI : 10.1038/89050

O. Micheau, E. Solary, A. Hammann, and M. Dimanche-boitrel, Fas Ligand-independent, FADD-mediated Activation of the Fas Death Pathway by Anticancer Drugs, Journal of Biological Chemistry, vol.274, issue.12, pp.7987-7992, 1999.
DOI : 10.1074/jbc.274.12.7987

O. Micheau, E. Solary, A. Hammann, F. Martin, and M. Dimanche-boitrel, Sensitization of Cancer Cells Treated With Cytotoxic Drugs to Fas-Mediated Cytotoxicity, JNCI Journal of the National Cancer Institute, vol.89, issue.11, pp.783-789, 1997.
DOI : 10.1093/jnci/89.11.783

L. Mullauer, I. Mosberger, and A. Chott, Fas ligand expression in nodal non-Hodgkin's lymphoma, Mod Pathol, vol.11, pp.369-375, 1998.

M. Hahne, D. Rimoldi, M. Schroter, P. Romero, M. Schreier et al., Melanoma Cell Expression of Fas(Apo-1/CD95) Ligand: Implications for Tumor Immune Escape, Science, vol.274, issue.5291, pp.1363-1366, 1996.
DOI : 10.1126/science.274.5291.1363

P. Saas, P. Walker, M. Hahne, A. Quiquerez, V. Schnuriger et al., Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain?, Journal of Clinical Investigation, vol.99, issue.6, pp.1173-1178, 1997.
DOI : 10.1172/JCI119273

O. Connell, J. , O. Sullivan, G. Collins, J. Shanahan et al., The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand, Journal of Experimental Medicine, vol.184, issue.3, pp.1075-1082, 1996.
DOI : 10.1084/jem.184.3.1075

S. Strand, W. Hofmann, H. Hug, M. Muller, G. Otto et al., Lymphocyte apoptosis induced by CD95 (APO???1/Fas) ligand???expressing tumor cells ??? A mechanism of immune evasion?, Nature Medicine, vol.25, issue.12, pp.1361-1366, 1996.
DOI : 10.1038/379682a0

G. Niehans, T. Brunner, S. Frizelle, J. Liston, C. Salerno et al., Human lung carcinomas express Fas ligand, Cancer Res, vol.57, pp.1007-1012, 1997.

N. Mitsiades, V. Poulaki, G. Mastorakos, S. Tseleni-balafouta, V. Kotoula et al., Fas Ligand Expression in Thyroid Carcinomas: A Potential Mechanism of Immune Evasion, The Journal of Clinical Endocrinology & Metabolism, vol.84, issue.8, pp.2924-2932, 1999.
DOI : 10.1210/jcem.84.8.5917

N. Restifo, Not so Fas: Re-evaluating the mechanisms of immune privilege and tumor escape, Nature Medicine, vol.6, issue.5, pp.493-495, 2000.
DOI : 10.1038/74955

N. Restifo, Countering the 'counterattack' hypothesis, Nature Medicine, vol.7, issue.3, p.259, 2001.
DOI : 10.1038/85357

N. Favre-felix, A. Fromentin, A. Hammann, E. Solary, F. Martin et al., Cutting Edge: The Tumor Counterattack Hypothesis Revisited: Colon Cancer Cells Do Not Induce T Cell Apoptosis Via the Fas (CD95, APO-1) Pathway, The Journal of Immunology, vol.164, issue.10, pp.5023-5027, 2000.
DOI : 10.4049/jimmunol.164.10.5023

J. Desbarats, T. Wade, W. Wade, and M. Newell, Dichotomy between naive and memory CD4+ T cell responses to Fas engagement, Proceedings of the National Academy of Sciences, vol.10, issue.1, pp.8104-8109, 1999.
DOI : 10.1006/smim.1997.0102

J. Desbarats and M. Newell, Fas engagement accelerates liver regeneration after partial hepatectomy, Nat Med, vol.6, pp.920-923, 2000.

R. Freiberg, D. Spencer, K. Choate, H. Duh, S. Schreiber et al., Fas Signal Transduction Triggers Either Proliferation or Apoptosis in Human Fibroblasts, Journal of Investigative Dermatology, vol.108, issue.2, pp.215-219, 1997.
DOI : 10.1111/1523-1747.ep12334273

L. Owen-schaub, S. Meterissian, and R. Ford, Fas/APO-1 Expression and Function on Malignant Cells of Hematologic and Nonhematologic Origin, Journal of Immunotherapy, vol.14, issue.3, pp.234-241, 1993.
DOI : 10.1097/00002371-199310000-00011

K. Mishima, Y. Nariai, and Y. Yoshimura, Carboplatin induces Fas (APO-1/CD95)-dependent apoptosis of human tongue carcinoma cells: Sensitization for apoptosis by upregulation of FADD expression, International Journal of Cancer, vol.19, issue.5, pp.593-600, 2003.
DOI : 10.1002/ijc.11133

O. Micheau and J. Tschopp, Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes, Cell, vol.114, issue.2, pp.181-190, 2003.
DOI : 10.1016/S0092-8674(03)00521-X

URL : https://hal.archives-ouvertes.fr/inserm-00527105