E. Snyder, R. Taylor, and J. Wolfe, Neural progenitor cell engraftment corrects lysosomal storage throughout the MRS VII mouse brain, Nature, vol.374, issue.6520, pp.367-370, 1995.
DOI : 10.1038/374367a0

A. Martinez-serrano, C. Lundberg, P. Horellou, W. Fischer, C. Bentlage et al., CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the septum, J Neurosci, vol.15, pp.5668-5680, 1995.

O. Brustle, U. Maskos, and R. Mckay, Host-guided migration allows targeted introduction of neurons into the embryonic brain, Neuron, vol.15, issue.6, pp.1275-1285, 1995.
DOI : 10.1016/0896-6273(95)90007-1

F. Gage, P. Coates, T. Palmer, H. Kuhn, L. Fisher et al., Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain., Proceedings of the National Academy of Sciences, vol.92, issue.25, pp.11879-11883, 1995.
DOI : 10.1073/pnas.92.25.11879

E. Snyder, D. Deitcher, C. Walsh, S. Arnold-aldea, E. Hartwieg et al., Multipotent neural cell lines can engraft and participate in development of mouse cerebellum, Cell, vol.68, issue.1, pp.33-51, 1992.
DOI : 10.1016/0092-8674(92)90204-P

P. Renfranz, M. Cunningham, and R. Mckay, Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain, Cell, vol.66, issue.4, pp.713-729, 1991.
DOI : 10.1016/0092-8674(91)90116-G

E. Snyder, C. Yoon, J. Flax, and J. Macklis, Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex, Proceedings of the National Academy of Sciences, vol.4, issue.1, pp.11663-11668, 1997.
DOI : 10.1146/annurev.ne.18.030195.001111

B. Nait-oumesmar, L. Decker, F. Lachapelle, V. Avellana-adalid, C. Bachelin et al., Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination, European Journal of Neuroscience, vol.4, issue.12, pp.4357-4366, 1999.
DOI : 10.1046/j.1460-9568.1999.00873.x

K. Aboody, A. Brown, N. Rainov, K. Bower, S. Liu et al., Neural stem cells display extensive tropism for pathology in adult brain: Evidence from intracranial gliomas, Proceedings of the National Academy of Sciences, vol.1, issue.4, pp.12846-12851, 2000.
DOI : 10.1006/mthe.2000.0046

P. Lewis and M. Emerman, Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus, J Virol, vol.68, pp.510-516, 1994.

E. Weber, W. Anderson, and N. Kasahara, Recent advances in retrovirus vector-mediated gene therapy: teaching an old vector new tricks, Curr Opin Mol Ther, vol.3, pp.439-453, 2001.

Z. Bao and C. Cepko, The expression and function of Notch pathway genes in the developing rat eye, J Neurosci, vol.17, pp.1425-1434, 1997.

N. Gaiano, J. Kohtz, D. Turnbull, and G. Fishell, A method for rapid gain-of-function studies in the mouse embryonic nervous system, Nature Neuroscience, vol.2, issue.9, pp.812-819, 1999.
DOI : 10.1038/12186

R. Burrows, D. Wancio, P. Levitt, and L. Lillien, Response Diversity and the Timing of Progenitor Cell Maturation Are Regulated by Developmental Changes in EGFR Expression in the Cortex, Neuron, vol.19, issue.2, pp.251-267, 1997.
DOI : 10.1016/S0896-6273(00)80937-X

E. Derrington, M. Lopez-lastra, S. Chapel-fernandez, F. Cosset, M. Belin et al., Retroviral Vectors for the Expression of Two Genes in Human Multipotent Neural Precursors and Their Differentiated Neuronal and Glial Progeny, Human Gene Therapy, vol.10, issue.7, pp.1129-1138, 1999.
DOI : 10.1089/10430349950018120

I. Franceschini, V. Feigenbaum-lacombe, P. Casanova, M. Lopez-lastra, J. Darlix et al., Efficient gene transfer in mouse neural precursors with a bicistronic retroviral vector, Journal of Neuroscience Research, vol.27, issue.3, pp.208-219, 2001.
DOI : 10.1002/jnr.1144

J. Goldman, M. Zerlin, S. Newman, L. Zhang, and J. Gensert, Fate Determination and Migration of Progenitors in the Postnatal Mammalian CNS, Developmental Neuroscience, vol.19, issue.1, pp.42-48, 1997.
DOI : 10.1159/000111184

J. Altman, Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer, The Journal of Comparative Neurology, vol.2, issue.3, pp.353-397, 1972.
DOI : 10.1002/cne.901450305

J. Altman, Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer, The Journal of Comparative Neurology, vol.4, issue.4, pp.465-513, 1972.
DOI : 10.1002/cne.901450403

J. Altman, Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer, The Journal of Comparative Neurology, vol.23, issue.4, pp.399-463, 1972.
DOI : 10.1002/cne.901450402

I. Miale and R. Sidman, An autoradiographic analysis of histogenesis in the mouse cerebellum, Experimental Neurology, vol.4, issue.4, pp.277-296, 1961.
DOI : 10.1016/0014-4886(61)90055-3

M. Lopez-lastra, C. Gabus, and J. Darlix, Characterization of an Internal Ribosomal Entry Segment Within the 5??? Leader of Avian Reticuloendotheliosis Virus Type A RNA and Development of Novel MLV-REV-Based Retroviral Vectors, Human Gene Therapy, vol.8, issue.16, pp.1855-1865, 1997.
DOI : 10.1089/hum.1997.8.16-1855

C. Torrent, C. Berlioz, and J. Darlix, Stable MLV-VL30 Dicistronic Retroviral Vectors with a VL30 or MoMLV Sequence Promoting Both Packaging of Genomic RNA and Expression of the 3??? Cistron, Human Gene Therapy, vol.7, issue.5, pp.603-612, 1996.
DOI : 10.1089/hum.1996.7.5-603

J. Dalmau, H. Furneaux, C. Cordon-cardo, and J. Posner, The expression of the Hu (paraneoplastic encephalomyelitis/sensory neuronopathy) antigen in human normal and tumor tissues

M. Rosenblum, Paraneoplasia and Autoimmunologic Injury of the Nervous System: The Anti-Hu Syndrome, Brain Pathology, vol.15, issue.3, pp.199-212, 1993.
DOI : 10.1073/pnas.80.24.7636

B. Chiasson, V. Tropepe, C. Morshead, and D. Van-der-kooy, Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics, J Neurosci, vol.19, pp.4462-4471, 1999.

F. Doetsch, I. Caille, D. Lim, J. Garcia-verdugo, and A. Alvarez-buylla, Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain, Cell, vol.97, issue.6, pp.703-716, 1999.
DOI : 10.1016/S0092-8674(00)80783-7

A. Garcia, N. Doan, T. Imura, T. Bush, and M. Sofroniew, GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain, Nature Neuroscience, vol.96, issue.11, pp.1233-1241, 2004.
DOI : 10.1038/sj.gt.3300586

C. Johansson, S. Momma, D. Clarke, M. Risling, U. Lendahl et al., Identification of a Neural Stem Cell in the Adult Mammalian Central Nervous System, Cell, vol.96, issue.1, pp.25-34, 1999.
DOI : 10.1016/S0092-8674(00)80956-3

J. Bruni, Ependymal development, proliferation, and functions: A review, Microscopy Research and Technique, vol.165, issue.1, pp.2-13, 1998.
DOI : 10.1002/(SICI)1097-0029(19980401)41:1<2::AID-JEMT2>3.0.CO;2-Z

K. Frederiksen and R. Mckay, Proliferation and differentiation of rat neuroepithelial precursor cells in vivo, J Neurosci, vol.8, pp.1144-1151, 1988.

A. Alvarez-buylla, M. Theelen, and F. Nottebohm, Proliferation ???hot spots??? in adult avian ventricular zone reveal radial cell division, Neuron, vol.5, issue.1, pp.101-109, 1990.
DOI : 10.1016/0896-6273(90)90038-H

G. Gray and J. Sanes, Lineage of radial glia in the chicken optic tectum, Development, vol.114, pp.271-283, 1992.

P. Malatesta, E. Hartfuss, and M. Gotz, Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage, Development, vol.127, pp.5253-5263, 2000.

E. Hartfuss, R. Galli, N. Heins, and M. Gotz, Characterization of CNS Precursor Subtypes and Radial Glia, Developmental Biology, vol.229, issue.1, pp.15-30, 2001.
DOI : 10.1006/dbio.2000.9962

Y. Kamei, N. Inagaki, M. Nishizawa, O. Tsutsumi, Y. Taketani et al., Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin, Glia, vol.31, issue.3, pp.191-199, 1998.
DOI : 10.1002/(SICI)1098-1136(199807)23:3<191::AID-GLIA2>3.0.CO;2-8

A. Halliday and C. Cepko, Generation and migration of cells in the developing striatum, Neuron, vol.9, issue.1, pp.15-26, 1992.
DOI : 10.1016/0896-6273(92)90216-Z

G. Kempler, B. Freitag, B. Berwin, O. Nanassy, and E. Barklis, Characterization of the Moloney Murine Leukemia Virus Stem Cell-Specific Repressor Binding Site, Virology, vol.193, issue.2, pp.690-699, 1993.
DOI : 10.1006/viro.1993.1177

S. Cornelis, Y. Bruynooghe, G. Denecker, V. Huffel, S. Tinton et al., Identification and Characterization of a Novel Cell Cycle???Regulated Internal Ribosome Entry Site, Molecular Cell, vol.5, issue.4, pp.597-605, 2000.
DOI : 10.1016/S1097-2765(00)80239-7

A. Brasey, M. Lopez-lastra, T. Ohlmann, N. Beerens, B. Berkhout et al., The Leader of Human Immunodeficiency Virus Type 1 Genomic RNA Harbors an Internal Ribosome Entry Segment That Is Active during the G2/M Phase of the Cell Cycle, Journal of Virology, vol.77, issue.7, pp.3939-3949, 2003.
DOI : 10.1128/JVI.77.7.3939-3949.2003

S. Pyronnet, L. Pradayrol, and N. Sonenberg, A Cell Cycle???Dependent Internal Ribosome Entry Site, Molecular Cell, vol.5, issue.4, pp.607-616, 2000.
DOI : 10.1016/S1097-2765(00)80240-3

URL : http://dx.doi.org/10.1016/s1097-2765(00)80240-3

S. Tinton, B. Schepens, Y. Bruynooghe, R. Beyaert, and S. Cornelis, Regulation of the cell-cycle-dependent internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and phosphorylated translation initiation factor eIF-2??, Biochemical Journal, vol.385, issue.1, pp.155-163, 2005.
DOI : 10.1042/BJ20040963

K. Lang, A. Kappel, and G. Goodall, Hypoxia-inducible Factor-1alpha mRNA Contains an Internal Ribosome Entry Site That Allows Efficient Translation during Normoxia and Hypoxia, Molecular Biology of the Cell, vol.13, issue.5, pp.1792-1801, 2002.
DOI : 10.1091/mbc.02-02-0017

I. Stein, A. Itin, P. Einat, R. Skaliter, Z. Grossman et al., Translation of Vascular Endothelial Growth Factor mRNA by Internal Ribosome Entry: Implications for Translation under Hypoxia, Molecular and Cellular Biology, vol.18, issue.6, pp.3112-3119, 1998.
DOI : 10.1128/MCB.18.6.3112

Y. Kim and S. Jang, Continuous heat shock enhances translational initiation directed by internal ribosomal entry site, Biochemical and Biophysical Research Communications, vol.297, issue.2, pp.224-231, 2002.
DOI : 10.1016/S0006-291X(02)02154-X

T. Subkhankulova, S. Mitchell, and A. Willis, Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress, Biochemical Journal, vol.359, issue.1, pp.183-192, 2001.
DOI : 10.1042/bj3590183

A. Prats and H. Prats, Translational control of gene expression: Role of IRESs and consequences for cell transformation and angiogenesis, Prog Nucleic Acid Res Mol Biol, vol.72, pp.367-413, 2002.
DOI : 10.1016/S0079-6603(02)72075-8

M. Holcik, N. Sonenberg, and R. Korneluk, Internal ribosome initiation of translation and the control of cell death, Trends in Genetics, vol.16, issue.10, pp.469-473, 2000.
DOI : 10.1016/S0168-9525(00)02106-5

M. Holcik, Translational Upregulation of the X-Linked Inhibitor of Apoptosis, Annals of the New York Academy of Sciences, vol.31, issue.1, pp.249-258, 2003.
DOI : 10.1196/annals.1299.043

M. Van-eden, M. Byrd, K. Sherrill, and R. Lloyd, Translation of cellular inhibitor of apoptosis protein 1 (c-IAP1) mRNA is IRES mediated and regulated during cell stress, RNA, vol.10, issue.3, pp.469-481, 2004.
DOI : 10.1261/rna.5156804

S. Henis-korenblit, N. Strumpf, D. Goldstaub, and A. Kimchi, A Novel Form of DAP5 Protein Accumulates in Apoptotic Cells as a Result of Caspase Cleavage and Internal Ribosome Entry Site-Mediated Translation, Molecular and Cellular Biology, vol.20, issue.2, pp.496-506, 2000.
DOI : 10.1128/MCB.20.2.496-506.2000

D. Maier and A. Nagel, Nonlinear partial differential equations and applications: Two isoforms of the Notch antagonist Hairless are produced by differential translation initiation, Proceedings of the National Academy of Sciences, vol.9, issue.6, pp.15480-15485, 2002.
DOI : 10.1006/scdb.1998.0261