S. Hacein-bey-abina, C. Von-kalle, M. Schmidt, L. Deist, F. Wulffraat et al., A Serious Adverse Event after Successful Gene Therapy for X-Linked Severe Combined Immunodeficiency, New England Journal of Medicine, vol.348, issue.3, pp.255-256, 2003.
DOI : 10.1056/NEJM200301163480314

S. Hacein-bey-abina, V. Kalle, C. Schmidt, M. Mccormack, M. Wulffraat et al., LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1, Science, vol.302, issue.5644, pp.415-419, 2003.
DOI : 10.1126/science.1088547

A. Field, M. Davies, C. Dewitt, H. Perry, R. Liou et al., [2-hydroxy-1- (hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication The CD20/ alphaCD20 'suicide' system: novel vectors with improved safety and expression profiles and efficient elimination of CD20-transgenic T cells, Proc Natl Acad Sci Gene Ther, vol.80, issue.13, pp.9-4139, 1983.

Q. Chen, J. Ash, P. Branton, L. Fromm, and P. Overbeek, Inhibition of crystallin expression and induction of apoptosis by lens-specific E1A expression in transgenic mice, Oncogene, vol.21, issue.7, pp.1028-1037, 2002.
DOI : 10.1038/sj.onc.1205050

K. Lan, F. Kanai, Y. Shiratori, M. Ohashi, T. Tanaka et al., In vivo selective gene expression and therapy mediated by adenoviral vectors for human carcinoembryonic antigen-producing gastric carcinoma, Cancer Res, vol.57, pp.4279-4284, 1997.

W. Weber and M. Fussenegger, Artificial mammalian gene regulation networks???novel approaches for gene therapy and bioengineering, Journal of Biotechnology, vol.98, issue.2-3, pp.161-187, 2002.
DOI : 10.1016/S0168-1656(02)00130-X

A. Mills, Changing colors in mice: an inducible system that delivers, Genes & Development, vol.15, issue.12, pp.1461-1467, 2001.
DOI : 10.1101/gad.909301

J. Mazieres, A. Pradines, and G. Favre, Perspectives on farnesyl transferase inhibitors in cancer therapy, Cancer Letters, vol.206, issue.2, pp.159-167, 2004.
DOI : 10.1016/j.canlet.2003.08.033

T. Reid, K. Terry, P. Casey, and L. Beese, Crystallographic Analysis of CaaX Prenyltransferases Complexed with Substrates Defines Rules of Protein Substrate Selectivity, Journal of Molecular Biology, vol.343, issue.2, pp.417-433, 2004.
DOI : 10.1016/j.jmb.2004.08.056

R. Roskoski, Protein prenylation: a pivotal posttranslational process, Biochemical and Biophysical Research Communications, vol.303, issue.1, pp.1-7, 2003.
DOI : 10.1016/S0006-291X(03)00323-1

H. Fu and P. Casey, Enzymology and biology of CaaX protein prenylation, Recent Prog Horm Res, vol.54, pp.315-357, 1999.

R. Baron, E. Fourcade, I. Lajoie-mazenc, C. Allal, B. Couderc et al., RhoB prenylation is driven by the three carboxyl-terminal amino acids of the protein: Evidenced in vivo by an anti-farnesyl cysteine antibody, Proceedings of the National Academy of Sciences, vol.255, issue.2, pp.11626-11631, 2000.
DOI : 10.1006/abbi.1993.1135

V. Chiu, T. Bivona, A. Hach, J. Sajous, J. Silletti et al., Ras signalling on the endoplasmic reticulum and the Golgi, Nature Cell Biology, vol.4, pp.343-350, 2002.
DOI : 10.1038/ncb783

A. Cox and C. Der, Ras Family Signaling: Therapeutic Targeting, Cancer Biology & Therapy, vol.1, issue.6, pp.599-606, 2002.
DOI : 10.4161/cbt.306

C. Boutonnet, O. Boijoux, S. Bernat, A. Kharrat, G. Favre et al., Pharmacological-based translational induction of transgene expression in mammalian cells, EMBO reports, vol.5, issue.7, pp.721-727, 2004.
DOI : 10.1146/ANNUREV.BIOCHEM.65.1.241

J. Zhu, B. Gao, J. Zhao, and A. Balmain, Targeting gene expression to tumor cells with loss of wild-type p53 function, Cancer Gene Therapy, vol.7, issue.1, pp.4-12, 2000.
DOI : 10.1038/sj.cgt.7700091

Y. Zhang and Y. Xiong, A p53 Amino-Terminal Nuclear Export Signal Inhibited by DNA Damage-Induced Phosphorylation, Science, vol.292, issue.5523, pp.1910-1915, 2001.
DOI : 10.1126/science.1058637

L. Hartwell, Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells, Cell, vol.71, issue.4, pp.543-546, 1992.
DOI : 10.1016/0092-8674(92)90586-2

E. Yonish-rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi et al., Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature, vol.352, issue.6333, pp.345-347, 1991.
DOI : 10.1038/352345a0

J. Bourdon, J. Renzing, P. Robertson, K. Fernandes, and D. Lane, , a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane, The Journal of Cell Biology, vol.20, issue.2, pp.235-246, 2002.
DOI : 10.1016/S1097-2765(01)00213-1

K. Brand, R. Klocke, A. Possling, D. Paul, and M. Strauss, Induction of apoptosis and G2/M arrest by infection with replication-deficient adenovirus at high multiplicity of infection, Gene Therapy, vol.6, issue.6, pp.1054-1063, 1999.
DOI : 10.1038/sj.gt.3300914

R. Lobell, C. Omer, M. Abrams, H. Bhimnathwala, M. Brucker et al., Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models, Cancer Res, vol.61, pp.8758-8768, 2001.

M. Mihara, S. Erster, A. Zaika, O. Petrenko, T. Chittenden et al., p53 Has a Direct Apoptogenic Role at the Mitochondria, Molecular Cell, vol.11, issue.3, pp.53577-590, 2003.
DOI : 10.1016/S1097-2765(03)00050-9

S. Bates and K. Vousden, p53 in signaling checkpoint arrest or apoptosis, Current Opinion in Genetics & Development, vol.6, issue.1, pp.5312-5330, 1996.
DOI : 10.1016/S0959-437X(96)90004-0

J. Kokontis, A. Wagner, O. Leary, M. Liao, S. Hay et al., A transcriptional activation function of p53 is dispensable for and inhibitory of its apoptotic function, Oncogene, vol.20, issue.6, pp.659-668, 2001.
DOI : 10.1038/sj.onc.1204139

A. Ghosh, D. Stewart, and G. Matlashewski, Regulation of Human p53 Activity and Cell Localization by Alternative Splicing, Molecular and Cellular Biology, vol.24, issue.18, pp.7987-7997, 2004.
DOI : 10.1128/MCB.24.18.7987-7997.2004

V. Gottifredi and C. Prives, MOLECULAR BIOLOGY: Getting p53 Out of the Nucleus, Science, vol.292, issue.5523, pp.1851-1852, 2001.
DOI : 10.1126/science.1062238

W. Jiang and T. Hunter, Analysis of cell-cycle profiles in transfected cells using a membrane-targeted GFP, Biotechniques, vol.24, issue.352, pp.349-50, 1998.

K. Harvey, D. Lukovic, and D. Ucker, Membrane-targeted green fluorescent protein reliably and uniquely marks cells through apoptotic death, Cytometry, vol.140, issue.4, pp.273-278, 2001.
DOI : 10.1002/1097-0320(20010401)43:4<273::AID-CYTO1059>3.0.CO;2-3

J. Head and S. Johnston, New targets for therapy in breast cancer: Farnesyltransferase inhibitors, Breast Cancer Research, vol.23, issue.6, pp.262-268, 2004.
DOI : 10.1158/1078-0432.CCR-03-0412

L. Nielsen, B. Shi, G. Hajian, B. Yaremko, P. Lipari et al., Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH58500 (p53 adenovirus) in preclinical cancer models, Cancer Res, vol.59, pp.5896-5901, 1999.

T. He, S. Zhou, L. Da-costa, J. Yu, and K. Kinzler, A simplified system for generating recombinant adenoviruses, Proceedings of the National Academy of Sciences, vol.71, issue.3, pp.2509-2514, 1998.
DOI : 10.1016/S1097-2765(00)80002-7