Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia.
Jean Marc Pascussi, Agnes Robert, Minh Nguyen, Odile Walrant-Debray, Michèle Garabedian, Pascal Martin, Thierry Pineau, Jean Saric, Frédéric Navarro, Patrick Maurel, et al.

To cite this version:
Jean Marc Pascussi, Agnes Robert, Minh Nguyen, Odile Walrant-Debray, Michèle Garabedian, et al.. Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia.. Journal of Clinical Investigation, American Society for Clinical Investigation, 2005, 115, pp.177-86. 10.1172/JCI200521867. inserm-00086875

HAL Id: inserm-00086875
https://www.hal.inserm.fr/inserm-00086875
Submitted on 3 Apr 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

Jean Marc Pascussi,1,2 Agnes Robert,1,2 Minh Nguyen,3 Odile Walrant-Debray,3 Michèle Garabedian,3 Pascal Martin,4 Thierry Pineau,4 Jean Saric,5 Frédéric Navarro,6 Patrick Maurel,1,2 and Marie José Vilarem1,2

Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3,25-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I1) (4). After binding 1α,25(OH)2D3, PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D hormonal activity and calcium homeostasis through the activation of PXR.

Introduction

Vitamin D is essential for the maintenance of calcium homeostasis and for the development and maintenance of bones. Before acquiring its biological potential, vitamin D is transformed into 25-hydroxyvitamin D3 [25(OH)D3], the major form of vitamin D in the circulation, by two 25-hydroxylases (the mitochondrial CYP27A1 and the microsomal CYP2R1) mainly expressed in the liver (1, 2). The 25(OH)D3 is further hydroxylated in the 1α position to form 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], by the CYP27B1 mainly expressed in the kidney (3). The active form of vitamin D, 1α,25(OH)2D3, elicits most of its biological effects by binding to a high-affinity receptor, the vitamin D receptor (VDR; NR1I1) (4). After binding 1α,25(OH)2D3, VDR forms heterodimers with the retinoid X receptor (RXR; NR2B1) and then binds to and transactivates the vitamin D–responsive elements (VDREs) present in the regulatory region of target genes (5). The classical VDREs consist of a direct repeat of nuclear receptor half-sites separated by 3 nucleotides (DR3) (6). In the classical vitamin D–responsive organs, including the intestine, bone, kidney, and parathyroid gland, vitamin D3–activated VDR plays a central role in the regulation of calcium and phosphate homeostasis, bone mineralization, inhibition of cell growth, and parathyroid hormone synthesis (3, 7). VDR is also expressed in many other nonclassical vitamin D–responsive organs, including the liver (8, 9).

The potent role of 1α,25(OH)2D3 in the regulation of serum calcium and phosphate levels requires a tight control of its blood concentration. This is reached through the balance between the rates of synthesis and degradation. CYP24 is a multifunctional 24-hydroxylase and the major catabolic enzyme of vitamin D (10). It directs the side-chain oxidation and cleavage of 1,25(OH)2D3 and 25(OH)D3 to carboxylic acid end products. Notably, this enzyme converts 1α,25(OH)2D3 into 1α,24,25(OH)3D3, a product with decreased hormonal activity (3), and further into calciotropic acid, known as the final metabolite of 1α,25(OH)2D3 excreted in bile. Hypocalcemia increases the serum levels of 1α,25(OH)2D3 through stimulation of 1α-hydroxylase (2) and suppresses the CYP24 activity through increased levels of parathyroid hormone (10). Conversely, hypercalcemia depresses 1α-hydroxylase and increases the 24-hydroxylase activity, and high levels of 1α,25(OH)2D3 induce the 24-hydroxylase activity through VDR (11). The important role of the CYP24 gene has been further demonstrated in CYP24 knockout mice, which exhibit high ambient 1α,25(OH)2D3 levels and abnormal bone mineralization (12).

Osteomalacia is a metabolic bone disease, characterized by a defect of bone mineralization that can be caused by vitamin D deficiency or genetic alterations of vitamin D metabolism, vitamin D action, or other factors involved in the phosphocalcic metabolism. This pathology has also been suspected to result from the adverse effects of drugs. Some of the drugs most frequently associated with osteomalacia are phenobarbital, phenytoin, rifampicin, and for the development and maintenance of bones. Before acquiring its biological potential, vitamin D is transformed into 25-hydroxyvitamin D3 [25(OH)D3], the major form of vitamin D in the circulation, by two 25-hydroxylases (the mitochondrial CYP27A1 and the microsomal CYP2R1) mainly expressed in the liver (1, 2). The 25(OH)D3 is further hydroxylated in the 1α position to form 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], by the CYP27B1 mainly expressed in the kidney (3). The active form of vitamin D, 1α,25(OH)2D3, elicits most of its biological effects by binding to a high-affinity receptor, the vitamin D receptor (VDR; NR1I1) (4). After binding 1α,25(OH)2D3, VDR forms heterodimers with the retinoid X receptor (RXR; NR2B1) and then binds to and transactivates the vitamin D–responsive elements (VDREs) present in the regulatory region of target genes (5). The classical VDREs consist of a direct repeat of nuclear receptor half-sites separated by 3 nucleotides (DR3) (6). In the classical vitamin D–responsive organs, including the intestine, bone, kidney, and parathyroid gland, vitamin D3–activated VDR plays a central role in the regulation of calcium and phosphate homeostasis, bone mineralization, inhibition of cell growth, and parathyroid hormone synthesis (3, 7). VDR is also expressed in many other nonclassical vitamin D–responsive organs, including the liver (8, 9).

The potent role of 1α,25(OH)2D3 in the regulation of serum calcium and phosphate levels requires a tight control of its blood concentration. This is reached through the balance between the rates of synthesis and degradation. CYP24 is a multifunctional 24-hydroxylase and the major catabolic enzyme of vitamin D (10). It directs the side-chain oxidation and cleavage of 1,25(OH)2D3 and 25(OH)D3 to carboxylic acid end products. Notably, this enzyme converts 1α,25(OH)2D3 into 1α,24,25(OH)3D3, a product with decreased hormonal activity (3), and further into calciotropic acid, known as the final metabolite of 1α,25(OH)2D3 excreted in bile. Hypocalcemia increases the serum levels of 1α,25(OH)2D3 through stimulation of 1α-hydroxylase (2) and suppresses the CYP24 activity through increased levels of parathyroid hormone (10). Conversely, hypercalcemia depresses 1α-hydroxylase and increases the 24-hydroxylase activity, and high levels of 1α,25(OH)2D3 induce the 24-hydroxylase activity through VDR (11). The important role of the CYP24 gene has been further demonstrated in CYP24 knockout mice, which exhibit high ambient 1α,25(OH)2D3 levels and abnormal bone mineralization (12).

Osteomalacia is a metabolic bone disease, characterized by a defect of bone mineralization that can be caused by vitamin D deficiency or genetic alterations of vitamin D metabolism, vitamin D action, or other factors involved in the phosphocalcic metabolism. This pathology has also been suspected to result from the adverse effects of drugs. Some of the drugs most frequently associated with osteomalacia are phenobarbital, phenytoin, rifampicin,
and carbamazepine (13–17). Indeed, long-term antiepileptic drug therapy, such as phenobarbital or carbamazepine, is a known risk factor for bone loss and fractures (13). In addition, prolonged therapy with rifampicin can cause vitamin D deficiency or osteomalacia (18), particularly in patients with marginal vitamin D stores (19). Notably, 2 weeks of rifampicin treatment reduces the levels of circulating 25-hydroxyvitamin D and 1α,25(OH)2D3 (VD3), 20 μM rifampicin (RIF), 2 μM hyperforin (HP), 20 μM carbamazepine (CARBA), or 500 μM phenobarbital (PB). Total RNA was isolated using TRIzol reagent. One microgram of total RNA was reverse-transcribed, and CYP3A4, CYP24, CYP2R1, CYP27B, VDR, and GAPDH mRNAs were quantified by real-time RT-PCR analysis using the LightCycler apparatus (Roche Diagnostics Corp.). Data presented are means ± SE (from 5 different cultures from 5 different liver donors) of the ratio of mRNA levels in treated cells to corresponding levels in untreated cells, normalized with respect to GAPDH mRNA levels, which themselves exhibited no significant variation. Statistically significant inductions compared with those in untreated cells are marked with asterisks: *P < 0.05 and **P < 0.01.

Results

Induction of CYP24 gene expression and CYP24 activity by PXR activators in human hepatocytes. We first investigated the effects of PXR activators on the expression of key proteins involved in vitamin D homeostasis, i.e., the mitochondrial 25-hydroxylase CYP27A, the microsomal 25-hydroxylase CYP2R1, the 1α,25(OH)2D3 (50 nM) or PXR activators such as rifampicin (10 μM), hyperforin (2 μM), carbamazepine (20 μM), and phenobarbital (500 μM) for 48 hours. CYP24, CYP2R1, VDR, CYP27B, and CYP27A mRNAs were then analyzed by real-time RT-PCR using the LightCycler apparatus (Roche Diagnostics Corp.), in parallel with CYP3A4 mRNA as a control for PXR activation. We evaluated the induction ratios (mRNA levels in treated cells compared with control cells after normalization with respect to GAPDH signal) obtained from the analysis of 5 different cultures from 5 different liver donors. GAPDH and β-actin mRNA levels (data not shown) were used as quality controls of RNA preparations and RT reactions. As expected, vehicle-treated cells expressed very low levels of CYP24 (cycle threshold \[Ct\] = 37 ± 2 cycles), VDR (\[Ct\] = 32 ± 4), and CYP27B (\[Ct\] = 32 ± 2) mRNAs compared with CYP27A (\[Ct\] = 24 ± 1), CYP3A4 (\[Ct\] = 25 ± 5), CYP2R1 (\[Ct\] = 26 ± 2), and GAPDH (\[Ct\] = 17 ± 2).
As shown in Figure 1, expression of CYP3A4 mRNA was significantly induced by all of the compounds tested, although more modestly by 1α,25(OH)2D3 (5-fold induction). In addition, expression of CYP24 mRNA was strongly induced by 1α,25(OH)2D3 (47-fold induction). Interestingly, expression of CYP24 mRNA was significantly increased by rifampicin (20-fold induction), hyperforin (11-fold induction), and phenobarbital (12-fold induction). Carbamazepine was a weak, nonsignificant (P = 0.07) inducer of CYP24. The relative induction potency of rifampicin, hyperforin, carbamazepine, and phenobarbital was identical for CYP3A4 and CYP24 genes: i.e., rifampicin > phenobarbital > hyperforin > carbamazepine. In contrast, 1α,25(OH)2D3 was a weak inducer of CYP3A4 compared with rifampicin or the other PXR activators but appeared as the most potent inducer of the CYP24 gene. As previously observed in other tissues (34), 1α,25(OH)2D3 produced a significant decrease (50% inhibition, P < 0.01) of the CYP27B1 mRNA level (Figure 1). In contrast, rifampicin, hyperforin, or phenobarbital did not affect the expression of this mRNA. The levels of VDR mRNA in human hepatocytes was not affected by the drugs used, except by 1α,25(OH)2D3 (2.2-fold increase). The levels of mRNA encoding 2 enzymes involved in the 25-hydroxylation of vitamin D (i.e., the mitochondrial CYP27A and the recently "de-orphanized" microsomal CYP2R1) were not affected by any of the compounds tested, even by 1α,25(OH)2D3.

Next, we compared the extent of mRNA induction of the main PXR target gene, CYP3A4, to the extent of mRNA induction of CYP24 at various time points (from 6 to 48 hours with 20 μM rifampicin; Figure 2A), and with increasing concentrations of rifampicin (from 1 to 20 μM after 48 hours of treatment; Figure 2B). As shown, both the time-course and the dose-response profiles of induction were similar for CYP3A4 and CYP24 mRNAs. To determine whether xenobiotics induce CYP24 mRNA directly or indirectly, human hepatocytes were treated with rifampicin in the absence or presence of the protein synthesis inhibitor cycloheximide (CHX) for 24 hours, and RNA was analyzed by semiquantitative RT-PCR using primers for CYP24 and GAPDH as control. As shown in Figure 2C, the rifampicin-mediated induction of CYP24 mRNA was not affected by CHX, although the latter compound alone increased the expression of CYP24 mRNA. It is likely that this results from an mRNA stabilization effect of this compound. In contrast, the GAPDH mRNA level was not affected by these treatments.

To investigate whether CYP24 mRNA accumulation coincided with an increase in the rate of 24-hydroxylated vitamin D3, the metabolism of [3H-25(OH)D3] was evaluated. For this purpose, human hepatocytes were treated with 1α,25(OH)2D3 (50 nM) or 20 μM rifampicin for 72 hours, and then incubated for 4 hours with [3H-25(OH)D3]. A significant increase of 24,25(OH)2D3 production was observed both after 1α,25(OH)2D3 treatment (3.79-fold induction, P < 0.001) and after rifampicin treatment (1.58-fold induction, P < 0.02) (Table 1). The potency of these compounds to increase the rate of 24-hydroxylase of 25(OH)D3 parallels their ability to induce CYP24 mRNA accumulation [i.e., 1α,25(OH)2D3 > rifampicin].

In vivo induction of mouse CYP24 mRNA and 24,25(OH)2D3 plasma concentration by PXR agonists. To determine whether activators of PXR induce CYP24 in vivo, mice (n = 5) were treated for 6 days with dexamethasone or pregnenolone 16α-carboxonitrile, 2 well-known murine PXR agonists (28), or corn oil plus 5% DMSO (vehicle). Total RNA was prepared from liver and kidney and analyzed for cyp3a11, cyp24, and cyclophilin (internal control) gene expression by realtime PCR. As expected, the cyp3a11 mRNA level was significantly (P < 0.01) and strongly increased by dexamethasone (16.3-fold) and pregnenolone 16α-carboxonitrile (9.7-fold) in the liver of treated mice in comparison to the level in vehicle-treated mice (Figure 3A). More interestingly, dexamethasone and pregnenolone 16α-carboxonitrile provoked a significant increase of cyp24 mRNA expression in kidney, 4.6-fold (P = 0.0005) and 2.2-fold (P = 0.0019) induction, respectively (Figure 3B). In addition, we measured changes in the plasma concentration of vitamin D metabolites [24,25(OH)2D3 and 25(OH)D3] after 1 week of pregnenolone 16α-carboxonitrile treatment. As shown in Figure 3C, pregnenolone 16α-carboxonitrile provoked a significant increase of 24,25(OH)2D3 plasma level (2.01-fold induction, P < 0.03), while no significant effect was observed on 25(OH)D3 circulating level (Figure 3D).
The cloning of the human CYP24 promoter has been reported (35). To determine the nature of the cis-acting elements involved in PXR-mediated CYP24 gene expression, analysis of promoter transcriptional activity was undertaken. Various deletions of the human CYP24 promoter were constructed into a promoterless luciferase reporter vector (pGL3basic; Figure 5A). These constructs were tested for their ability to respond to PXR by transient cotransfection assays in Hek293 cells. In response to rifampicin, the luciferase activity of the 1.2-kb promoter fragment (−1,200 to −22) exhibited a 4-fold increase under cotransfection with human PXR cDNA expression vector (Figure 5B). The magnitude of the response was identical to that observed with the −326 to −22 construct. However, the −144 to −22 construct did not respond to rifampicin. Similar results were obtained with pregnenolone 16α-carbonitrile and a mouse PXR expression vector. Therefore, the −326 to −144 region of the CYP24 promoter confers response to both human and murine PXR.

Interestingly, this region is responsive to 1α,25(OH)2D3 even in the absence of cotransfection of the receptor expression vector (Figure 5B), because Hek293 cells express endogenous VDR (36). Indeed, 2 VDREs have been defined within the −300 to −150 region of the human and mouse CYP24 promoter that confer response of the promoter to both 1α,25(OH)2D3 (35) and RXR ligands (37).

PXR binds to and transactivates the VDRE-I and VDRE-II motifs of human CYP24 promoter. We have previously reported that VDR binds to and transactivates PXR-responsive elements present on the promoter of several CYP genes, including CYP2C9, CYP2B6, and CYP3A4. This suggested that these receptors could share DNA-responsive elements and target genes (8). The −316 to −144 region of the human CYP24 promoter contains 3 potential binding sites for PXR: 2 VDREs previously identified, −294 to −274 (VDRE-II) and −174 to −151 (VDRE-I), and the −316 to −291 region (CYP24 site 3), which contains sequences that are homologous with various

Table 1

<table>
<thead>
<tr>
<th>Treatments</th>
<th>UT (n = 11)</th>
<th>RIF (n = 12)</th>
<th>VD3 (n = 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24,25(OH)2D3</td>
<td>34.4 ± 4.3</td>
<td>54.0 ± 3.0†</td>
<td>130.5 ± 11.9‡</td>
</tr>
</tbody>
</table>

Human hepatocytes (from 4 different cultures from 4 different liver donors) were cultured in the absence (UT) or presence of 50 nM 1α,25(OH)2D3 (VD3) or 50 nM rifampicin (RIF) for 72 hours, and then incubated for 4 hours with 1.6 nM [3H-24(OH)2D3. The 24-hydroxylase enzyme activity was calculated as described in Methods. Values represent the mean ± SE. For each experiment, 2–3 determinations were performed. *P < 0.02, †P < 0.001 versus untreated cultures incubated in the same conditions.

Figure 3

In vivo modulation of CYP24 by PXR agonists. (A and B) Effect of pregnenolone 16α-carbonitrile and dexamethasone on cyp24 mRNA abundance. Mice (n = 5) were injected i.p. for 6 consecutive days with dexamethasone (DEX; 10 mg/kg/d), pregnenolone 16α-carbonitrile (PCN; 100 mg/kg), or corn oil (UT). Total RNA from liver or kidney was prepared, and 1 μg was reverse-transcribed. The relative levels of cyp3a11 and cyp24 mRNAs were determined in duplicate for each mouse by real-time PCR using cyp3a11-specific (A) and cyp24-specific (B) primers. Cyclophilin mRNA levels were used as a reference standard. Data are means ± SE of the ratio of mRNA levels in treated mice to corresponding levels in untreated mice, normalized with respect to cyclophilin mRNA levels. (C and D) Effect of pregnenolone 16α-carbonitrile on vitamin D3 metabolites in mouse plasma. Mice (n = 5) were injected i.p. for 6 consecutive days with pregnenolone 16α-carbonitrile (100 mg/kg) or corn oil and plasma samples. Pooled mouse plasma (1–2 mice, 300 μl, n = 3) or 50-μl plasma samples (n = 5) were analyzed for 24,25(OH)2D3 (C) or 25(OH)D3 metabolites (D), respectively, as described in Methods. Statistically significant expressions compared with untreated mice are marked with asterisks: *P < 0.05, **P < 0.01, and ***P < 0.005. Fold change relative to control mice is indicated.
then harvested and analyzed for both luciferase and β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. These were replicated in independent experiments. (C) Rifampicin and hyperforin induce the CYP24 gene in Hek293-hPXR cells. Parental Hek293 or Hek293-hPXR cell lines were untreated (UT) or treated with 50 nM 1α,25(OH)2D3 (VD3), 10 μM rifampicin (RIF), or 2 μM hyperforin (HP) in triplicate. Forty-eight hours later, total RNA was extracted and analyzed by quantitative RT-PCR for CYP24 and GAPDH mRNA content. Values represent the average ± SE.

Figure 4
Rifampicin induces the CYP24 gene in a Hek293 cell line stably transfected with PXR. (A) Expression of human PXR in parental and pIRES-hPXR/neo–transfected Hek293 cells. Whole-cell extracts were prepared from parental Hek293 cells or pIRES-hPXR/neo–transfected cells (Hek293-hPXR). Proteins were separated on 10% SDS-PAGE, and PXR and β-actin expression was monitored by Western blotting (Santa Cruz Biotechnology Inc.). (B) Rifampicin activates an NR1-LUC reporter gene in Hek293-hPXR cells. Parental Hek293 or Hek293-hPXR cell lines were transiently transfected with CYP2B6 NR1-LUC reporter gene together with pRSV-β-gal transfection control plasmid. After transfection, cells were treated with 0.1% DMSO (UT; white bars) or 10 μM rifampicin (RIF; black bars). Values represent β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. These were replicated in independent experiments. (D) Rifampicin and hyperforin induce the CYP24 gene in Hek293-hPXR cells. Parental Hek293 or Hek293-hPXR cell lines were untreated (UT) or treated with 50 nM 1α,25(OH)2D3 (VD3), 10 μM rifampicin (RIF), or 2 μM hyperforin (HP) in triplicate. Forty-eight hours later, total RNA was extracted and analyzed by quantitative RT-PCR for CYP24 and GAPDH mRNA content. Values represent the average ± SE.

Figure 5
PXR transactivates the proximal human CYP24 promoter. (A) VDREs present in the human CYP24 (hCYP24) gene. Schematic representation of the human CYP24 constructs used in this work. (B) Ligand-activated PXR transactivates the −326 to −143 promoter region of human CYP24. Hek293 cells were transiently transfected with human PXR (pSG5-ΔATG-hPXR), mouse PXR (pSG5-mPXR), or control expression vector (pSG5) in the presence of reporter vectors driven by the indicated human CYP24 promoter sequences, together with pRSV-β-gal transfection control plasmid. Cells were treated with vehicle (0.1% DMSO; UT), 50 nM 1α,25(OH)2D3 (VD3), 10 μM rifampicin (RIF), or 10 μM pregnenolone 16α-carbonitrile (PCN) for 24 hours. Cells were then harvested and analyzed for both luciferase and β-gal activities. Values represent β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. These were replicated in independent experiments.

Figure 6
To demonstrate further the role of CYP24 VDRE-I and VDRE-II motifs in PXR-mediated CYP24 gene induction, we used heterologous promoter constructs containing 3 repeats of CYP24 site 3 (−316 to −291), VDRE-I, or VDRE-II elements upstream of the minimal thymidine kinase promoter (tkLUC). Transient cotransfection assays were performed on Hek293 cells with these reporter plasmids and VDR or PXR cDNA expression vectors (Figure 8A). As expected, both VDRE-I and VDRE-II reporter heterodimers efficiently bound to the 2 CYP24 VDRE motifs (Figure 7, lanes 5, 6, 11, and 12). This binding was observed only in the presence of the heterodimerization partner RXRα, while neither PXR, RXRα, nor VDR alone bound to these sequences. These results strongly suggest that the PXR:RXRα heterodimer binds to the 2 VDREs of the human CYP24 promoter.

To test the direct interaction between PXR and the 2 VDREs of the CYP24 promoter, oligonucleotides VDRE-I (Figure 7, lanes 1–6) and VDRE-II (lanes 7–12) were end-labeled and subjected to electrophoretic mobility shift assay. Note that the reticulocyte lysate produced a nonspecific retarded band (Figure 7, NS). Nevertheless, in vitro–translated PXR:RXRα and VDR:RXRα heterodimers were present in the human CYP24 (hCYP24) gene. Schematic representation of the human CYP24 constructs used in this work. (A) Expression of human PXR in parental and pIRES-hPXR/neo–transfected Hek293 cells. Whole-cell extracts were prepared from parental Hek293 cells or pIRES-hPXR/neo–transfected cells (Hek293-hPXR). Proteins were separated on 10% SDS-PAGE, and PXR and β-actin expression was monitored by Western blotting (Santa Cruz Biotechnology Inc.). (B) Rifampicin activates an NR1-LUC reporter gene in Hek293-hPXR cells. Parental Hek293 or Hek293-hPXR cell lines were transiently transfected with CYP2B6 NR1-LUC reporter gene together with pRSV-β-gal transfection control plasmid. After transfection, cells were treated with 0.1% DMSO (UT; white bars) or 10 μM rifampicin (RIF; black bars). Values represent β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. These were replicated in independent experiments. (C) Rifampicin and hyperforin induce the CYP24 gene in Hek293-hPXR cells. Parental Hek293 or Hek293-hPXR cell lines were untreated (UT) or treated with 50 nM 1α,25(OH)2D3 (VD3), 10 μM rifampicin (RIF), or 2 μM hyperforin (HP) in triplicate. Forty-eight hours later, total RNA was extracted and analyzed by quantitative RT-PCR for CYP24 and GAPDH mRNA content. Values represent the average ± SE.
constructs exhibited increased luciferase activity in response to 1α,25(OH)₂D₃, even in the absence of the cotransfected receptor (7- and 4-fold induction, respectively). This induction was increased in the presence of VDR. Interestingly, in both VDRE-I and VDRE-II reporter constructs, rifampicin produced an increase in reporter activity (approximately 4- to 6-fold induction) only in the presence of PXR cotransfection. In contrast, the luciferase activity of the site 3 reporter construct was affected neither by 1α,25(OH)₂D₃ treatment nor by rifampicin-activated PXR. We then introduced specific mutations into VDRE-I and VDRE-II motifs in the native CYP24 promoter (–326 to –22) by means of PCR-based site-directed mutagenesis. The effect of PXR on these mutated CYP24 gene promoters was investigated by transient transfection experiments. As shown in Figure 8B, the mutation in VDRE-I caused a strong decrease in both the VDR-dependent and the PXR-dependent luciferase induction. On the other hand, introduction of the mutation into VDRE-II retained half of the VDR response, while it completely abolished PXR-dependent luciferase induction. Double mutations in both VDRE-I and VDRE-II completely abolished both VDR and PXR response. These results demonstrate that PXR binds to and transactivates the 2 VDRE motifs present in the human CYP24 promoter.

Discussion
Recent studies have shown that the orphan nuclear receptor PXR plays a central role in the transcriptional regulation of enzymes and transporters involved in detoxification, such as CYP3A4 and MDR1 (38). PXR is activated by a number of pharmaceutical agents, including rifampicin, SR12813, taxol, clotrimazole, phenobarbital, hyperforin, the herbal antidepressant St. John’s wort (39), and HIV protease inhibitors such as ritonavir and saquinavir (40).

The results described here show that PXR activators increase the expression of CYP24, a VDR target gene, not only in cultured cells (primary culture of human hepatocytes and embryonic kidney cell line) but also in vivo in mice. In fact, we observed that CYP24 and CYP3A4, a typical PXR target gene, displayed similar dose-dependent and kinetic profiles of induction by PXR agonists, suggesting a common mechanism of regulation of these genes. CYP24 is PXR functions as a sensor to regulate xenobiotic clearance in the liver and intestine. Indeed, gene knockout studies have confirmed the role of PXR in the regulation of the metabolism of endogenous steroids and dietary and xenobiotic compounds (41). Interestingly, recent studies have demonstrated that PXR and VDR might signal through the same DNA-responsive elements, notably in iNOS (31), CYP3A4 (32, 33), CYP2B6 (8), and CYP2C9 (8) genes. In addition, VDR (29) and PXR (42) share ligands, such as the secondary bile acid lithocholic acid. These observations suggest the possibility of functional cross-talk between PXR and VDR.
a multifunctional enzyme that directs the side-chain oxidation and cleavage of 25(OH)D$_3$ and 1,25(OH)$_2$D$_3$ to catabolic carboxylic acid end products (43). It is well established that induction of the rat CYP24 gene by 1,25(OH)$_2$D$_3$ is mediated by 2 VDREs located about 100 bp apart within the 300-bp proximal promoter (35). In human hepatocytes, PXR-mediated CYP24 mRNA accumulation was not inhibited by CHX pretreatment, which suggests a direct effect of PXR on CYP24 gene expression. In addition, transfection studies in human embryonic kidney cells demonstrated that both human PXR and mouse PXR directly transactivate the CYP24 promoter. Moreover, we found that PXR binds to and transactivates the 2 proximal VDREs present in the CYP24 promoter. Point mutations within the S' half-site of either the upstream VDRE (AVDRE-II) or the downstream VDRE (AVDRE-I) led to a total inhibition of PXR-mediated induction of luciferase activity, which suggests that both sites are required for an efficient PXR-mediated CYP24 gene expression. Such cooperation between several PXREs is frequently observed within PXR target genes. In summary, our results demonstrate that CYP24 is a VDR target gene as well as a PXR target gene. Moreover, we observed that, in vivo in mice, activation of PXR by pregnenolone 16α-carbonitrile significantly increased the circulating level of 24,25(OH)$_2$D$_3$ (2-fold induction). These results fully prove our hypothesis and are in agreement with those previously obtained by others. Indeed, pharmacological doses of dexamethasone, another mouse PXR agonist and cyp3a inducer (28), increase intestinal and renal cyp24 mRNA accumulation and enzyme activity (44).

Since 24-hydroxylation is the initial enzymatic step in the catabolism of 1,25(OH)$_2$D$_3$, increased cyp24 gene expression and 24(OH)-ase activity might be expected to result in lower cellular concentrations of 1,25(OH)$_2$D$_3$ and, therefore, lower expression of VDR target genes (Figure 9). Indeed, many reports show that drugs now identified as PXR activators produce vitamin D deficiency and increase the risk of bone fracture. It is well-known that long term treatment with phenytoin, phenobarbital, rifampicin, or carbamazepine impairs bioavailability of vitamin D and bone mineralization, leading to osteomalacia and osteoporosis (13, 15–18, 20, 45–47). Consistent with this, it has been observed that the circulating level of 25(OH)D$_3$ or 1,25(OH)$_2$D$_3$ is decreased by these drugs (18, 20, 48, 49). In addition, osteopenia, osteoporosis, and osteonecrosis are the most significant bone disorders affecting patients suffering from HIV infection (50), and HIV-infected patients receiving antiretroviral therapy have a high prevalence of reduced bone mineral density (51). The mechanisms of these phenomena are complex and unclear. However, a part of these effects might be the consequence of CYP24 gene upregulation induced by the activation of PXR. Indeed, protease inhibitors have been suspected to play some role in this process (52, 53), and 2 of them, ritonavir and saquinavir (27, 40), are PXR agonists.

In the most classical view of molecular toxicology, undesirable effects of xenobiotics are primarily ascribed to the chemical reactivity of the parent compounds and/or of some of their metabolites that are produced during oxidative metabolism mediated notably by CYPs (e.g., covalent binding to proteins and DNA, effects on membrane lipids, etc.). A second aspect of the undesirable effects of xenobiotics results from the fact that these compounds may affect the level and activity of xenobiotic detoxification systems (interactions, induction, and inhibition). In this respect, although PXR evolved to protect the body from xenobiotic-mediated toxic effects, its activation by some drugs represents the basis for a common class of potentially life-threatening drug interactions in which one drug accelerates the metabolism of another (54). The cross-talk described here between PXR and VDR represents another aspect of the undesirable effects of xenobiotics, in which a xenobiotic-mediated increase in endobiotic-compound metabolism/catabolism can lead to endocrine system perturbation.

Methods

Chemicals. DMEM, DMEM, dexamethasone, rifampicin, 1α,25(OH)$_2$D$_3$, carbamazepine, hyperforin, pregnenolone 16α-carbonitrile, and culture medium additives were from Sigma-Aldrich. The radioisotope γ[32P]d-ATP was from Amersham International. Gelatin was purchased from Touzart-Matignon, neutral charcoal from NORIT, and dextran 20 from OSI

Figure 8

Functional and mutational analysis of human CYP24 VDREs. (A) Thymidine kinase promoter luciferase reporter vectors (pGL3klUC) driven by 3 repeats of oligonucleotides from the human CYP24 promoter (site 3, VDRE-I, and VDRE-II) were cotransfected with control expression plasmid (pSG5), human VDR (pSG5-hVDR), or human PXR (pSG5-ΔATG-PXR) into Hek293 cells, together with pRSV-β-gal transfection control plasmid. Cells were treated with vehicle (0.1% DMSO; UT), 50 nM 1α,25(OH)$_2$D$_3$ (VD3), or 10 μM rifampicin (RIF) for 24 hours. Cells were then harvested and analyzed for both luciferase and β-gal activities. Values represent β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. They were replicated in independent experiments. (B) Hek293 cells were transiently cotransfected with pSG5-ΔATG-PXR expression vector along with various human CYP24 promoter sequence–containing reporter constructs, together with pRSV-β-gal transfection control plasmid. Cells were treated with vehicle, 50 nM 1α,25(OH)$_2$D$_3$, or 10 μM rifampicin for 24 hours. Reporter constructs were as follows: −316 to −22 wild-type sequence in pGL3b (WT) or point mutants of VDRE-I (−316GCC mutated to GTT; AVDRE-I), VDRE-II (−299CACC to AAAA; ΔVDRE-II), or both VDREs (ΔVDREs). Values represent β-gal–corrected luciferase activities normalized to the corresponding level in untreated Hek293 cells and are the average of duplicates ± SE. They were replicated in independent experiments.
Pharmaceuticals. Unlabeled 25(OH)D₃ was a gift from Laboratorys Roussel-Uclaf, 24,25(OH)₂D₃ was a gift from M.L. Uskokovic (F. Hoffmann-La Roche Ltd.), and 26,27-³H-dihydroxyvitamin D₃ (specific activity, 23 Ci/mmol) was purchased from Amersham Biosciences Europe GmbH. Chromatography solvents (n-hexane and isopropanol), methanol, and chloroform were purchased from Merck SA.

Plasmids. The following plasmids have been described previously: pSG5-Δ¹⁰⁻⁻IPXR (28), pSG5-mPXR (28), pSG5-mRXR (8), and pSG5-hVDR (8). pRES-hPXR/neostin was generated by PCR amplification (High-Fidelity PCR system; F. Hoffmann-La Roche Ltd.) of cDNA encoding amino acids 1–434 of human PXR using oligonucleotides 5'-GGGTGTGGGGGATCCTCAGCTACCTGTGATGCCG and insertion into pIRESneo (BD Biosciences — Clontech) digested with EcoRI/BamHI.

Human CYP24 promoter deletions were obtained by PCR (Pfu Fidelity PCR system; F. Hoffmann-La Roche Ltd.) of cDNA encoding amino acids 1–434 of human PXR using oligonucleotides 5'-GGGTGTGGGGGATCCTCAGCTACCTGTGATGCCG and 5'-GGGTTGTTGGGATCCTCAGCTACCTGTGATGCCG and insertion into pIRESneo (BD Biosciences — Clontech) digested with EcoRI/BamHI.

Human CYP24 promoter deletions were obtained by PCR (Pfu Fidelity PCR system; F. Hoffmann-La Roche Ltd.) of cDNA encoding amino acids 1–434 of human PXR using oligonucleotides 5'-GGGTGTGGGGGATCCTCAGCTACCTGTGATGCCG and insertion into pIRESneo (BD Biosciences — Clontech) digested with EcoRI/BamHI.

pGL3tk. The following plasmids have been described previously: pSG5-Δ¹⁰⁻⁻IPXR (28), pSG5-mPXR (28), pSG5-mRXR (8), and pSG5-hVDR (8). pRES-hPXR/neostin was generated by PCR amplification (High-Fidelity PCR system; F. Hoffmann-La Roche Ltd.) of cDNA encoding amino acids 1–434 of human PXR using oligonucleotides 5'-GGGTGTGGGGGATCCTCAGCTACCTGTGATGCCG and insertion into pIRESneo (BD Biosciences — Clontech) digested with EcoRI/BamHI.

pGL3tk. The following plasmids have been described previously: pSG5-Δ¹⁰⁻⁻IPXR (28), pSG5-mPXR (28), pSG5-mRXR (8), and pSG5-hVDR (8). pRES-hPXR/neostin was generated by PCR amplification (High-Fidelity PCR system; F. Hoffmann-La Roche Ltd.) of cDNA encoding amino acids 1–434 of human PXR using oligonucleotides 5'-GGGTGTGGGGGATCCTCAGCTACCTGTGATGCCG and insertion into pIRESneo (BD Biosciences — Clontech) digested with EcoRI/BamHI.

The specific mutations of the VDREs in the native CYP24 promoter (~326 to ~22) were introduced by PCR-based site-directed mutagenesis (QuikChange PCR-mediated site-directed mutagenesis kit; Stratagene) using ~326-LUC vector as a template to produce ΔVDRE-I (²⁷⁸CACC mutated to GTT) and ΔVDRE-II (²⁸⁰CACC mutated to AAAA). The ΔVDRE-II vector was then used as a template to produce the ΔVDRE-I + ΔVDRE-II (ΔVDREs) construct.

Primary culture of human hepatocytes. Hepatocytes were prepared from 1 cm segments resected from adult patients for medically required purposes unrelated to our research program. The use of these human hepatic specimens for scientific purposes has been approved by the French National Ethics Committee (Paris, France). Hepatocytes were prepared and cultured according to a previously published procedure (56). The cells were plated into collagen-coated dishes at 0.17 x 10⁶ cells per square centimeter in a hormonally and chemically defined medium consisting of a mixture of Williams’s E medium and Ham’s F12 medium (1:1 in volume). Forty-eight hours after plating, cells were cultured in the presence of the specific concentrations of compounds.

Quantitative PCR. Total RNA was extracted from cells or frozen mouse tissues using TRIzol reagent (Invitrogen Corp.), according to the manufacturer’s instructions. Purity was confirmed by spectrophotometry. DNAs were synthesized from 1–2 µg of total RNA using the SuperScript II first-strand synthesis system for PCR (Invitrogen Corp.) at 42°C for 60 minutes, in the presence of random hexamers (Amersham Pharmacia Biotech). Quantification of mRNAs was performed using the LightCycler apparatus (Roche Diagnostics Corp.). Two microliters of diluted RT reaction (1:10) was used for real-time PCR amplification. The following program was used: a denaturation step at 95°C for 8 minutes, and 50 cycles of PCR (denaturation, 95°C, 15 seconds; annealing, 67°C, 10 seconds; extension, 72°C, 20 seconds). In all cases, the quality of the PCR product was assessed by monitoring of a fusion step at the end of the run. Mouse sense and reverse primers, respectively, were as follows: cyp24a1, 5'-CTCCTCTATGTCGATCGATGTAATG and 5'-TTTAAAAACGTG- GTCAAGGAGCTACCATAC; cyp3a11, 5'-GAGGAAAGAGCACCCTTGGATT and 5'-GGGGAGTGGGACCAAGAATGG; cypl, 5'-TGGAGGACGCAAGACGACA and 5'-TGCCGCGATGCAGCATGAT. Human sense and reverse primers, respectively, were as follows: CYP3A4, 5'-CACACCCGCAGAGGCTTTTG and 5'-ATCCATGCTGTTAGGCCCCAGCA; GAPDH, 5'-GGGTGAGTAACGAGGTTTGTGCG and 5'-CAAGGTTGTCATGTAGGAC; CYP24 (NM_000782), 5'-GTTGGCTCCAGCCAGACCTCTA and 5'-GGGGCGAGTTGTACAGGTG; CYP27B (NM_000785), 5'- CGAGAGGACCTTGAGCTCAG and 5'-TCTGGAGACGCCGAAATTTCC; CYP27A (NM_000784), 5'-GCTTCTCAGAAAGAGGTTTGTG and 5'-ACTGTGAGCCACCACTTCTATA; VDR (NM_000376), 5'-AGCAGCGCATCATT- GCCATA and 5'-CAGCATGGAGAGCTGAGACA. Human and mouse CYP24, CYP2R1, CYP27A, and VDR mRNA amplified fragments were purified using the NucleoSpin extract kit (Macherey-Nagel Co.) and verified by sequencing.

25(OH)D₃ 24-hydroxylase assay. Human hepatocytes plated in collagen-coated dishes were treated for 72 hours with 50 nM 1,25(OH)₂D₃, 20 µM rifampicin, or 500 µM phenobarbital. After rinsing with medium, 1.6 nM [³H-25(OH)D₃ (0.05 µCi) were added, and the cells were incubated for an additional 4 hours in 1 ml medium. The medium was removed and the [³H]-vitamin D₃ derivatives present in the medium were extracted by addition of 2 ml methanol plus 2 ml chloroform. The chloroform extract was cochromatographed with 100 ng unlabeled 24,25(OH)₂D₃ using a straight-phase HPLC system (Beckman Coulter Inc.) equipped with a 4.6 x 250 mm Ultrasphere Si column (Altex; Beckman Coulter Inc.), and equilibrated with n-hexane and isopropanol (95:5) (flow rate 1.5 ml/min). Absorbance at 254 nm was continually monitored, and effluent fractions were collected every minute. After evaporation to dryness, fractions were dissolved in Ultima Gold scintillation fluid (Packard Instrument Co.), and the radioactivity was measured. The 24-hydroxylase enzyme activity (femtomoles per culture well per 240 minutes) was calculated based on the percentage of the
injected radioactivity recovered in the 24,25(OH)2D3 regions after HPLC. The data were subjected to an overall statistical evaluation using ANOVA. Test groups were compared with respective untreated control groups using the Mann-Whitney nonparametric U test.

Animals and treatments. Male mice (C57BL/6; Charles River Laboratories France) were housed in a pathogen-free animal facility under a standard cycle of 12 hours light, 12 hours dark. After 1 week of acclimatization, pregnenolone 16α-carbonitrile (100 mg/kg/d) or dexamethasone (10 mg/kg/d) was injected in corn oil plus 5% DMSO through 6 successive daily administrations (n = 5 for each group). The mice were killed 4 hours after the last pregnenolone 16α-carbonitrile administration, and plasma and tissues (liver and kidney) were snap-frozen in liquid nitrogen.

Measurements of vitamin D metabolites in mouse plasma. The 25(OH)D3 metabolite was extracted from 50-μl plasma samples (n = 5) with methanol-chloroform, and chromatographed on Amprep C18 Mini-Columns (RP1900; Amersham Biosciences Europe GmbH) to separate 25(OH)D3 from vitamin D (57). The 24,25(OH)2D3 metabolite was extracted from 300-μl plasma samples (pool of 1–2 mice, n = 3) with methanol-chloroform, and chromatographed on a straight-phase HPLC system (Beckman Coulter Inc.) using 92% n-hexane and 8% isopropanol as solvents. The 25(OH)D3 region from Amprep C18 chromatography and the 24,25(OH)2D3 region from HPLC were dried down and dissolved in ethanol. They were then assayed by the competitive protein-binding assay of Preece et al. (58), with 2 modifications: serum vitamin D–binding protein was obtained from vitamin D–fed and not from vitamin D–deficient rats, and gelatin (3 g/l) was used instead of albumin. The quality of the results was controlled by simultaneous assessment of external standards (Vitamin D External Quality Assessment Scheme [DEQAS]).

Cell culture and transfections. Hek293 cells (human embryonic kidney cells) were obtained from the American Type Culture Collection and maintained in DMEM supplemented with 10% FCS, 100 μg/ml penicillin, and 100 μg/ml streptomycin (Invitrogen Corp.). Transfection of plasmid DNA was performed in single batches with FuGENE 6 (Roche Diagnostics Corp.) according to the manufacturer’s instructions. For reporter analysis, transfections were performed using 80,000 cells, 150 ng of luciferase-based reporter plasmids, and expression plasmids for mouse PXR (50 ng of pSG5-mPXR.1), human PXR (50 ng of pSG5-α-tt-hPXR), or human VDR (25 ng of pSG5-LVDR). As internal control, 50 ng of pRSV-β-gal (Promega Corp.) was added. After 12–16 hours, the medium was changed, and fresh medium containing 0.5% delipidated charcoal-stripped serum (Sigma-Aldrich) and 0.1% DMSO (vehicle) or inducers was added. Twenty-four hours after the medium was changed, the cells were harvested in reporter lysis buffer (Promega Corp.), and cell extracts were analyzed for luciferase and β-gal activities as described previously (8). Luciferase values were normalized with β-gal values calculated by division of the maximal response by the mean response elicited with vehicle.

Stable Hek293 clones expressing human PXR (Hek293-hPXR) were obtained by transfection of Hek293 cells with pIRES-hPXR/neon, and after 3 weeks of selection, with 600 μg/ml G418. Individual clones were then amplified and analyzed for PXR mRNA and protein expression levels.

Western blot analysis. Whole-cell lysates (106 cells) were prepared from Hek293 or stable transfectant Hek293-hPXR cell lines, with 300 μl of 100 mM Tris (pH 8.5), 250 mM NaCl, 1% NP-40, 1 mM EDTA, 1 mM DTT, and anti-protease tablets from Roche Diagnostics Corp. Following centrifugation (12,000 g for 10 minutes at 4°C), the supernatant was collected and stored at −80°C. Protein content was determined by bicinchoninic acid (BCA) protein assay (Interchim). Fifty-microgram extracts were subjected to 10% SDS-PAGE and transferred to PROTRAN nitrocellulose membrane (Schleicher & Schuell BioScience Inc.). Immunoblotting was carried out with actin antibody (I-19) and PXR antibody (N-16), both purchased from Santa Cruz Biotechnology Inc. Chemiluminesence detection was performed using HRP-conjugated secondary antibodies and the Amersham Biosciences Europe GmbH ECL kit.

Electrophoretic mobility shift assays. Double-stranded oligonucleotides corresponding to the 2 VDREs and site 3 of human CYP24 were synthesized (Invitrogen Corp.): VDRE-I (−174 to −151), CGGACGCCCTCGCTCCTACCTCTGCTGA; VDRE-II (−294 to −274), CGAAGACACCCCGGT-GAACTCCGG; site 3 (−316 to −291), GGAGGGCGGGAGGCCCCGTTC-GAG. The CYP3A4 ER6 probe and binding procedure have previously been described (8). Probes were end-labeled with 32P-ATP using T4 poly-nucleotide kinase (Promega Corp.) and then incubated for 20 minutes at room temperature with 1 μl of in vitro–synthesized PXR, VDR, or RXRα (transcription and translation–coupled [TNT-coupled] transcriptional translation; Promega Corp.). DNA-protein complexes were subjected to electrophoresis on a 4% polyacrylamide gel (30:1 acrylamide/bis-acrylamide) in 0.5× TBE (1× TBE = 89 mM Tris, 89 mM boric acid, 2 mM EDTA). Gels were dried and subjected to autoradiography with XAR film (Eastman Kodak Co. Scientific Imaging Systems).

Acknowledgments

We are grateful to Sanofi-Synthélabo France SA for financial support. We thank L. Pichard-Garcia for the preparation of human hepatocytes, and F. Lasserre and C. Bétoulières (Institut National de la Recherche Agronomique) for assistance in execution of animal studies.

Received for publication April 13, 2004, and accepted in revised form October 26, 2004.

Address correspondence to: J.M. Pascussi, INSERM 632, IFR122, Campus CNRS, 1919, Route de Mende, 34293 Montpellier, France. Phone: 33-4-67613369; Fax: 33-4-67523681; E-mail: pascussi@montp.inserm.fr.