G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation, Nature Medicine, vol.271, issue.2, pp.177-82, 1997.
DOI : 10.1016/0925-4439(92)90096-6

G. L. Semenza, Hypoxia-inducible factor 1: master regulator of O2 homeostasis, Current Opinion in Genetics & Development, vol.8, issue.5, pp.588-94, 1998.
DOI : 10.1016/S0959-437X(98)80016-6

C. Brahimi-horn, N. Mazure, J. Pouyssegur, N. Masson, and P. J. Ratcliffe, Signalling via the hypoxia-inducible factor-1?? requires multiple posttranslational modifications, Cellular Signalling, vol.17, issue.1, pp.1-9, 2003.
DOI : 10.1016/j.cellsig.2004.04.010

URL : https://hal.archives-ouvertes.fr/hal-00322370

R. K. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.58-62, 2005.
DOI : 10.1126/science.1104819

J. Folkman, Anti-Angiogenesis, Annals of Surgery, vol.175, issue.3, pp.409-425, 1972.
DOI : 10.1097/00000658-197203000-00014

A. Lal, H. Peters, B. St-croix, Z. A. Haroon, M. W. Dewhirst et al., Transcriptional Response to Hypoxia in Human Tumors, JNCI Journal of the National Cancer Institute, vol.93, issue.17, pp.1337-1380, 2001.
DOI : 10.1093/jnci/93.17.1337

B. St-croix, C. Rago, V. Velculescu, G. Traverso, K. E. Romans et al., Genes Expressed in Human Tumor Endothelium, Science, vol.289, issue.5482, pp.1197-202, 2000.
DOI : 10.1126/science.289.5482.1197

S. B. Scheurer, J. N. Rybak, C. Rosli, D. Neri, and G. Elia, Modulation of gene expression by hypoxia in human umbilical cord vein endothelial cells: A transcriptomic and proteomic study, PROTEOMICS, vol.4, issue.6, pp.1737-60, 2004.
DOI : 10.1002/pmic.200300689

W. Ning, T. J. Chu, C. J. Li, A. M. Choi, and D. G. Peters, Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia, Physiological Genomics, vol.18, issue.1, pp.70-78, 2004.
DOI : 10.1152/physiolgenomics.00221.2003

D. J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B. D. Kelly et al., Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1, Blood, vol.105, issue.2, pp.659-69, 2005.
DOI : 10.1182/blood-2004-07-2958

M. Hubank and D. G. Schatz, [19] cDNA representational difference analysis: A sensitive and flexible method for identification of differentially expressed genes, Methods Enzymol, vol.303, pp.325-374, 1999.
DOI : 10.1016/S0076-6879(99)03021-9

K. Pastorian, L. Hawel, and C. V. Byus, Optimization of cDNA Representational Difference Analysis for the Identification of Differentially Expressed mRNAs, Analytical Biochemistry, vol.283, issue.1, pp.89-98, 2000.
DOI : 10.1006/abio.2000.4622

L. Jan, S. Amy, C. Cazes, A. Monnot, C. Lamande et al., Angiopoietin-Like 4 Is a Proangiogenic Factor Produced during Ischemia and in Conventional Renal Cell Carcinoma, The American Journal of Pathology, vol.162, issue.5, pp.1521-1529, 2003.
DOI : 10.1016/S0002-9440(10)64285-X

M. Diehn, G. Sherlock, G. Binkley, H. Jin, J. C. Matese et al., SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data, Nucleic Acids Research, vol.31, issue.1, pp.219-242, 2003.
DOI : 10.1093/nar/gkg014

L. Meur, N. Lamirault, G. Bihouee, A. Steenman, M. Bedrine-ferran et al., A dynamic, web-accessible resource to process raw microarray scan data into consolidated gene expression values: importance of replication, Nucleic Acids Research, vol.32, issue.18, pp.5349-58, 2004.
DOI : 10.1093/nar/gkh870

G. C. Tseng, M. K. Oh, L. Rohlin, J. C. Liao, and W. H. Wong, Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects, Nucleic Acids Research, vol.29, issue.12, pp.2549-57, 2001.
DOI : 10.1093/nar/29.12.2549

G. K. Smyth, Normalization of cDNA microarray data, Methods, vol.31, issue.4, p.15, 2004.
DOI : 10.1016/S1046-2023(03)00155-5

N. Kojima, N. Shiojiri, Y. Sakai, and A. Miyajima, Expression of neuritin during liver maturation and regeneration, FEBS Letters, vol.94, issue.21, pp.4562-4568, 2005.
DOI : 10.1016/j.febslet.2005.07.015

E. Nedivi, G. Y. Wu, and H. T. Cline, Promotion of Dendritic Growth by CPG15, an Activity-Induced Signaling Molecule, Science, vol.281, issue.5384, pp.1863-1869, 1998.
DOI : 10.1126/science.281.5384.1863

A. Javaherian and H. T. Cline, Coordinated Motor Neuron Axon Growth and Neuromuscular Synaptogenesis Are Promoted by CPG15 In Vivo, Neuron, vol.45, issue.4, pp.505-517, 2005.
DOI : 10.1016/j.neuron.2004.12.051

A. Eichmann, L. Noble, F. Autiero, M. Carmeliet, and P. , Guidance of vascular and neural network formation, Current Opinion in Neurobiology, vol.15, issue.1, pp.108-123, 2005.
DOI : 10.1016/j.conb.2005.01.008

T. Onita, P. G. Ji, J. W. Xuan, H. Sakai, H. Kanetake et al., Hypoxia-induced, perinecrotic expression of endothelial Per-ARNT-Sim domain protein-1/hypoxia-inducible factor-2alpha correlates with tumor progression, vascularization, and focal macrophage infiltration in bladder cancer, Clin Cancer Res, vol.8, pp.471-80, 2002.

A. Nishiyama, M. Matsui, S. Iwata, K. Hirota, H. Masutani et al., Identification of Thioredoxin-binding Protein-2/Vitamin D3 Up-regulated Protein 1 as a Negative Regulator of Thioredoxin Function and Expression, Journal of Biological Chemistry, vol.274, issue.31, pp.21645-50, 1999.
DOI : 10.1074/jbc.274.31.21645

S. H. Han, J. H. Jeon, H. R. Ju, U. Jung, K. Y. Kim et al., VDUP1 upregulated by TGF-??1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression, Oncogene, vol.22, issue.26, pp.4035-4081, 2003.
DOI : 10.1038/sj.onc.1206610

M. Ikarashi, Y. Takahashi, Y. Ishii, T. Nagata, S. Asai et al., Vitamin D3 up-regulated protein 1 (VDUP1) expression in gastrointestinal cancer and its relation to stage of disease, Anticancer Res, vol.22, pp.4045-4053, 2002.

D. Feldser, F. Agani, N. V. Iyer, B. Pak, G. Ferreira et al., Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2, Cancer Res, vol.59, pp.3915-3923, 1999.

A. C. Koong, N. C. Denko, K. M. Hudson, C. Schindler, L. Swiersz et al., 104 candidate genes for the hypoxic tumor phenotype, International Journal of Radiation Oncology*Biology*Physics, vol.45, issue.3, pp.883-890, 2000.
DOI : 10.1016/S0360-3016(99)90122-0

H. M. Fraser, S. F. Lunn, H. Kim, and G. F. Erickson, Insulin-like growth factor binding protein-3 mRNA expression in endothelial cells of the primate corpus luteum, Human Reproduction, vol.13, issue.8, pp.2180-2185, 1998.
DOI : 10.1093/humrep/13.8.2180

M. C. Bisoffi, M. Wetterwald, A. Gautschi, E. Thalmann, G. N. Mitola et al., Insulin-like growth factor binding protein-3 is overexpressed in endothelial cells of mouse breast tumor vessels, Int J Cancer, vol.103, pp.577-86, 2003.

C. W. Cheung, D. A. Vesey, D. L. Nicol, and D. W. Jonhson, The roles of IGF-I and IGFBP-3 in the regulation of proximal tubule, and renal cell carcinoma cell proliferation, Kidney International, vol.65, issue.4, pp.1272-79, 2004.
DOI : 10.1111/j.1523-1755.2004.00535.x

S. L. Franklin, R. J. Ferry, . Jr, and P. Cohen, Rapid Insulin-Like Growth Factor (IGF)-Independent Effects of IGF Binding Protein-3 on Endothelial Cell Survival, The Journal of Clinical Endocrinology & Metabolism, vol.88, issue.2, pp.900-907, 2003.
DOI : 10.1210/jc.2002-020472

K. Iwatsuki, K. Tanaka, T. Kaneko, R. Kazama, S. Okamoto et al., Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3, Oncogene, vol.24, issue.7, pp.1129-1166, 2005.
DOI : 10.1038/sj.onc.1208287