G. David, N. Abbas, G. Stevanin, A. Durr, and G. Yvert, Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion, Nature Genetics, vol.81, issue.1, pp.65-70, 1997.
DOI : 10.1016/0896-6273(95)90138-8

A. Michalik, J. Martin, and C. Van-broeckhoven, Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy, European Journal of Human Genetics, vol.12, issue.1, pp.2-15, 2004.
DOI : 10.1038/sj.ejhg.5201108

C. Cummings and H. Zoghbi, Fourteen and counting: unraveling trinucleotide repeat diseases, Human Molecular Genetics, vol.9, issue.6, pp.909-916, 2000.
DOI : 10.1093/hmg/9.6.909

URL : http://hmg.oxfordjournals.org/cgi/content/short/9/6/909

T. Enevoldson, M. Sanders, and A. Harding, Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy. A clinical and genetic study of eight familes, Brain, vol.117, issue.3, pp.445-460, 1994.
DOI : 10.1093/brain/117.3.445

M. Brand, K. Yamamoto, A. Staub, and L. Tora, Identification of TATA-binding Protein-free TAFII-containing Complex Subunits Suggests a Role in Nucleosome Acetylation and Signal Transduction, Journal of Biological Chemistry, vol.274, issue.26, pp.18285-18289, 1999.
DOI : 10.1074/jbc.274.26.18285

E. Martinez, T. Kundu, J. Fu, and R. Roeder, A Human SPT3-TAFII31-GCN5-L Acetylase Complex Distinct from Transcription Factor IID, Journal of Biological Chemistry, vol.273, issue.37, pp.23781-23785, 1998.
DOI : 10.1074/jbc.273.37.23781

S. Hardy, M. Brand, G. Mittler, J. Yanagisawa, and S. Kato, TATA-binding Protein-free TAF-containing Complex (TFTC) and p300 Are Both Required for Efficient Transcriptional Activation, Journal of Biological Chemistry, vol.277, issue.36, pp.32875-32882, 2002.
DOI : 10.1074/jbc.M205860200

M. Carrozza, R. Utley, J. Workman, and J. Cote, The diverse functions of histone acetyltransferase complexes, Trends in Genetics, vol.19, issue.6, pp.321-329, 2003.
DOI : 10.1016/S0168-9525(03)00115-X

P. Grant, L. Duggan, J. Cote, S. Roberts, and J. Brownell, Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex., Genes & Development, vol.11, issue.13, pp.1640-1650, 1997.
DOI : 10.1101/gad.11.13.1640

E. Martinez, Multi-protein complexes in eukaryotic gene transcription, Plant Molecular Biology, vol.50, issue.6, pp.925-947, 2002.
DOI : 10.1023/A:1021258713850

K. Huisinga and B. Pugh, A Genome-Wide Housekeeping Role for TFIID and a Highly Regulated Stress-Related Role for SAGA in Saccharomyces cerevisiae, Molecular Cell, vol.13, issue.4, pp.573-585, 2004.
DOI : 10.1016/S1097-2765(04)00087-5

K. Sugars and D. Rubinsztein, Transcriptional abnormalities in Huntington disease, Trends in Genetics, vol.19, issue.5, pp.233-238, 2003.
DOI : 10.1016/S0168-9525(03)00074-X

C. Jeon, E. Strettoi, and R. Masland, The major cell populations of the mouse retina, J Neurosci, vol.18, pp.8936-8946, 1998.

L. Carter-dawson and M. Lavail, Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy, The Journal of Comparative Neurology, vol.49, issue.2, pp.245-262, 1979.
DOI : 10.1002/cne.901880204

G. Yvert, K. Lindenberg, S. Picaud, G. Landwehrmeyer, and J. Sahel, Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice, Human Molecular Genetics, vol.9, issue.17, pp.2491-2506, 2000.
DOI : 10.1093/hmg/9.17.2491

D. Helmlinger, G. Abou-sleymane, G. Yvert, S. Rousseau, and C. Weber, Disease Progression Despite Early Loss of Polyglutamine Protein Expression in SCA7 Mouse Model, Journal of Neuroscience, vol.24, issue.8, pp.1881-1887, 2004.
DOI : 10.1523/JNEUROSCI.4407-03.2004

S. Yoo, M. Pennesi, E. Weeber, B. Xu, and R. Atkinson, SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity, Neuron, vol.37, issue.3, pp.383-401, 2003.
DOI : 10.1016/S0896-6273(02)01190-X

S. Mcmahon, M. Pray-grant, D. Schieltz, J. Yates, and P. Grant, Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity, Proceedings of the National Academy of Sciences, vol.13, issue.4, pp.8478-8482, 2005.
DOI : 10.1016/S1097-2765(04)00087-5

V. Palhan, S. Chen, G. Peng, A. Tjernberg, and A. Gamper, Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration, Proceedings of the National Academy of Sciences, vol.38, issue.5, pp.8472-8477, 2005.
DOI : 10.1016/S0896-6273(03)00328-3

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1150862

K. Mitton, P. Swain, S. Chen, S. Xu, and D. Zack, The Leucine Zipper of NRL Interacts with the CRX Homeodomain: A POSSIBLE MECHANISM OF TRANSCRIPTIONAL SYNERGY IN RHODOPSIN REGULATION, Journal of Biological Chemistry, vol.275, issue.38, pp.29794-29799, 2000.
DOI : 10.1074/jbc.M003658200

A. Mears, M. Kondo, P. Swain, Y. Takada, and R. Bush, Nrl is required for rod photoreceptor development, Nature Genetics, vol.29, issue.4, pp.447-452, 2001.
DOI : 10.1038/ng774

S. Chen, Q. Wang, Z. Nie, H. Sun, and G. Lennon, Crx, a Novel Otx-like Paired-Homeodomain Protein, Binds to and Transactivates Photoreceptor Cell-Specific Genes, Neuron, vol.19, issue.5, pp.1017-1030, 1997.
DOI : 10.1016/S0896-6273(00)80394-3

T. Furukawa, E. Morrow, and C. Cepko, Crx, a Novel otx-like Homeobox Gene, Shows Photoreceptor-Specific Expression and Regulates Photoreceptor Differentiation, Cell, vol.91, issue.4, pp.531-541, 1997.
DOI : 10.1016/S0092-8674(00)80439-0

URL : http://doi.org/10.1016/s0092-8674(00)80439-0

M. Kobayashi, S. Takezawa, K. Hara, R. Yu, and Y. Umesono, Identification of a photoreceptor cell-specific nuclear receptor, Proceedings of the National Academy of Sciences, vol.17, issue.2, pp.4814-4819, 1999.
DOI : 10.1038/ng1097-132

N. Haider, J. Naggert, and P. Nishina, Excess cone cell proliferation due to lack of a functional NR2E3 causes retinal dysplasia and degeneration in rd7/rd7 mice, Human Molecular Genetics, vol.10, issue.16, pp.1619-1626, 2001.
DOI : 10.1093/hmg/10.16.1619

G. Abou-sleymane, F. Chalmel, D. Helmlinger, A. Lardenois, and C. Weber, Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program, Human Molecular Genetics, vol.15, issue.5, 2006.
DOI : 10.1093/hmg/ddi483

URL : https://hal.archives-ouvertes.fr/hal-00187833

Z. Nie, S. Chen, R. Kumar, and D. Zack, RER, an Evolutionarily Conserved Sequence Upstream of the Rhodopsin Gene, Has Enhancer Activity, Journal of Biological Chemistry, vol.271, issue.5, pp.2667-2675, 1996.
DOI : 10.1074/jbc.271.5.2667

J. Zhang, J. Gray, L. Wu, G. Leone, and S. Rowan, Rb regulates proliferation and rod photoreceptor development in the mouse retina, Nature Genetics, vol.36, issue.4, pp.351-360, 2004.
DOI : 10.1038/ng1318

P. Grant, D. Schieltz, M. Pray-grant, D. Steger, and J. Reese, A Subset of TAFIIs Are Integral Components of the SAGA Complex Required for Nucleosome Acetylation and Transcriptional Stimulation, Cell, vol.94, issue.1, pp.45-53, 1998.
DOI : 10.1016/S0092-8674(00)81220-9

M. Brand, J. Moggs, M. Oulad-abdelghani, F. Lejeune, and F. Dilworth, UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation, The EMBO Journal, vol.20, issue.12, pp.3187-3196, 2001.
DOI : 10.1093/emboj/20.12.3187

A. Bowman, S. Yoo, N. Dantuma, and H. Zoghbi, Neuronal dysfunction in a polyglutamine disease model occurs in the absence of ubiquitin-proteasome system impairment and inversely correlates with the degree of nuclear inclusion formation, Human Molecular Genetics, vol.14, issue.5, pp.679-691, 2005.
DOI : 10.1093/hmg/ddi064

R. Luthi-carter, A. Strand, N. Peters, S. Solano, and Z. Hollingsworth, Decreased expression of striatal signaling genes in a mouse model of Huntington's disease, Human Molecular Genetics, vol.9, issue.9, pp.1259-1271, 2000.
DOI : 10.1093/hmg/9.9.1259

R. Luthi-carter, A. Strand, S. Hanson, C. Kooperberg, and G. Schilling, Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects, Human Molecular Genetics, vol.11, issue.17, pp.1927-1937, 2002.
DOI : 10.1093/hmg/11.17.1927

URL : http://hmg.oxfordjournals.org/cgi/content/short/11/17/1927

P. Grant, A. Eberharter, S. John, R. Cook, and B. Turner, Expanded Lysine Acetylation Specificity of Gcn5 in Native Complexes, Journal of Biological Chemistry, vol.274, issue.9, pp.5895-5900, 1999.
DOI : 10.1074/jbc.274.9.5895

R. Balasubramanian, M. Pray-grant, W. Selleck, P. Grant, and S. Tan, Role of the Ada2 and Ada3 Transcriptional Coactivators in Histone Acetylation, Journal of Biological Chemistry, vol.277, issue.10, pp.7989-7995, 2002.
DOI : 10.1074/jbc.M110849200

R. Hughes, R. Lo, C. Davis, A. Strand, and C. Neal, Altered transcription in yeast expressing expanded polyglutamine, Proceedings of the National Academy of Sciences, vol.11, issue.3, pp.13201-13206, 2001.
DOI : 10.1016/S0955-0674(99)80046-5

F. Giorgini, P. Guidetti, Q. Nguyen, S. Bennett, and P. Muchowski, A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease, Nature Genetics, vol.60, issue.5, pp.526-531, 2005.
DOI : 10.1073/pnas.0408936102

D. Helmlinger, S. Hardy, A. Eberlin, D. Devys, and T. L. , Both normal and polyglutamine- expanded ataxin-7 are components of TFTC-type GCN5 histone acetyltransferase- containing complexes, Biochemical Society Symposium, vol.73, 2006.
DOI : 10.1042/bss0730155

L. Spada, A. Fu, Y. Sopher, B. Libby, R. Wang et al., Polyglutamine-Expanded Ataxin-7 Antagonizes CRX Function and Induces Cone-Rod Dystrophy in a Mouse Model of SCA7, Neuron, vol.31, issue.6, pp.913-927, 2001.
DOI : 10.1016/S0896-6273(01)00422-6

S. Chen, G. Peng, X. Wang, A. Smith, and S. Grote, Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization, Human Molecular Genetics, vol.13, issue.1, pp.53-67, 2004.
DOI : 10.1093/hmg/ddh005

D. Chen, A. Belmont, and S. Huang, Upstream binding factor association induces large-scale chromatin decondensation, Proceedings of the National Academy of Sciences, vol.14, issue.23, pp.15106-15111, 2004.
DOI : 10.1101/gad.848800

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC524054

A. Carpenter, S. Memedula, M. Plutz, and A. Belmont, Common Effects of Acidic Activators on Large-Scale Chromatin Structure and Transcription, Molecular and Cellular Biology, vol.25, issue.3, pp.958-968, 2005.
DOI : 10.1128/MCB.25.3.958-968.2005

K. Chau, N. Munshi, A. Keane-myers, K. Cheung-chau, and A. Tai, The architectural transcription factor high mobility group I(Y) participates in photoreceptor-specific gene expression, J Neurosci, vol.20, pp.7317-7324, 2000.

N. Munshi, T. Agalioti, S. Lomvardas, M. Merika, and G. Chen, Coordination of a Transcriptional Switch by HMGI(Y) Acetylation, Science, vol.293, issue.5532, pp.1133-1136, 2001.
DOI : 10.1126/science.293.5532.1133

D. Spector and S. Gasser, A molecular dissection of nuclear function, EMBO reports, vol.11, issue.1, pp.18-23, 2003.
DOI : 10.1038/sj.embor.embor701

S. Janicki, T. Tsukamoto, S. Salghetti, W. Tansey, and R. Sachidanandam, From Silencing to Gene Expression, Cell, vol.116, issue.5, pp.683-698, 2004.
DOI : 10.1016/S0092-8674(04)00171-0

C. Francastel, D. Schubeler, D. Martin, and M. Groudine, Nuclear compartmentalization and gene activity, Nature Reviews Molecular Cell Biology, vol.1, issue.2, pp.137-143, 2000.
DOI : 10.1038/35040083

J. Casolari, C. Brown, S. Komili, J. West, and H. Hieronymus, Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization, Cell, vol.117, issue.4, pp.427-439, 2004.
DOI : 10.1016/S0092-8674(04)00448-9

C. Neophytou, A. Vernallis, A. Smith, and M. Raff, Muller-cell-derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development, Development, vol.124, pp.2345-2354, 1997.

F. Cammas, M. Herzog, T. Lerouge, P. Chambon, and R. Losson, Association of the transcriptional corepressor TIF1?? with heterochromatin protein 1 (HP1): an essential role for progression through differentiation, Genes & Development, vol.18, issue.17, pp.2147-2160, 2004.
DOI : 10.1101/gad.302904

S. Cai, H. Han, and T. Kohwi-shigematsu, Tissue-specific nuclear architecture and gene expession regulated by SATB1, Nature Genetics, vol.34, issue.1, pp.42-51, 2003.
DOI : 10.1038/ng1146

K. Ishii, G. Arib, C. Lin, G. Van-houwe, and U. Laemmli, Chromatin Boundaries in Budding Yeast, Cell, vol.109, issue.5, pp.551-562, 2002.
DOI : 10.1016/S0092-8674(02)00756-0

P. Vinciguerra and F. Stutz, mRNA export: an assembly line from genes to nuclear pores, Current Opinion in Cell Biology, vol.16, issue.3, pp.285-292, 2004.
DOI : 10.1016/j.ceb.2004.03.013

G. Wollensak, E. Perlman, and W. Green, Interphase fluorescence in situ hybridisation of the X and Y chromosomes in the human eye, British Journal of Ophthalmology, vol.85, issue.10, pp.1244-1247, 2001.
DOI : 10.1136/bjo.85.10.1244

D. Bok, The retinal pigment epithelium: a versatile partner in vision, Journal of Cell Science, vol.1993, issue.Supplement 17, pp.189-195, 1993.
DOI : 10.1242/jcs.1993.Supplement_17.27