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Direction-of-Arrival Estimation through Exact
Continuous `2,0-Norm Relaxation

Emmanuel Soubies, Adilson Chinatto, Pascal Larzabal, João M. T. Romano, and Laure Blanc-Féraud

Abstract—On-grid based direction-of-arrival (DOA) estimation
methods rely on the resolution of a difficult group-sparse opti-
mization problem that involves the `2,0 pseudo-norm. In this
work, we show that an exact relaxation of this problem can
be obtained by replacing the `2,0 term with a group minimax
concave penalty with suitable parameters. This relaxation is
more amenable to non-convex optimization algorithms as it is
continuous and admits less local (not global) minimizers than
the initial `2,0-regularized criteria. We then show on numerical
simulations that the minimization of the proposed relaxation with
an iteratively reweighted `2,1 algorithm leads to an improved
performance over traditional approaches.

Index Terms—DOA, MMV-sparse optimization, Exact relax-
ations, `2,0-norm minimization.

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is of fun-
damental importance in array signal processing. It refers

to the process of retrieving the incident angles of signals reach-
ing an antenna array. Conventional estimation techniques [1]
include beamforming methods such as Bartlett or Capon’s [2]
beamformers, subspace methods like the MUSIC [3] or ES-
PRIT [4] algorithms, as well as maximum likelihood ap-
proaches [5]. Because subspace methods exploit the statistical
properties of the observations, accurate DOA estimation is
only made possible at the price of a large number of snapshots
and sufficiently uncorrelated sources. Maximum likelihood
approaches are, for their part, very sensitive to initialization.

During the last decade, these limitations have been over-
come with the advent of sparse optimization. Many innovative
DOA estimation approaches have been proposed in this con-
text. They come in many flavors: on-grid, off-grid, or gridless,
according to the strategy adopted to deal with the non-
linearity of the DOA model [6]. On-grid methods make the
assumption that the incident angles belong to a prescribed grid.
DOA estimation is then transformed into a challenging linear
group-sparse optimization problem involving the `2,0 pseudo
norm that can be tackled through `2,1 (or group-LASSO)
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relaxation [7], [8], [9], `2,q relaxation (0 6 q < 1) [10],
[11], smoothed `2,0-norm approximation [12], [13], or greedy
methods [14], [15]. Although still relying on a grid, off-grid
methods do not constraint estimated DOAs to be on that
grid [16], [17]. This mitigates the grid mismatch problem [18]
at the price of the introduction of an auxiliary variable to
the sparse optimization problem. Finally, gridless approaches
work directly in the continuous domain [19], [20], [21], [22],
thus avoiding the grid mismatch problem. However, they may
be computationally intensive as they rely on the resolution
of a semi-definite program. For more details on sparse-based
methods for DOA estimation, we refer the reader to the
comprehensive reviews [6][23].

Contributions: We show that the challenging group-
sparse optimization problem that defines on-grid DOA estima-
tion methods can be exactly relaxed by replacing the `2,0 term
by a group minimax concave penalty (group-MCP) [24]. More
precisely, we prove that for a suitable choice of the group-MCP
parameters the relaxation preserves the global minimizers of
the `2,0 penalized least-squares criteria while removing some
of its local minimizers (Theorem 2). Moreover, we propose
a new dimensionality reduction technique to decrease the
computational burden of the estimation when the number
of snapshots is larger than the number of antennas (Propo-
sition 1). Finally, we deploy an iteratively reweighted `2,1
algorithm to minimize the proposed relaxation and compare
its performance against previously proposed on-grid methods.

Notations: We use the notation IN = {1, . . . , N}. For a
matrix S ∈ CM×N and a set of indices ω ⊂ IN , Sω· ∈ CN
denotes the restriction of S to its rows indexed by ω while
S·ω ∈ CM stands for its column counterpart. The Frobenius
norm is denoted ‖ · ‖F. The indicator function of the subset
Ω is defined by 1{x∈Ω} := {1 if x ∈ Ω, 0 otherwise}.
u⊗v ∈ CM×N stands for the tensor product between u ∈ CM
and v ∈ CN . Finally, x̄ denotes the conjugate of x ∈ C and
AH the conjugate transpose of A ∈ CM×N .

II. GROUP-SPARSE FORMULATION OF DOA ESTIMATION

The general equation that describes an antenna array is

Y = A(θ̄)S + N, (1)

where S ∈ CK×L is a matrix formed out of the L samples
of the K incident signals, Y ∈ CM×L is the observation
matrix containing the L snapshots of the M antennas outputs,
and N ∈ CM×L is an additive zero mean Gaussian noise
with variance σ2

noise. The non-linear operator A : [0, 2π)K →
CM×K is defined by

A(θ̄) = (a(θ̄1) a(θ̄2) · · · a(θ̄K)), (2)
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where θ̄ = (θ̄1 · · · θ̄K)T ∈ [0, 2π)K is the vector of incident
angles. The steering vectors (a(θ̄k))Kk=1 depend on the ge-
ometry of the antenna array. Then, given Y, DOA estimation
amounts to retrieve the number of signals K and their incident
angles θ̄. This is a challenging non-linear inverse problem.

By considering a set of predefined possible DOA angles θ =
(θ1 · · · θN )T ∈ [0, 2π)N (N � K), we obtain a linearized
version of model (1) as

Y ≈ AZ + N, (3)

where Z ∈ CN×L is a row sparse matrix with K �
N nonzero rows. Here, the matrix A = A(θ) =
(a(θ1) a(θ2) · · · a(θN )) ∈ CM×N is formed out of the
candidate steering vectors (a(θn))Nn=1. It follows that the
nonzero rows of Z (i.e., its support) encode the incident angles
θ̄ up to the fineness of the grid (θn)Nn=1. Hence, with (3),
DOA estimation is converted into a group-sparse estimation
problem also referred to as multiple measurement vectors
(MMV) sparse estimation problem.

A natural measure of the row-sparsity of a matrix Z is given
by the mixed `2,0 pseudo norm [10], [12]

‖Z‖2,0 =
∑
n∈IN

| ‖Zn·‖2 |0, (4)

where |z|0 = {0 if z = 0 ; 1 otherwise} and Zn· denotes
the nth row of Z. Then, DOA estimation can be addressed
through the following (`2-`2,0) optimization problem

Ẑ ∈ arg min
Z∈CN×L

J(Z) :=
1

2
‖AZ−Y‖2F + λ‖Z‖2,0, (5)

where λ > 0 balances between data-fidelity and sparsity. This
problem is nonconvex, noncontinuous, and NP hard due to
its combinatorial nature. Yet, the single measurement vector
(SMV) case (i.e., L = 1) has been widely studied, driven by
the compressed sensing paradigm. Naturally, many of these
approaches have been extended to the MMV setting, such
as those mentioned in the introduction. Such extensions are
essential as the resolution of MMV problems leads to an
improvement in the size of the recoverable support [25].

III. DIMENSIONALITY REDUCTION

The computational cost of the algorithms deployed to mini-
mize J in (5) grows with the size of the problem (i.e., N×L).
It is thus of practical interest to reduce this size. Inspired by
the `1-SVD method [7], [26], we show in Proposition 1 that,
when M < L, minimizing J : CN×L → R is equivalent to
minimizing F0 : CN×M → R defined by

F0(X) =
1

2
‖AX−YVDT‖2F + λ‖X‖2,0. (6)

where V comes from the singular value decomposition of Y
(Y = UΣVH) and D = [IM ,0M×(L−M)]. This shows that
the dimension of (5) can be reduced from (N×L) to (N×M ).

Proposition 1. Let M < L and F0 be defined by (6). Then
1) For each local minimizer X̂ ∈ CN×M of F0, Ẑ =

X̂DVH ∈ CN×L is a local minimizer of J and
J(Ẑ) = F0(X̂).

2) There is a one-to-one mapping between strict local
minimizers (including global minimizers) of J and F0.

Proof. Let X̂ ∈ CN×M be a local minimizer of F0 and denote
by ω ⊆ IN its support. Then, from [27, Lemma 2.4]1 we have

(AH
·ωA·ω)X̂ω· = AH

·ωYVDT (7)

=⇒ (AH
·ωA·ω)X̂ω·DVH = AH

·ωY, (8)

=⇒ (AH
·ωA·ω)(X̂DVH)ω· = AH

·ωY, (9)

showing that Ẑ = X̂DVH is a local minimizer of J . To
obtain (8), we used the fact that V is unitary and that, by
definition of V and D, YVDTD = YV. Then, one can see
from (7)–(9) that X̂ and Ẑ have the same row-support and
thus that ‖X̂‖2,0 = ‖Ẑ‖2,0. Finally, we obtain the equality
J(Ẑ) = F0(X̂) by combining the previous arguments with
the equality ‖ · ‖2F = ‖ ·DVH‖2F.

The second assertion of the proposition comes from the
fact that A·ω is full rank [27, Theorem 3.2] for strict local
minimizers. This implies that the systems in (7)–(9) have a
unique solution. Finally, the fact that global minimizers of J
and F0 are strict [27, Theorem 4.4] completes the proof.

From Proposition 1, we get that we can easily obtain a
local minimizer of J from one of F0 (first assertion). And
more importantly, that any global minimizer of J can be
reached from global minimizers of F0 (second assertion). In
this respect, the two problems are equivalent.

IV. AN EXACT CONTINUOUS RELAXATION OF F0

We consider the following relaxation2 of F0 in (6)

F̃ (X) =
1

2
‖AX−YVDT‖2F +

∑
n∈IN

φ(γn, λ; ‖Xn·‖2), (10)

where γn > 0 for n ∈ IN , and φ(γ, λ; ·) : R≥0 → R is the
minimax concave penalty (MCP) [28] defined, for x > 0, by

φ(γ, λ;x) = λ− 1

2γ

(
x−

√
2λγ

)2

1{x≤√2λγ}. (11)

It is a piecewise quadratic function (see Figure 1) that satisfies
φ(γ, λ;x) ≤ λ|x|0 with equality for x ∈ {0} ∪ [

√
2λγ,+∞).

The complete penalty term in (10) is known as group-
MCP [24]. The rationale behind this choice is that, in the SMV
case, it has been shown in [29], [30] that minimizing F0 in (6)
is equivalent to minimizing F̃ in (10) for a suitable choice
of the parameters γn. Not only F̃ admits the same global
minimizers as F0, but some local (not global) minimizers of
F0 are removed by F̃ [31]. We extend this result to the MMV
setting in Theorem 2 (proof in Supplementary Material).

Theorem 2. Let L0 (resp., L̃) be the set local minimizers of
F0 (resp., F̃ ). Let G0 ⊆ L0 (resp. G̃ ⊆ L̃) be the corresponding
subset of global minimizers. Then, if γn < 1/‖A·n‖22 for all
n ∈ IN , we have,

L̃ ⊆ L0 and G̃ = G0. (12)
1One can easily extend Lemma 2.4, Theorem 3.2, and Theorem 4.4 of [27]

(used in the proof of Proposition 1) to the MMV setting.
2It is noteworthy to mention that, as both J and F0 are `2-`2,0 functionals,

all the developments that we are doing for F0 can be transposed to J when
L < M (i.e., when the dimensionality reduction is not relevant).
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Fig. 1: Graph of `0 and MCP for λ = 1 and γ = 2

When (12) is satisfied, we say that the continuous relaxation
is exact. From Theorem 2, the proposed continuous relaxation
F̃ is exact as soon as γn < 1/‖A·n‖22. If the columns of the
matrix A are normalized, this condition becomes γn < 1.

Remark 1. The closer γn gets to the bound 1/‖A·n‖22, the
more F̃ is likely to eliminate local (not global) minimizers of
F0. Indeed, one gets from Lemma 5 (Supplementary Material)
that X ∈ L̃ implies, ∀n ∈ IN , ‖Xn·‖2 ∈ {0}∪ [

√
2λγn,+∞).

Hence, if X ∈ L0 is such that ‖Xn·‖2 ∈ (0,
√

2λγn) for some
n ∈ IN , then X /∈ L̃. This shows that increasing γn can
eliminate more local minimizers of F0.

Remark 2. For the limit case γn = 1/‖A·n‖22, a similar result
can be obtained, but the analysis is a bit more involved. Yet,
such a result has been derived in [32] when L = 1, leading
to the continuous exact `0 (CEL0) relaxation.

V. MINIMIZING THE RELAXATION F̃

The continuity of F̃ allows us to deploy nonsmooth noncon-
vex optimization algorithms for its minimization that cannot
be used directly with F0.

A. Iteratively Reweighted `2,1
We consider the iteratively reweighted `2,1 algorithm

(IRL1). It proceeds by minimizing a series of convex ma-
jorizations of the objective which are equal to it at the current
point. To minimize F̃ , we follow [33]. Because φ(γ, λ; ·) is
concave on R>0, it is majored by its tangents (or half-tangent
at 0). At x̃ ∈ R>0, the (half) tangent of φ(γ, λ; ·) is

t(x) = w(γ, λ; x̃)(x− x̃) + φ(γ, λ; x̃), (13)

where the expression of the slope is

w(γ, λ; x̃) =

{ √
2λ/γ − x̃/γ if x̃ <

√
2λγ,

0 if x̃ >
√

2λγ.
(14)

Given X̃ ∈ CN×M , we can thus define a majorant of the
penalty term in (10) as

Q(Z) =
∑
n∈IN

w(γn, λ; ‖X̃n·‖2)‖Zn·‖2. (15)

Note that Q in (15) is defined up to a constant (i.e., ignoring
the terms that are constant with respect to x in (13)). Then,
the IRL1 algorithm [33] generates a sequence (Xk)k∈N as

Xk+1∈ arg min
X

1

2
‖AX−YVDT‖2F +

∑
n∈IN

wkn‖Xn·‖2, (16)

Algorithm 1

Require: X0 ∈ CN×M
1: X1 ← IRL1(F̃ ; X0)
2: k = 1
3: while Xk /∈ L0 do
4: Select n ∈ IN such that ‖Xk

n·‖2 ∈ (0,
√

2λγn)

5: Find α∈{0,
√

2λγn} minimizing F̃ (Xk
\n+αen⊗ Xk

n·
‖Xk

n·‖2
)

6: Xk+1 ← IRL1(F̃ ; Xk
\n + αen ⊗ Xk

n·
‖X̂n·‖2

)

7: k = k + 1
8: end while

where wkn = w(γn, λ; ‖Xk
n·‖2). Each sub-problem (16) is

a weighted `2,1-norm minimization problem which can be
solved using FISTA [34]. The convergence of the sequence
generated by IRL1 to a critical point of the objective is
proven in [33] when the objective verifies the Kurdyka-
Lojasiewicz (KL) inequality. It is the case for F̃ as X 7→
1
2‖AX−YVDT‖2F is a polynomial function and φ(γ, λ; ·) has
a piecewise polynomial graph, which are sufficient ingredients
to conclude [35].

B. Ensuring the Convergence to Local Minimizers of F0

The IRL1 algorithm only ensures the convergence to a
critical point of F̃ while Theorem 2 provides a relation
between (local) minimizers of F̃ and F0. It is thus of interest
to complete the result of Theorem 2 with an analysis of the
critical points of F̃ .

Lemma 3. Let γn < 1/‖A·n‖22 for all n ∈ IN and X̂ ∈
CN×M be a critical point of F̃ .

1) If, ∀n ∈ IN , ‖X̂n·‖2 ∈ {0}∪
[√

2λγn,+∞
)
, then X̂ is

a local minimizer of F0 (i.e., X̂ ∈ L0).
2) Otherwise, ∀n ∈ IN such that ‖X̂n·‖2 ∈ (0,

√
2λγn),

there exists α ∈ {0,
√

2λγn} such that

F̃
(
X̂\n + αen ⊗ X̂n·/‖X̂n·‖2

)
< F̃ (X̂), (17)

where X̂\n = X̂− en ⊗ X̂n·.

From the first statement of Lemma 3, one can easily check
whether a critical point of the relaxation F̃ is a local minimizer
of the initial functional F0. Moreover, if this is not the
case, one can easily obtain a new point that decreases F̃
(second statement of Lemma 3). This suggests to deploy the
strategy described in Algorithm 1 where IRL1(F̃ ; X) stands
for the minimization of F̃ using IRL1 initialized by X. From
Lemma 3, the convergence of this scheme can be obtained in
the same way as [32, Theorem 5.1]. The main difference being
that the 1D restriction at line 5 is linear (with nonzero slope)
on [0,

√
2λγn] whereas its counterpart in [32] is constant

(making α = 0 always a valid choice for non-increasing F̃ ).

Remark 3. To fully exploit the result provided by Theorem 2
an algorithm that ensures the convergence to a local minimizer
of F̃ has to be defined. In the absence of such an algorithm,
Algorithm 1 is an interesting alternative. It ensures to reach
a critical point of F̃ which is also a local minimizer of F0.
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Fig. 2: Support recovery rate as a function of the number of
snapshots L for SNR = 10 dB (top), and as a function of SNR
for L = 50 (bottom).

VI. NUMERICAL EXPERIMENT

A. Description of the Experiment

We consider an uniformly linear array (ULA) geometry
composed of M = 8 omnidirectional elements spaced by half
the electromagnetic wavelength. Given an incident angle θ, the
corresponding steering vector a(θ) is

a(θ) = (1 ejπ sin θ ej2π sin θ · · · ej(M−1)π sin θ)T . (18)

We simulate K = 2 correlated narrowband signals with planar
wave fronts and incident angles θ̄1 = 10◦ and θ̄2 = 20◦. The
correlation coefficient is fixed to 0.99. The measurements are
corrupted with Gaussian noise so that to reach a specified
signal-to-noise ratio (SNR). Finally, we define the group-
sparse estimation problem (Section II) by slicing the possible
range of incident angles from θmin = −90◦ to θmax = +89◦

in steps of 1◦ (i.e., N = 180).
To assess the performance of the proposed method (i.e.,

minimization of the exact continuous relaxation F̃ using
Algorithm 1 with X0 = 0), we compute the exact support
recovery rate for the two following scenarios
• number of snapshots varying from L = 100 to L = 2

with a SNR fixed to 10 dB,
• noise levels varying from SNR = 30 dB to SNR = −10 dB

with the number of snapshots fixed to L = 50.
For each couple (L, SNR) we perform 200 independent
realizations of noise in order to determine the support recovery
rate. We consider that the estimation is successful when the
estimated X̂ has only two non-zero rows that correspond to
the two incident angles θ̄1 = 10◦ and θ̄2 = 20◦.
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Fig. 3: Normalized power spectra for two realizations of noise
with L = 40 and SNR=10 dB (zoom between 0◦ and 30◦).
The true DOAs are θ̄1 = 10◦ and θ̄2 = 20◦.

Following Remark 1, we set γn = 0.99/‖A·n‖2 in (10).
Then, the selection of the regularization parameter λ is made
so that to maximize the recovery rate while keeping the same
value for all the 200 realizations.

For comparison, we consider the minimization of the `2,1
convex relaxation of F0 using FISTA [34], as well as the
JLZA-DOA3 algorithm [12]. The latter is designed to mini-
mize F0 using a graduated non-convexity approach based on a
smoothed `2,0-norm approximation. All these methods benefit
from the dimensionality reduction presented in Section III and
we adopt the same strategy to select the parameter λ.

B. Discussion

From Figure 2, we see that the minimization of the proposed
exact relaxation F̃ outperforms both JLZA-DOA and the `2,1
convex relaxation in terms of support recovery. Moreover,
we found that a direct minimization of F0 using a proximal
gradient algorithm [35] is unable to consistently recover the
support over the different realizations of noise for the same
value of λ. Hence, we do not report the corresponding curves.

On Figure 3, we depict the normalized power spectra
obtained by the three methods for two realizations of noise
with L = 40 and SNR = 10 dB. One can see that both JLZA-
DOA and the minimization of the `2,1 convex relaxation lead
to the detection of spurious DOAs close to the true ones.
Although, on the right plot, a post-processing step that extracts
local maxima would allow to recover the two correct DOAs,
the same computation on the left plot would result in erroneous
DOAs. In contrast, the proposed approach provides a two-
sparse solution that recovers the true DOAs.

For completeness, we provide the power spectra obtained
by the MUSIC algorithm which is unable to resolve the
two sources with only L = 40 snapshots. This outlines the
difficulty of the considered scenario that combines highly
correlated sources, few antennas, and close sources that fall
within the 3 dB main beamforming lobe.

3We tuned the parameters of JLZA-DOA and found that, for our experiment,
the best ones were ρ = 0.78, η = 0.1, σ0 = 0.005, and γ = 0.5.
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[29] E. Soubies, L. Blanc-Féraud, and G. Aubert, “A unified view of exact
continuous penalties for `2 − `0 minimization,” SIAM Journal on
Optimization, vol. 27, no. 3, pp. 2034–2060, 2017.

[30] M. Carlsson, “On convex envelopes and regularization of non-convex
functionals without moving global minima,” Journal of Optimization
Theory and Applications, vol. 183, no. 1, pp. 66–84, 2019.
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I. PRELIMINARY LEMMAS

Lemma 4. Let γn < 1/‖A·n‖22 for all n ∈ IN . Then, for any
X ∈ CN×L, n ∈ IN , and t ∈ CL such that ‖t‖2 = 1, the
one-dimensional restriction of F̃ defined by, ∀α ∈ R+,

fn,t(α) = F̃ (X\n + αen ⊗ t), (19)

where X\n = X−en⊗Xn·, is strictly concave on (0,
√

2λγn).

Proof. One can see from (10) and (11) that fn,t is twice dif-
ferentiable on (0,

√
2λγn). Then, we have, ∀α ∈ (0,

√
2λγn),

f ′n,t(α) = α‖A·n‖22‖t‖22 −
‖t‖2
γn

(
α‖t‖2 −

√
2λγn

)
+ C,

(20)
where C is a constant that does not depend on α. Differen-
tiating a second time and using the fact that ‖t‖2 = 1, we
obtain

f ′′n,t(α) = ‖A·n‖22 −
1

γn
< 0 (21)

where the last inequality comes by assumption of the Lemma.
This completes the proof.

Lemma 5. Let γn < 1/‖A·n‖22 for all n ∈ IN and X̂ ∈ L̃
(i.e., X̂ is a local minimizer of F̃ ). Then,

∀n ∈ IN , ‖X̂n·‖2 ∈ {0} ∪
[√

2λγn,+∞
)

(22)

Proof. This result is a direct consequence of Lemma 4.

II. PROOF OF THEOREM 2

Let us first recall that, by definition of F̃ in (10)–(11), we
have,

∀X ∈ CN×M , F̃ (X) ≤ F0(X) (23)

with equality if, ∀n ∈ IN , ‖Xn·‖2 ∈ {0} ∪
[√

2λγn,+∞
)
.

Hence from Lemma 5 we have that

∀X ∈ L̃, F̃ (X) = F0(X). (24)

1) L̃ ⊆ L0 Let X̂ ∈ L̃ and assume that X̂ /∈ L0. Then,
for any neighborhood V ⊂ CN×M containing X̂, there
exists X̄ ∈ V such that

F̃ (X̄) ≤
(23)

F0(X̄) < F0(X̂) =
(24)

F̃ (X̂), (25)

which contradicts X̂ ∈ L̃ and completes the proof of
this statement.

2) G̃ = G0 The inclusion G̃ ⊆ G0 is obtained using the same
arguments as in 1), replacing L̃, L0, and V by G̃, G0,

and CN×M , respectively. For the reciprocal inclusion
G̃ ⊇ G0, let X̂ ∈ G0 and assume that X̂ /∈ G̃. Then,
there exist X̄ ∈ CN×M , such that

F0(X̄) = F̃ (X̄) < F̃ (X̂) ≤
(23)

F0(X̂). (26)

The first equality in (26) comes from the fact that X̄
is chosen so that it does not belong to the subsets
where F̃ is strictly concave along a given direction
(i.e., ‖X̄n·‖2 ∈ {0} ∪

[√
2λγn,+∞

)
∀n ∈ IN from

Lemma 4). This is always possible because F̃ is con-
tinuous and these subsets where F̃ is strictly concave
are bounded. Finally, (26) contradicts X̂ ∈ G0 and
completes the proof.

III. PROOF OF LEMMA 3

Let X̂ ∈ CN×M be a critical point of F̃ and denote by
ω ⊆ IN its support (i.e., indices of its non-zero rows). For
n ∈ IN , denote zn = (AX̂ −YVDT)T Ā·n. Then, the first
order optimality conditions lead to, ∀n ∈ IN ,
‖zn‖2 ≤

√
2λ
γn

if ‖X̂n·‖2 = 0

zn − X̂n·
γn

+
√

2λ
γn

X̂n·
‖X̂n·‖2

= 0 if ‖X̂n·‖2 ∈ (0,
√

2λγn)

zn = 0 if ‖X̂n·‖2 ≥
√

2λγn
(27)

Under the assumption of Lemma 3 (i.e., ∀n ∈
IN , ‖X̂n·‖2 ∈ {0} ∪

[√
2λγn,+∞

)
), we have that ∀n ∈ ω

‖X̂n·‖2 ≥
√

2λγn. Combining that with (27) we obtain

(AX̂−YVDT)T Ā·n = 0, ∀n ∈ ω (28)

⇐⇒ (AH
·ωA·ω)X̂ω· = AH

·ωYVDT (29)

which shows that X̂ is a local minimizer of F0 and completes
the proof of the first statement of Lemma 3.

To prove the second statement of Lemma 3, let n ∈ IN be
such that ‖X̂n·‖2 ∈ (0,

√
2λγn) and define t = X̂n·/‖X̂n·‖2.

Then, from Lemma 4, the one-dimensional restriction fn,t
defined in (19) is strictly concave on (0,

√
2λγn) and verifies

fn,t(‖X̂n·‖2) = F̃ (X̂). It follows from this strict concavity
that there exists α ∈ {0,

√
2λγn} such that

F̃ (X̂\n + αen ⊗ t) =
(19)

fn,t(α) < fn,t(‖X̂n·‖2) = F̃ (X̂),

(30)
which completes the proof.


