L. Favrot, J. S. Blanchard, and O. Vergnolle, Bacterial GCN5-RelatedN-Acetyltransferases: From Resistance to Regulation, Biochemistry, vol.55, issue.7, pp.989-1002, 2016.

J. Wei, J. L. Dahl, J. W. Moulder, E. A. Roberts, P. O'gaora et al., Identification of a Mycobacterium tuberculosis Gene That Enhances Mycobacterial Survival in Macrophages, Journal of Bacteriology, vol.182, issue.2, pp.377-384, 2000.

L. Duan, M. Yi, J. Chen, S. Li, and W. Chen, Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3, Biochemical and Biophysical Research Communications, vol.473, issue.4, pp.1229-1234, 2016.

L. P. Samuel, C. Song, J. Wei, E. A. Roberts, J. L. Dahl et al., Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion, Microbiology, vol.153, issue.2, pp.529-540, 2007.

D. Shin, B. Jeon, H. Lee, H. S. Jin, J. Yuk et al., Mycobacterium tuberculosis Eis Regulates Autophagy, Inflammation, and Cell Death through Redox-dependent Signaling, PLoS Pathogens, vol.6, issue.12, p.e1001230, 2010.

S. Ghosh, B. Padmanabhan, C. Anand, and V. Nagaraja, Lysine acetylation of theMycobacterium tuberculosisHU protein modulates its DNA binding and genome organization, Molecular Microbiology, vol.100, issue.4, pp.577-588, 2016.

M. A. Zaunbrecher, R. D. Sikes, B. Metchock, T. M. Shinnick, and J. E. Posey, Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis, Proceedings of the National Academy of Sciences, vol.106, issue.47, pp.20004-20009, 2009.

K. D. Green, R. E. Pricer, M. N. Stewart, and S. Garneau-tsodikova, Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria, ACS Infectious Diseases, vol.1, issue.6, pp.272-283, 2015.

J. L. Houghton, T. Biswas, W. Chen, O. V. Tsodikov, and S. Garneau-tsodikova, Chemical and Structural Insights into the Regioversatility of the Aminoglycoside Acetyltransferase Eis, ChemBioChem, vol.14, issue.16, pp.2127-2135, 2013.

M. D. Johansen, J. Herrmann, and L. Kremer, Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus, Nature Reviews Microbiology, vol.18, issue.7, pp.392-407, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02494720

A. Roux, E. Catherinot, F. Ripoll, N. Soismier, E. Macheras et al., Multicenter Study of Prevalence of Nontuberculous Mycobacteria in Patients with Cystic Fibrosis in France, Journal of Clinical Microbiology, vol.47, issue.12, pp.4124-4128, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01857711

R. M. Dedrick, C. A. Guerrero-bustamante, R. A. Garlena, D. A. Russell, K. Ford et al., Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus, Nature Medicine, vol.25, issue.5, pp.730-733, 2019.

R. Nessar, E. Cambau, J. M. Reyrat, A. Murray, and B. Gicquel, Mycobacterium abscessus: a new antibiotic nightmare, Journal of Antimicrobial Chemotherapy, vol.67, issue.4, pp.810-818, 2012.

L. Strnad and K. L. Winthrop, Treatment of Mycobacterium abscessus Complex. Semin. Respir. Crit. Care Med, vol.39, pp.362-376, 2018.

M. Richard, A. V. Gutiérrez, and L. Kremer, Dissecting erm(41)-Mediated Macrolide-Inducible Resistance in Mycobacterium abscessus, Antimicrobial Agents and Chemotherapy, vol.64, issue.2, pp.1879-1898, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02868861

S. Luthra, A. Rominski, and P. Sander, The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance, Frontiers in Microbiology, vol.9, p.2179, 2018.

A. Rominski, P. Selchow, K. Becker, J. K. Brülle, M. Dal-molin et al., Elucidation of Mycobacterium abscessus aminoglycoside and capreomycin resistance by targeted deletion of three putative resistance genes, Journal of Antimicrobial Chemotherapy, vol.72, issue.8, pp.2191-2200, 2017.

K. L. Ung, H. M. Alsarraf, V. Olieric, L. Kremer, and M. Blaise, Crystal structure of the aminoglycosides N ?acetyltransferase Eis2 from Mycobacterium abscessus, The FEBS Journal, vol.286, issue.21, pp.4342-4355, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02173424

V. Dubois, A. Pawlik, A. Bories, V. Le-moigne, O. Sismeiro et al., Mycobacterium abscessus virulence traits unraveled by transcriptomic profiling in amoeba and macrophages, PLOS Pathogens, vol.15, issue.11, p.e1008069, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02379161

M. Richard, A. V. Gutiérrez, A. Viljoen, D. Rodriguez-rincon, F. Roquet-baneres et al., Mutations in the MAB_2299c TetR Regulator Confer Cross-Resistance to Clofazimine and Bedaquiline in Mycobacterium abscessus, Antimicrobial Agents and Chemotherapy, vol.63, issue.1, pp.1316-1334, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02137498

C. K. Stover, V. F. De-la-cruz, T. R. Fuerst, J. E. Burlein, L. A. Benson et al., New use of BCG for recombinant vaccines, Nature, vol.351, issue.6326, pp.456-460, 1991.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of theCCP4 suite and current developments, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.4, pp.235-242, 2011.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica Section D Biological Crystallography, vol.66, issue.2, pp.213-221, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development ofCoot, Acta Crystallographica Section D Biological Crystallography, vol.66, issue.4, pp.486-501, 2010.

S. Anand, A. A. Ganaie, and C. Sharma, Differential thermal stability, conformational stability and unfolding behavior of Eis proteins from Mycobacterium smegmatis and Mycobacterium tuberculosis, PLOS ONE, vol.14, issue.3, p.e0213933, 2019.

Q. Pan, F. Zhao, and B. Ye, Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87), Scientific Reports, vol.8, issue.1, pp.1-8, 2018.

L. Holm and P. Rosenstr�m, Dali server: conservation mapping in 3D, Nucleic Acids Research, vol.38, issue.suppl_2, pp.W545-W549, 2010.

R. E. Pricer, J. L. Houghton, K. D. Green, A. S. Mayhoub, and S. Garneau-tsodikova, Biochemical and structural analysis of aminoglycoside acetyltransferase Eis from Anabaena variabilis, Molecular BioSystems, vol.8, issue.12, p.3305, 2012.

K. D. Green, T. Biswas, C. Chang, R. Wu, W. Chen et al., Biochemical and Structural Analysis of an Eis Family Aminoglycoside Acetyltransferase from Bacillus anthracis, Biochemistry, vol.54, issue.20, pp.3197-3206, 2015.

K. H. Kim, D. R. An, J. Song, J. Y. Yoon, H. S. Kim et al.,

K. H. Kim, D. R. An, J. Y. Yoon, H. S. Kim, H. J. Yoon et al., Mycobacterium tuberculosis Eis protein initiates modulation of host immune responses by acetylation of DUSP16/MKP-7, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.7729-7734, 2012.

K. H. Kim, D. R. An, H. J. Yoon, J. K. Yang, and S. W. Suh, Structure ofMycobacterium smegmatisEis in complex with paromomycin, Acta Crystallographica Section F Structural Biology Communications, vol.70, issue.9, pp.1173-1179, 2014.

W. Tian, C. Chen, X. Lei, J. Zhao, and J. Liang, CASTp 3.0: computed atlas of surface topography of proteins, Nucleic Acids Research, vol.46, issue.W1, pp.W363-W367, 2018.

F. Sanz-garcía, E. Anoz-carbonell, E. Pérez-herrán, C. Martín, A. Lucía et al., Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles, Frontiers in Microbiology, vol.10, p.46, 2019.

H. X. Ngo, K. D. Green, C. S. Gajadeera, M. J. Willby, S. Y. Holbrook et al., Potent 1,2,4-Triazino[5,6b]indole-3-thioether Inhibitors of the Kanamycin Resistance Enzyme Eis from Mycobacterium tuberculosis, ACS Infectious Diseases, vol.4, issue.6, pp.1030-1040, 2018.

K. Hurst-hess, P. Rudra, and P. Ghosh, Mycobacterium abscessus WhiB7 Regulates a Species-Specific Repertoire of Genes To Confer Extreme Antibiotic Resistance, Antimicrobial Agents and Chemotherapy, vol.61, issue.11, pp.1347-1364, 2017.

B. C. Jennings, K. J. Labby, K. D. Green, and S. Garneau-tsodikova, Redesign of Substrate Specificity and Identification of the Aminoglycoside Binding Residues of Eis from Mycobacterium tuberculosis, Biochemistry, vol.52, issue.30, pp.5125-5132, 2013.

M. M. Bhanjadeo, K. Rath, D. Gupta, N. Pradhan, S. K. Biswal et al., Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of Operon Array, PLOS ONE, vol.13, issue.3, p.e0192536, 2018.

K. J. Kayser, L. Cleveland, H. Park, J. Kwak, A. Kolhatkar et al., Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization, Applied Microbiology and Biotechnology, vol.59, issue.6, pp.737-746, 2002.

G. Surineni, S. K. Marvadi, P. Yogeeswari, D. Sriram, and S. Kantevari, Dibenzofuran, dibenzothiophene and N-methyl carbazole tethered 2-aminothiazoles and their cinnamamides as potent inhibitors of Mycobacterium tuberculosis, Bioorganic & Medicinal Chemistry Letters, vol.28, issue.9, pp.1610-1614, 2018.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucleic Acids Research, vol.42, issue.W1, pp.W320-W324, 2014.