L. Gardiner, L. U. Wingen, P. Bailey, R. Joynson, T. Brabbs et al., Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency, Genome Biology, vol.20, issue.1, p.69, 2019.

R. J. Giles and T. A. Brown, GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats, Theoretical and Applied Genetics, vol.112, issue.8, pp.1563-1572, 2006.

M. Grelon, D. Vezon, G. Gendrot, and G. Pelletier, AtSPO11-1 is necessary for efficient meiotic recombination in plants, The EMBO Journal, vol.20, issue.3, pp.589-600, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02681071

S. Griffiths, R. Sharp, T. N. Foote, I. Bertin, M. Wanous et al., Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat, Nature, vol.439, issue.7077, pp.749-752, 2006.

F. Hartung, K. J. Angelis, A. Meister, I. Schubert, M. Melzer et al., An Archaebacterial Topoisomerase Homolog Not Present in Other Eukaryotes Is Indispensable for Cell Proliferation of Plants, Current Biology, vol.12, issue.20, pp.1787-1791, 2002.

F. Hartung and H. Puchta, Molecular characterisation of two paralogous SPO11 homologues in Arabidopsis thaliana, Nucleic Acids Research, vol.28, issue.7, pp.1548-1554, 2000.

F. Hartung and H. Puchta, Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants, Gene, vol.271, issue.1, pp.81-86, 2001.

F. Hartung, R. Wurz-wildersinn, J. Fuchs, I. Schubert, S. Suer et al., The Catalytically Active Tyrosine Residues of Both SPO11-1 and SPO11-2 Are Required for Meiotic Double-Strand Break Induction in Arabidopsis, The Plant Cell, vol.19, issue.10, pp.3090-3099, 2007.

J. D. Higgins, S. J. Armstrong, F. C. Franklin, and G. H. Jones, The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: evidence for two classes of recombination in Arabidopsis, Genes & Development, vol.18, issue.20, pp.2557-2570, 2004.

S. Huang, A. Sirikhachornkit, J. D. Faris, X. Su, B. S. Gill et al., Plant Molecular Biology, vol.48, issue.5/6, pp.805-820, 2002.

J. Ke, Expression of genes encoding acetyl-CoA carboxylase, biotin synthase, and acetyl-CoA generating enzymes in Arabidopsis thaliana

K. Tsunewaki, N. Mori, and S. Takumi, Experimental evolutionary studies on the genetic autonomy of the cytoplasmic genome ?plasmon? in the Triticum (wheat)?Aegilops complex, Proceedings of the National Academy of Sciences, vol.116, issue.8, pp.3082-3090, 2019.

U. Sci, , vol.99, pp.8133-8138

N. Hunter, Meiotic Recombination: The Essence of Heredity, Cold Spring Harbor Perspectives in Biology, vol.7, p.a016618, 2015.

L. M. Zahn, Insights from the annotated wheat genome, Science, vol.361, issue.6403, pp.657.11-659, 2018.

M. Jain, A. K. Tyagi, and J. P. Khurana, Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants, FEBS Journal, vol.273, issue.23, pp.5245-5260, 2006.

S. Keeney, C. N. Giroux, and N. Kleckner, Meiosis-Specific DNA Double-Strand Breaks Are Catalyzed by Spo11, a Member of a Widely Conserved Protein Family, Cell, vol.88, issue.3, pp.375-384, 1997.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.10, issue.6, pp.845-858, 2015.

K. H. Khoo, A. J. Able, and J. A. Able, The isolation and characterisation of the wheat molecular ZIPper I homologue, TaZYP1, BMC Research Notes, vol.5, issue.1, p.106, 2012.

K. H. Khoo, A. J. Able, and J. A. Able, Poor Homologous Synapsis 1 Interacts with Chromatin but Does Not Colocalise with ASYnapsis 1 during Early Meiosis in Bread Wheat, International Journal of Plant Genomics, vol.2012, pp.1-11, 2012.

J. Mammadov, R. Aggarwal, R. Buyyarapu, and S. Kumpatla, SNP Markers and Their Impact on Plant Breeding, International Journal of Plant Genomics, vol.2012, pp.1-11, 2012.

M. T. Kurzbauer, C. Uanschou, D. Chen, and P. Schlögelhofer, The Recombinases DMC1 and RAD51 Are Functionally and Spatially Separated during Meiosis in Arabidopsis, The Plant Cell, vol.24, issue.5, pp.2058-2070, 2012.

I. Lam and S. Keeney, Mechanism and Regulation of Meiotic Recombination Initiation, Cold Spring Harbor Perspectives in Biology, vol.7, issue.1, p.a016634, 2014.

P. Leroy, N. Guilhot, H. Sakai, A. Bernard, F. Choulet et al., TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes, Frontiers in Plant Science, vol.3, p.641, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00753407

T. Flutre, C. Pelegrin, H. Ohyanagi, M. Seidel, F. Giacomoni et al., , p.642

M. Gicquello, E. Legeai, F. Cerutti, L. Numa, H. Tanaka et al., , p.643

H. Quesneville and C. Feuillet, TriAnnot: A Versatile and High Performance 644 Pipeline for the Automated Annotation of Plant Genomes, Front Plant Sci, vol.3, p.5, 2012.

A. H. Lloyd, M. Ranoux, S. Vautrin, N. Glover, J. Fourment et al., Meiotic Gene Evolution: Can You Teach a New Dog New Tricks?, Molecular Biology and Evolution, vol.31, issue.7, pp.1724-1727, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02635778

H. Chalhoub, B. Feuillet, C. Berges, H. Sourdille, P. Jenczewski et al., Meiotic 648 gene evolution: can you teach a new dog new tricks?, Mol Biol Evol, vol.31, pp.1724-1727, 2014.

G. Ma, W. Zhang, L. Liu, W. S. Chao, Y. Q. Gu et al., Cloning and characterization of the homoeologous genes for the Rec8-like meiotic cohesin in polyploid wheat, BMC Plant Biology, vol.18, issue.1, p.224, 2018.

S. B. Malik, M. A. Ramesh, A. M. Hulstrand, and J. M. Logsdon, Protist Homologs of the Meiotic Spo11 Gene and Topoisomerase VI reveal an Evolutionary History of Gene Duplication and Lineage-Specific Loss, Molecular Biology and Evolution, vol.24, issue.12, pp.2827-2841, 2007.

T. Marcussen, S. R. Sandve, L. Heier, M. Spannagl, and M. Pfeifer,

C. Sequencing, K. S. Jakobsen, B. B. Wulff, B. Steuernagel, K. F. Mayer et al., , p.657

O. A. , Ancient hybridizations among the ancestral genomes of bread wheat, Science, vol.658, p.1250092, 2014.

A. C. Martín, P. Borrill, J. Higgins, A. K. Alabdullah, R. H. Ramírez-gonzález et al., Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level and the Ph1 locus, p.660, 2018.

C. Uauy, P. Shaw, and G. Moore, Genome-Wide Transcription During Early Wheat 661, 2018.

A. C. Martín, P. Borrill, J. Higgins, A. K. Alabdullah, R. H. Ramírez-gonzález et al., Genome-wide transcription during early wheat meiosis is independent of synapsis, ploidy level and the Ph1 locus, Front Plant Sci, vol.9, p.1791, 2018.

A. C. Martín, M. D. Rey, P. Shaw, and G. Moore, Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover, Chromosoma, vol.126, issue.6, pp.669-680, 2017.

R. Mercier, C. Mézard, E. Jenczewski, N. Macaisne, and M. Grelon, The Molecular Biology of Meiosis in Plants, Annual Review of Plant Biology, vol.66, issue.1, pp.297-327, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204185

G. Moore, The Control of Recombination in Wheat by Ph1 and Its Use in Breeding, Methods in Molecular Biology, vol.668, pp.143-153, 2014.

R. Pérez, A. Cuadrado, I. P. Chen, H. Puchta, N. Jouve et al., The Rad50 genes of diploid and polyploid wheat species. Analysis of homologue and homoeologue expression and interactions with Mre11, Theoretical and Applied Genetics, vol.122, issue.2, pp.251-262, 2010.

J. B. Plotkin and G. Kudla, Synonymous but not the same: the causes and consequences of codon bias, Nature Reviews Genetics, vol.12, issue.1, pp.32-42, 2010.

R. H. Ramírez-gonzález, P. Borrill, D. Lang, S. A. Harrington, J. Brinton et al., The transcriptional landscape of polyploid wheat, Science, vol.361, issue.6403, p.eaar6089, 2018.

T. Robert, A. Nore, C. Brun, C. Maffre, B. Crimi et al., Erratum for the Research Article "The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation" by T. Robert, A. Nore, C. Brun, C. Maffre, B. Crimi, V. Guichard,* H.-M. Bourbon, B. de Massy, Science, vol.352, issue.6286, pp.aaf9649-aaf9649, 2016.

T. Robert, A. Nore, C. Brun, C. Maffre, B. Crimi et al., The TopoVIB-Like protein family is required for meiotic DNA double-strand break formation, Science, vol.351, issue.6276, pp.943-949, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280382

T. Robert, N. Vrielynck, C. Mézard, B. De-massy, and M. Grelon, A new light on the meiotic DSB catalytic complex, Seminars in Cell & Developmental Biology, vol.54, pp.165-176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01320053

K. J. Ross, P. Fransz, and G. H. Jones, A light microscopic atlas of meiosis inArabidopsis thaliana, Chromosome Research, vol.4, issue.7, pp.507-516, 1996.

C. Sallaud, D. Meynard, J. Van-boxtel, C. Gay, M. Bès et al., Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics, Theoretical and Applied Genetics, vol.106, issue.8, pp.1396-1408, 2003.

E. , Highly efficient production and characterization of T-DNA plants for rice ( Oryza 686 sativa L.) functional genomics, Theor Appl Genet, vol.106, pp.1396-1408, 2003.

E. Sanchez-moran, S. J. Armstrong, J. L. Santos, F. C. Franklin, and G. H. Jones, Chiasma 688 formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants, 2001.

J. D. Dodge, Chromosome numbers in some marine Dinoflagellates, Botanica Marina, vol.5, issue.4, pp.121-128, 1963.

Y. Shingu, T. Mikawa, M. Onuma, T. Hirayama, and T. Shibata, A DNA-binding surface of SPO11-1, an Arabidopsis SPO11 orthologue required for normal meiosis, FEBS Journal, vol.277, issue.10, pp.2360-2374, 2010.

D. E. Soltis, V. A. Albert, J. Leebens-mack, C. D. Bell, A. H. Paterson et al., Polyploidy and angiosperm diversification, American Journal of Botany, vol.96, issue.1, pp.336-348, 2009.

C. W. Depamphilis, P. K. Wall, and P. S. Soltis, Polyploidy and angiosperm 695 diversification, Am J Bot, vol.96, pp.336-348, 2009.

T. Sprink and F. Hartung, The splicing fate of plant SPO11 genes, Frontiers in Plant Science, vol.5, p.214, 2014.

N. J. Stacey, T. Kuromori, Y. Azumi, G. Roberts, C. Breuer et al., Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination, The Plant Journal, vol.48, issue.2, pp.206-216, 2006.

K. Sugimoto-shirasu and K. , Arabidopsis SPO11-2 functions with SPO11-1 in 699 meiotic recombination, Plant J, vol.48, pp.206-216, 2006.

K. Sugimoto-shirasu, N. J. Stacey, J. Corsar, K. Roberts, and M. C. Mccann, DNA Topoisomerase VI Is Essential for Endoreduplication in Arabidopsis, Current Biology, vol.12, issue.20, pp.1782-1786, 2002.

Y. Van-de-peer, J. A. Fawcett, S. Proost, L. Sterck, and K. Vandepoele, The flowering world: a tale of duplications, Trends in Plant Science, vol.14, issue.12, pp.680-688, 2009.

N. Vrielynck, A. Chambon, D. Vezon, L. Pereira, L. Chelysheva et al., A DNA topoisomerase VI-like complex initiates meiotic recombination, Science, vol.351, issue.6276, pp.939-943, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02637684

C. Mayer and M. Grelon, A DNA topoisomerase VI-like complex initiates meiotic 706 recombination, Science, vol.351, pp.939-943, 2016.

J. Walker, H. Gao, J. Zhang, B. Aldridge, M. Vickers et al., Sexual lineage specific DNA methylation regulates Arabidopsis meiosis, p.708, 2017.

J. Walker, H. Gao, J. Zhang, B. Aldridge, M. Vickers et al., Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis, Nature Genetics, vol.50, issue.1, pp.130-137, 2017.

T. E. Wood, N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon et al., The frequency of polyploid speciation in vascular plants, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.13875-13879, 2009.

M. Xue, J. Wang, L. Jiang, M. Wang, S. Wolfe et al., The Number of Meiotic Double-Strand Breaks Influences Crossover Distribution in Arabidopsis, The Plant Cell, vol.30, issue.10, pp.2628-2638, 2018.

M. Xue, J. Wang, L. Jiang, M. Wang, S. Wolfe et al., The Number of Meiotic Double-Strand Breaks Influences Crossover Distribution in Arabidopsis, The Plant Cell, vol.30, issue.10, pp.2628-2638, 2018.

Z. Xue, Y. Li, L. Zhang, W. Shi, C. Zhang et al., OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice, Molecular Plant, vol.9, issue.11, pp.1535-1538, 2016.

Z. Cheng, OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in 718 Rice, Mol Plant, vol.9, pp.1535-1538, 2016.

H. Yang, P. Lu, Y. Wang, and H. Ma, The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process, The Plant Journal, vol.65, issue.4, pp.503-516, 2011.

Y. Yin, H. Cheong, D. Friedrichsen, Y. Zhao, J. Hu et al., A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development, Proceedings of the National Academy of Sciences, vol.99, issue.15, pp.10191-10196, 2002.

F. Ahmed, QnAs with Jeffrey S. Moore, Proceedings of the National Academy of Sciences, vol.116, issue.21, pp.10196-10197, 2019.

H. Yu, M. Wang, D. Tang, K. Wang, F. Chen et al., OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice, Chromosoma, vol.119, issue.6, pp.625-636, 2010.

H. Yu, M. Wang, D. Tang, K. Wang, F. Chen et al., OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice, Chromosoma, vol.119, issue.6, pp.625-636, 2010.

, Figure 1?figure supplement 1. Sequences of 3? UTRs of reaper and hid with wild type and mutant MREs highlighted.

, Figure 5?source data 1. N2A wildtype and MRE mutant Cerox1 overexpression specific enzyme assays - Figure 5D.

, Figure 3: Rice plants expressing XA21YD-GFP variants are susceptible to Xoo., pp.11-12

, Figure 4?source data 2. Expression of Spo11 mRNA in wild-type and Ythdc2-/- testes., transgene. Rice spo11-1 plants are sterile and develop panicles with empty spikelets (right panel)

, Figure 1?figure supplement 3. PEG expression in peg mutants., vol.7, p.779

P. Langridge, Faculty Opinions recommendation of AtSPO11-1 is necessary for efficient meiotic recombination in plants., Atspo11-1, and 15 Atspo11-1 + pRAD51:TaSPO11-1 independent primary transformants, p.782, 2001.

, Figure 1: Reaction time in the dot counting task as a function of number of dots in each stimulus picture., T36 as indicated under graph)

, Figure 3?figure supplement 1. Functional impact of mutations in EMRE?s TM helix., pp.11-12

P. Langridge, Faculty Opinions recommendation of AtSPO11-1 is necessary for efficient meiotic recombination in plants., Figure, vol.8, pp.11-12, 2001.

G. R. Smith, Faculty Opinions recommendation of Wild-type levels of Spo11-induced DSBs are required for normal single-strand resection during meiosis., DAPI staining of chromosomes during meiosis in Arabidopsis (A-E) wild-type, pp.11-12, 2002.

T. Kuroiwa, Asynchronous condensation of chromosomes from early prophase to late prophase as revealed by electron microscopic autoradiography, Experimental Cell Research, vol.69, issue.1, pp.97-105, 1971.