Z. Lin, H. Kong, M. Nei, and H. Ma, Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer, Proc Natl Acad Sci, vol.103, pp.10328-10333, 2006.

P. R. Bianco, R. B. Tracy, and S. C. Kowalczykowski, DNA strand exchange proteins: a biochemical and physical comparison, Front Biosci, vol.3, pp.570-603, 1998.

A. M. Kolinjivadi, V. Sannino, A. De-antoni, H. Técher, G. Baldi et al., Moonlighting at replication forks-a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51, FEBS Lett, vol.591, pp.1083-1100, 2017.

J. Thacker, The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells, Biochimie, vol.81, pp.77-85, 1999.

R. Amunugama, J. Groden, and R. Fishel, The HsRAD51B-HsRAD51C stabilizes the HsRAD51 nucleoprotein filament, DNA Repair, vol.12, pp.723-732, 2013.

W. A. Gaines, S. K. Godin, F. F. Kabbinavar, T. Rao, A. P. Vandemark et al., Promotion of presynaptic filament assembly by the ensemble of S. cerevisiae Rad51 paralogues with Rad52, Nat Commun, vol.6, p.7834, 2015.

Y. C. Lio, A. Mazin, S. C. Kowalczykowski, and D. J. Chen, Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro, J Biol Chem, vol.278, pp.2469-2478, 2003.

J. Y. Masson, A. Z. Stasiak, A. Stasiak, F. E. Benson, and S. C. West, Complex formation by the human RAD51C and XRCC3 recombination repair proteins, Proc Natl Acad Sci U S A, vol.98, pp.8440-8446, 2001.

S. Sigurdsson, S. Van-komen, W. Bussen, D. Schild, J. S. Albala et al., Mediator function of the human Rad51B-Rad51C complex in Rad51/RPA-catalyzed DNA strand exchange, Genes Dev, vol.15, pp.3308-3318, 2001.

P. Sung, Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase, Genes Dev, vol.11, pp.1111-1121, 1997.

M. R. Taylor, M. Chaurasiya, K. R. Ward, J. D. Carzaniga, R. Yu et al., Rad51 Paralogs Remodel Pre-synaptic Rad51 Filaments to Stimulate Homologous Recombination, Cell, vol.162, pp.271-286, 2015.

M. R. Taylor, M. , J. Ma, C. Carzaniga, R. Takaki et al., A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling, vol.64, pp.926-939

H. Yokoyama, N. Sarai, W. Kagawa, R. Enomoto, T. Shibata et al., Preferential binding to branched DNA strands and strand-annealing activity of the human Rad51B, Rad51C, Rad51D and Xrcc2 protein complex, Nucleic Acids Res, vol.32, pp.2556-2565, 2004.

J. S. Albala, M. P. Thelen, C. Prange, W. Fan, M. Christensen et al., Identification of a Novel HumanRAD51Homolog, RAD51B. Genomics, vol.46, pp.476-479, 2002.

R. Cartwright, C. E. Tambini, P. J. Simpson, and J. Thacker, The XRCC2 DNA repair gene from human and mouse encodes a novel member of the recA/RAD51 family, Nucleic Acids Res, vol.26, pp.3084-3089, 1998.

M. K. Dosanjh, D. W. Collins, W. Fan, G. G. Lennon, J. S. Albala et al., Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes, Nucleic Acids Res, vol.26, pp.1179-1184, 1998.

D. L. Pittman, L. R. Weinberg, and J. C. Schimenti, Identification, characterization, and genetic mapping of Rad51d, a new mouse and human RAD51/RecA-related gene, Genomics, vol.49, pp.103-111, 1998.

R. S. Tebbs, Y. Zhao, J. D. Tucker, J. B. Scheerer, M. J. Siciliano et al., Correction of chromosomal instability and sensitivity to diverse mutagens by a cloned cDNA of the XRCC3 DNA repair gene, Proc Natl Acad Sci U S A, vol.92, pp.6354-6358, 1995.


J. P. Braybrooke, K. G. Spink, J. Thacker, and I. D. Hickson, The RAD51 family member, RAD51L3, is a DNAstimulated ATPase that forms a complex with XRCC2, J Biol Chem, vol.275, pp.29100-29106, 2000.

N. Liu, Involvement of Rad51C in two distinct protein complexes of Rad51 paralogs in human cells, Nucleic Acids Res, vol.30, pp.1009-1015, 2002.

J. Y. Masson, M. C. Tarsounas, A. Z. Stasiak, A. Stasiak, R. Shah et al., Identification and purification of two distinct complexes containing the five RAD51 paralogs, Genes Dev, vol.15, pp.3296-3307, 2001.

K. A. Miller, D. M. Yoshikawa, I. R. Mcconnell, R. Clark, D. Schild et al., RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51, J Biol Chem, vol.277, pp.8406-8411, 2002.

D. Schild, Y. C. Lio, D. W. Collins, T. Tsomondo, and D. J. Chen, Evidence for simultaneous protein interactions between human Rad51 paralogs, J Biol Chem, vol.275, pp.16443-16449, 2000.

C. Wiese, J. M. Hinz, R. S. Tebbs, P. B. Nham, S. S. Urbin et al., Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination, Nucleic Acids Res, vol.34, pp.2833-2843, 2006.

Y. Yonetani, H. Hochegger, E. Sonoda, S. Shinya, H. Yoshikawa et al., Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage, Nucleic Acids Res, vol.33, pp.4544-4552, 2005.

T. Liu, L. Wan, Y. Wu, J. Chen, and J. Huang, hSWS1?SWSAP1 is an evolutionarily conserved complex required for efficient homologous recombination repair, J Biol Chem, vol.286, pp.41758-41766, 2011.

J. Martino and K. A. Bernstein, The Shu complex is a conserved regulator of homologous recombination, FEMS Yeast Res, vol.16, p.73, 2016.

C. M. Abreu, R. Prakash, P. J. Romanienko, I. Roig, S. Keeney et al., Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination, Nat Commun, p.30305635, 2018.

B. Deans, C. S. Griffin, M. Maconochie, and J. Thacker, Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice, EMBO J, vol.19, pp.6675-6685, 2000.

D. L. Pittman and J. C. Schimenti, Midgestation lethality in mice deficient for the RecA-related gene, Rad51d/ Rad51l3, Genesis, vol.26, pp.167-173, 2000.

Z. Shu, S. Smith, L. Wang, M. C. Rice, and E. B. Kmiec, Disruption of muREC2/RAD51L1 in mice results in early embryonic lethality which can Be partially rescued in a p53, Mol Cell Biol, vol.19, pp.8686-8693, 1999.

G. Smeenk, A. J. De-groot, R. J. Romeijn, P. P. Van-buul, M. Z. Zdzienicka et al., Rad51C is essential for embryonic development and haploinsufficiency causes increased DNA damage sensitivity and genomic instability, Mutat Res, vol.689, pp.50-58, 2010.

R. Prakash, Y. Zhang, W. Feng, and M. Jasin, Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins, Cold Spring Harb Perspect Biol, vol.7, 2015.

J. Adam, B. Deans, and J. Thacker, A role for Xrcc2 in the early stages of mouse development, DNA Repair (Amst), vol.6, pp.224-234, 2007.

M. Takata, M. S. Sasaki, S. Tachiiri, T. Fukushima, E. Sonoda et al., Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs, Mol Cell Biol, vol.21, pp.2858-2866, 2001.

C. E. Tambini, A. M. George, J. M. Rommens, L. C. Tsui, S. W. Scherer et al., The XRCC2 DNA repair gene: identification of a positional candidate, Genomics, vol.41, pp.84-92, 1997.

D. K. Bishop, U. Ear, A. Bhattacharyya, C. Calderone, M. Beckett et al., Xrcc3 Is Required for Assembly of Rad51 Complexes in Vivo, J Biol Chem, vol.273, pp.21482-21488, 1998.

C. A. French, J. Y. Masson, C. S. Griffin, P. O'regan, S. C. West et al., Role of mammalian RAD51L2 (RAD51C) in recombination and genetic stability, J Biol Chem, vol.277, pp.19322-19330, 2002.

B. C. Godthelp, Mammalian Rad51C contributes to DNA cross-link resistance, sister chromatid cohesion and genomic stability, Nucleic Acids Res, vol.30, pp.2172-2182, 2002.

J. M. Hinz, R. S. Tebbs, P. F. Wilson, P. B. Nham, E. P. Salazar et al., Repression of mutagenesis by Rad51D-mediated homologous recombination, Nucleic Acids Res, vol.34, pp.1358-1368, 2006.

R. D. Johnson, N. Liu, and M. Jasin, Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination, Nature, vol.401, pp.397-399, 1999.

N. Liu, J. E. Lamerdin, R. S. Tebbs, D. Schild, J. D. Tucker et al., XRCC2 and XRCC3, New Human Rad51-Family Members, Promote Chromosome Stability and Protect against DNA Cross-Links and Other Damages, Mol Cell, vol.1, pp.80078-80085, 1998.

A. J. Pierce, R. D. Johnson, L. H. Thompson, and M. Jasin, XRCC3 promotes homology-directed repair of DNA damage in mammalian cells, Genes Dev, vol.13, pp.2633-2638, 1999.

M. Takata, M. S. Sasaki, E. Sonoda, T. Fukushima, C. Morrison et al., The Rad51 paralog Rad51B promotes homologous recombinational repair, Mol Cell Biol, vol.20, pp.6476-6482, 2000.

C. S. Griffin, P. J. Simpson, C. R. Wilson, and J. Thacker, Mammalian recombination-repair genes XRCC2 and XRCC3 promote correct chromosome segregation, Nat Cell Biol, vol.2, pp.757-761, 2000.

M. Katsura, T. Tsuruga, O. Date, T. Yoshihara, M. Ishida et al., The ATR-Chk1 pathway plays a role in the generation of centrosome aberrations induced by Rad51C dysfunction, Nucleic Acids Res, vol.37, pp.3959-3968, 2009.

A. Rodrigue, M. Lafrance, M. C. Gauthier, D. Mcdonald, M. Hendzel et al., Interplay between human DNA repair proteins at a unique double-strand break in vivo, EMBO J, vol.25, pp.222-231, 2006.

P. G. Smiraldo, A. M. Gruver, J. C. Osborn, and D. L. Pittman, Extensive chromosomal instability in Rad51d-deficient mouse cells, Cancer Res, vol.65, pp.2089-2096, 2005.

K. Somyajit, S. Saxena, S. Babu, A. Mishra, and G. Nagaraju, Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart, Nucleic Acids Res, vol.43, pp.9835-55, 2015.

P. Sung, L. Krejci, S. Van-komen, and M. G. Sehorn, Rad51 recombinase and recombination mediators, J Biol Chem, vol.278, pp.42729-42732, 2003.

T. Yoshihara, M. Ishida, A. Kinomura, M. Katsura, T. Tsuruga et al., XRCC3 deficiency results in a defect in recombination and increased endoreduplication in human cells, EMBO J, vol.23, pp.670-680, 2004.

S. Saxena, K. Somyajit, and G. Nagaraju, XRCC2 Regulates Replication Fork Progression during dNTP Alterations, Cell Rep, vol.25, pp.3273-3282, 2018.

S. Badie, C. Liao, M. Thanasoula, P. Barber, M. A. Hill et al., RAD51C facilitates checkpoint signaling by promoting CHK2 phosphorylation, J Cell Biol, vol.185, pp.587-600, 2009.

X. Cui, M. Brenneman, J. Meyne, M. Oshimura, E. H. Goodwin et al., The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells, Mutat Res, vol.434, pp.75-88, 1999.

O. Date, M. Katsura, M. Ishida, T. Yoshihara, A. Kinomura et al., Haploinsufficiency of RAD51B Causes Centrosome Fragmentation and Aneuploidy in Human Cells, Cancer Res, vol.66, pp.6018-6024, 2006.

B. Deans, C. S. Griffin, P. O'regan, M. Jasin, and J. Thacker, Homologous Recombination Deficiency Leads to Profound Genetic Instability in Cells Derived from Xrcc2-Knockout Mice, Cancer Res, vol.63, pp.8181-8187, 2003.

J. Chun, E. S. Buechelmaier, and S. N. Powell, Rad51 paralog complexes BCDX2 and CX3 act at different stages in the BRCA1-BRCA2-dependent homologous recombination pathway, Mol Cell Biol, vol.33, pp.387-395, 2013.

R. B. Jensen, A. Ozes, T. Kim, A. Estep, and S. C. Kowalczykowski, BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage, DNA Repair, vol.12, pp.306-311, 2013.

R. Roy, J. Chun, and S. N. Powell, BRCA1 and BRCA2: Different roles in a common pathway of genome protection, Nature Reviews Cancer, pp.68-78, 2012.

A. Rodrigue, Y. Coulombe, K. Jacquet, J. P. Gagné, C. Roques et al., The RAD51 paralogs ensure cellular protection against mitotic defects and aneuploidy, J Cell Sci, vol.126, pp.348-359, 2013.

Y. C. Lio, D. Schild, M. A. Brenneman, J. L. Redpath, and D. J. Chen, Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells, J Biol Chem, vol.279, pp.42313-42320, 2004.

K. Somyajit, S. Basavaraju, R. Scully, and G. Nagaraju, ATM-and ATR-Mediated Phosphorylation of XRCC3 Regulates DNA Double-Strand Break-Induced Checkpoint Activation and Repair, Mol Cell Biol, 2013.


S. A. Compton, J. H. Choi, A. J. Cesare, S. Ozgü-r, and J. D. Griffith, Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells, Cancer Res, vol.67, pp.1513-1519, 2007.

M. Tarsounas and S. C. West, Recombination at mammalian telomeres: an alternative mechanism for telomere protection and elongation, Cell Cycle, vol.4, pp.672-674, 2005.

G. Nagaraju, S. Odate, A. Xie, and R. Scully, Differential regulation of short-and long-tract gene conversion between sister chromatids by Rad51C, Mol Cell Biol, vol.26, pp.8075-8086, 2006.

G. Nagaraju, A. Hartlerode, A. Kwok, G. Chandramouly, and R. Scully, XRCC2 and XRCC3 regulate the balance between short-and long-tract gene conversions between sister chromatids, Mol Cell Biol, vol.29, pp.4283-4294, 2009.

N. Puget, M. Knowlton, and R. Scully, Molecular analysis of sister chromatid recombination in mammalian cells, DNA Repair, vol.4, pp.149-161, 2005.

M. R. Akbari, P. Tonin, W. D. Foulkes, P. Ghadirian, M. Tischkowitz et al., RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res. 2010/08/19, vol.12, p.404, 2010.

L. Golmard, V. Caux-moncoutier, G. Davy, A. Ageeli, E. Poirot et al., Germline mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer. 2013/10/19, vol.13, p.484, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00878230

L. Golmard, L. Casté-ra, S. Krieger, V. Moncoutier, K. Abidallah et al., Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers /631/208/68 /631/67/1347 article, Eur J Hum Genet, p.29255180, 2017.

C. Loveday, C. Turnbull, E. Ramsay, D. Hughes, E. Ruark et al., Germline mutations in RAD51D confer susceptibility to ovarian cancer, Nat Genet, vol.43, pp.879-882, 2011.

C. Loveday, C. Turnbull, E. Ruark, R. Xicola, E. Ramsay et al., Germline RAD51C mutations confer susceptibility to ovarian cancer, vol.44, pp.475-476

A. Osorio, D. Endt, F. Fernández, K. Eirich, M. De-la-hoya et al., Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families, Hum Mol Genet, vol.21, pp.2889-2898, 2012.

N. Orr, A. Lemnrau, R. Cooke, O. Fletcher, K. Tomczyk et al., Genome-wide association study identifies a common variant in RAD51B associated with male breast cancer risk, Nat Genet, vol.44, pp.1182-1184, 2012.

D. J. Park, F. Lesueur, T. Nguyen-dumont, M. Pertesi, F. Odefrey et al., Rare mutations in XRCC2 increase the risk of breast cancer, Am J Hum Genet, vol.90, p.22464251

K. Somyajit, S. Subramanya, and G. Nagaraju, Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair: implications for Fanconi anemia and breast cancer susceptibility, J Biol Chem, vol.287, pp.3366-3380, 2012.

Y. Zheng, J. Zhang, K. Hope, Q. Niu, D. Huo et al., Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer, Breast Cancer Res Treat, vol.124, p.20697805, 2010.

J. Y. Park, E. L. Virts, A. Jankowska, C. Wiek, M. Othman et al., Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene, J Med Genet, vol.53, p.27208205

K. Somyajit, S. Subramanya, and G. Nagaraju, RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer, Carcinogenesis, vol.31, pp.2031-2038, 2010.

F. Vaz, H. Hanenberg, B. Schuster, K. Barker, C. Wiek et al., Mutation of the RAD51C gene in a Fanconi anemia-like disorder, Nat Genet, vol.42, pp.406-409, 2010.

W. Feng and M. Jasin, BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination, Nat Commun, vol.8, p.28904335, 2017.

E. Brunet, D. Simsek, M. Tomishima, R. Dekelver, V. M. Choi et al., Chromosomal translocations induced at specified loci in human stem cells, Proc Natl Acad Sci, vol.106, pp.10620-10625, 2009.

D. Hockemeyer, F. Soldner, C. Beard, Q. Gao, M. Mitalipova et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases, Nat Biotechnol, vol.27, pp.851-857, 2009.

F. Esashi, N. Christ, J. Cannon, Y. Liu, T. Hunt et al., CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair, Nature, vol.434, pp.598-604, 2005.

S. L. Hays, . Firmenich-a-a, and P. Berg, Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins, Proc Natl Acad Sci, vol.92, pp.6925-6929, 1995.

R. D. Johnson and L. S. Symington, Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57, Mol Cell Biol, vol.15, pp.4843-4850, 1995.

A. Fujimori, Rad52 partially substitutes for the Rad51 paralog XRCC3 in maintaining chromosomal integrity in vertebrate cells, EMBO J, vol.20, pp.5513-5520, 2001.

J. Y. Park, E. L. Virts, A. Jankowska, C. Wiek, M. Othman et al., Complementation of hypersensitivity to DNA interstrand crosslinking agents demonstrates that XRCC2 is a Fanconi anaemia gene, J Med Genet, vol.53, pp.672-680, 2016.

H. E. Bryant, N. Schultz, H. D. Thomas, K. M. Parker, D. Flower et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase, Nature, vol.434, pp.913-917, 2005.

B. G. Debeb, X. Zhang, S. Krishnamurthy, H. Gao, E. Cohen et al., Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells, Mol Cancer, vol.9, p.180, 2010.

T. Hart, M. Chandrashekhar, M. Aregger, Z. Steinhart, K. R. Brown et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities, Cell, vol.163, pp.1515-1526, 2015.

T. Wang, K. Birsoy, N. W. Hughes, K. M. Krupczak, Y. Post et al., Identification and characterization of essential genes in the human genome, Science, vol.350, pp.1096-1101, 2015.

T. Wang, H. Yu, N. W. Hughes, B. Liu, A. Kendirli et al., Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras, Cell, 2017.

T. Rijkers, J. Van-den-ouweland, B. Morolli, . Rolink-a-g, W. M. Baarends et al., Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation, Mol Cell Biol, vol.18, pp.6423-6429, 1998.


S. K. Sotiriou, I. Kamileri, N. Lugli, K. Evangelou, C. Da-ré et al., Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks, Mol Cell, vol.64, pp.1127-1134, 2016.

T. Yasuhara, R. Kato, Y. Hagiwara, B. Shiotani, M. Yamauchi et al., Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair, Cell, vol.175, pp.558-570, 2018.

V. A. Blomen, P. Majek, L. T. Jae, J. W. Bigenzahn, J. Nieuwenhuis et al., Gene essentiality and synthetic lethality in haploid human cells. Science (80-), vol.350, pp.1092-1096, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02337430

J. M. Buerstedde and S. Takeda, Increased ratio of targeted to random integration after transfection of chicken B cell lines, Cell, 1991.

O. S. Gildemeister, J. M. Sage, and K. L. Knight, Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C, J Biol Chem, vol.284, pp.31945-31952, 2009.

N. P. Bhattacharyya, A. Skandalis, A. Ganesh, J. Groden, and M. Meuth, Mutator phenotypes in human colorectal carcinoma cell lines, Proc Natl Acad Sci, vol.91, pp.6319-6323, 1994.

J. Liu, L. Renault, X. Veaute, F. Fabre, H. Stahlberg et al., Rad51 paralogues Rad55-Rad57 balance the antirecombinase Srs2 in Rad51 filament formation, Nature, vol.479, pp.245-248, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00881580

R. A. Baldock, C. A. Pressimone, J. M. Baird, A. Khodakov, T. T. Luong et al., RAD51D splice variants and cancer-associated mutations reveal XRCC2 interaction to be critical for homologous recombination, DNA Repair (Amst), vol.76, pp.99-107, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02383641

O. Kondrashova, M. Nguyen, K. Shield-artin, A. V. Tinker, N. Teng et al., Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma, Cancer Discov, vol.7, pp.984-998, 2017.

F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott et al., Genome engineering using the CRISPR-Cas9 system, Nat Protoc, vol.8, pp.2281-2308, 2013.

C. Richardson, M. E. Moynahan, and M. Jasin, Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations, Genes Dev, vol.12, pp.3831-3842, 1998.

J. Essers, R. W. Hendriks, J. Wesoly, C. Beerens, B. Smit et al., Analysis of mouse Rad54 expression and its implications for homologous recombination, DNA Repair (Amst), 2002.

, , pp.110-116

A. Lapytsko, G. Kollarovic, L. Ivanova, M. Studencka, and J. Schaber, FoCo: a simple and robust quantification algorithm of nuclear foci, BMC Bioinformatics, vol.16, p.392, 2015.

C. C. Uphoff and H. G. Drexler, Detection of Mycoplasma Contamination in Cell Cultures, Current Protocols in Molecular Biology

C. C. Uphoff, S. A. Denkmann, K. G. Steube, and H. G. Drexler, Detection of EBV, HBV, HCV, HIV-1, HTLV-I and -II, and SMRV in Human and Other Primate Cell Lines, J Biomed Biotechnol, vol.2010, pp.1-23, 2010.

C. C. Uphoff, S. Lange, S. A. Denkmann, H. Garritsen, and H. G. Drexler, Prevalence and Characterization of Murine Leukemia Virus Contamination in Human Cell Lines, PLoS One, vol.10, p.125622, 2015.

W. G. Dirks and H. G. Drexler, STR DNA Typing of Human Cell Lines: Detection of Intra-and Interspecies Cross-Contamination, Methods in Molecular Biology, pp.27-38, 2013.

W. G. Dirks, R. Macleod, Y. Nakamura, A. Kohara, Y. Reid et al., Cell line cross-contamination initiative: An interactive reference database of STR profiles covering common cancer cell lines, Int J Cancer, vol.126, pp.303-304, 2010.