O. Johnell and J. A. Kanis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures, Osteoporos Int, vol.17, issue.12, pp.1726-1759, 2006.

J. Compston, Bone quality: what is it and how is it measured?, Arq Bras Endocrinol Metabol, vol.50, issue.4, pp.579-85, 2006.

H. C. Anderson, R. Garimella, and S. E. Tague, The role of matrix vesicles in growth plate development and biomineralization, Front Biosci, vol.10, pp.822-859, 2005.

M. Bottini, S. Mebarek, and K. L. Anderson, Matrix vesicles from chondrocytes and osteoblasts: their biogenesis, properties, functions and biomimetic models, Biochim Biophys Acta Gen Subj, vol.1862, issue.3, pp.532-578, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02128820

S. Boonrungsiman, E. Gentleman, and R. Carzaniga, The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation, Proc Natl Acad Sci U S A, vol.109, issue.35, pp.14170-14175, 2012.

A. Gupta, H. S. Tenenhouse, and H. M. Hoag, Identification of the type II Na(þ)-Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2-/-mice, Bone, vol.29, issue.5, pp.467-76, 2001.

G. Albano, M. Moor, and S. Dolder, Sodium-dependent phosphate transporters in osteoclast differentiation and function, PLoS One, vol.10, issue.4, p.125104, 2015.

G. Palmer, J. P. Bonjour, and J. Caverzasio, Expression of a newly identified phosphate transporter/retrovirus receptor in human SaOS-2 osteoblast-like cells and its regulation by insulin-like growth factor I, Endocrinology, vol.138, issue.12, pp.5202-5211, 1997.

M. D. Polewski, K. A. Johnson, M. Foster, J. L. Mill-an, and R. Terkeltaub, Inorganic pyrophosphatase induces type I collagen in osteoblasts, Bone, vol.46, issue.1, pp.81-90, 2010.

A. Suzuki, C. Ghayor, and J. Guicheux, Enhanced expression of the inorganic phosphate transporter Pit-1 is involved in BMP-2-induced matrix mineralization in osteoblast-like cells, J Bone Miner Res, vol.21, issue.5, pp.674-83, 2006.

A. Suzuki, G. Palmer, J. P. Bonjour, and J. Caverzasio, Stimulation of sodiumdependent inorganic phosphate transport by activation of Gi/oprotein-coupled receptors by epinephrine in MC3T3-E1 osteoblastlike cells, Bone, vol.28, issue.6, pp.589-94, 2001.

Y. Yoshiko, G. A. Candeliere, N. Maeda, and J. E. Aubin, Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization, Mol Cell Biol, vol.27, issue.12, pp.4465-74, 2007.

X. Zhen, J. P. Bonjour, and J. Caverzasio, Platelet-derived growth factor stimulates sodium-dependent Pi transport in osteoblastic cells via phospholipase Cgamma and phosphatidylinositol 3 0 -kinase, AN IMPORTANT GENETIC DETERMINANT OF BONE QUALITY AND STRENGTH, vol.12, issue.1, pp.36-44, 1997.

J. L. Mill-an, The role of phosphatases in the initiation of skeletal mineralization, Calcif Tissue Int, vol.93, issue.4, pp.299-306, 2013.

A. Bourgine, P. Pilet, and S. Diouani, Mice with hypomorphic expression of the sodium-phosphate cotransporter PiT1/Slc20a1 have an unexpected normal bone mineralization, PLoS One, vol.8, issue.6, p.65979, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01847748

M. C. Yadav, M. Bottini, and C. E. , Skeletal Mineralization Deficits and Impaired biogenesis and function of chondrocyte-derived matrix vesicles in Phospho1(-/-) and Phospho1/Pit1 double knockout mice, J Bone Miner Res, vol.31, issue.6, pp.1275-86, 2016.

G. Couasnay, N. Bon, and C. S. Devignes, PiT1/Slc20a1 is required for endoplasmic reticulum homeostasis, chondrocyte survival, and skeletal development, J Bone Miner Res. Forthcoming. Epub, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02333851

A. Suzuki, P. Ammann, and K. Nishiwaki-yasuda, Effects of transgenic Pit-1 overexpression on calcium phosphate and bone metabolism, J Bone Miner Metab, vol.28, issue.2, pp.139-187, 2010.

R. R. Lemos, E. M. Ramos, and A. Legati, Update and mutational analysis of SLC20A2: a major cause of primary familial brain calcification, Hum Mutat, vol.36, issue.5, pp.489-95, 2015.

G. Nicolas, C. Charbonnier, and R. R. De-lemos, Brain calcification process and phenotypes according to age and sex: lessons from SLC20A2, PDGFB, and PDGFRB mutation carriers, Am J Med Genet, vol.168, issue.7, pp.586-94, 2015.

C. Wang, Y. Li, and L. Shi, Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis, Nat Genet, vol.44, issue.3, pp.254-260, 2012.

N. Jensen, J. K. Autzen, and L. Pedersen, Slc20a2 is critical for maintaining a physiologic inorganic phosphate level in cerebrospinal fluid, Neurogenetics, vol.17, issue.2, pp.125-155, 2016.

M. C. Wallingford, J. Chia, and E. M. Leaf, SLC20A2 deficiency in mice leads to elevated phosphate levels in cerebrospinal fluid and lymphatic pathway-associated arteriolar calcification, and recapitulates human idiopathic basal ganglia calcification, Brain Pathol, vol.27, issue.1, pp.64-76, 2017.

S. Yamada, M. C. Wallingford, S. Borgeia, T. C. Cox, and C. M. Giachelli, Loss of PiT-2 results in abnormal bone development and decreased bone mineral density and length in mice, Biochem Biophys Res Commun, vol.495, pp.553-562, 2018.

M. H. Crouthamel, W. L. Lau, and E. M. Leaf, Sodium-dependent phosphate cotransporters and phosphate-induced calcification of vascular smooth muscle cells: redundant roles for PiT-1 and PiT-2

, Arterioscler Thromb Vasc Biol, vol.33, issue.11, pp.2625-2657, 2013.

C. Ingvorsen, N. A. Karp, and C. J. Lelliott, The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice, Nutr Diabetes, vol.7, issue.4, pp.261-268, 2017.

J. K. White, A. Gerdin, and N. A. Karp, Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes, Cell, vol.154, issue.2, pp.452-64, 2013.

J. Bassett, A. Boyde, and P. Howell, Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts, Proc Natl Acad Sci, vol.107, issue.16, pp.7604-7613, 2010.

J. Bassett, A. Gogakos, and J. K. White, Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength, PLoS Genet, vol.8, issue.8, p.1002858, 2012.

J. Bassett, K. Nordstr?-om, and A. Boyde, Thyroid status during skeletal development determines adult bone structure and mineralization, Mol Endocrinol, vol.21, issue.8, pp.1893-904, 2007.

D. W. Dempster, J. E. Compston, and M. K. Drezner, Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee, J Bone Miner Res, vol.28, issue.1, pp.69-79, 2013.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, vol.25, issue.4, pp.402-410, 2001.

L. Beck, C. Leroy, and S. Beck-cormier, The phosphate transporter PiT1 (Slc20a1) revealed as a new essential gene for mouse liver development, PLoS One, vol.5, issue.2, p.9148, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02333881

L. Beck, C. Leroy, C. Sala?-un, G. Margall-ducos, C. Desdouets et al., Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity, J Biol Chem, vol.284, issue.45, pp.31363-74, 2009.

M. Gosset, F. Berenbaum, S. Thirion, and C. Jacques, Primary culture and phenotyping of murine chondrocytes, Nat Protoc, vol.3, issue.8, pp.1253-60, 2008.

J. De-la-croix-ndong, A. J. Makowski, and S. Uppuganti, Asfotase-a improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1, Nat Med, vol.20, issue.8, pp.904-914, 2014.

S. Taylor, M. Shah, and I. R. Orriss, Generation of rodent and human osteoblasts, Bonekey Rep, vol.3, pp.1-10, 2014.

N. Bon, G. Frangi, S. Sourice, J. Guicheux, S. Beck-cormier et al., Phosphate-dependent FGF23 secretion is modulated by PiT2/ Slc20a2, Mol Metab, vol.11, pp.197-204, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01832970

L. Merametdjian, S. Beck-cormier, and N. Bon, Expression of phosphate transporters during dental mineralization, J Dent Res, vol.97, issue.2, pp.209-226, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01848642

D. Felsenberg and S. Boonen, The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management, Clin Ther, vol.27, issue.1, pp.1-11, 2005.

A. Papaioannou and C. Kennedy, Diagnostic criteria for osteoporosis should be expanded, Lancet Diabetes Endocrinol, vol.3, issue.4, pp.234-240, 2015.

M. C. Wallingford, H. S. Gammill, and C. M. Giachelli, Slc20a2 deficiency results in fetal growth restriction and placental calcification associated with thickened basement membranes and novel CD13 and lamininalpha1 expressing cells, Reprod Biol, vol.16, issue.1, pp.13-26, 2016.

S. Hayashi, P. Lewis, L. Pevny, and A. P. Mcmahon, Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain, Mech Dev, vol.119, issue.1, pp.97-101, 2002.

M. D. Tallquist and P. Soriano, Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function, Genesis, vol.26, issue.2, pp.113-118, 2000.

N. Bon, G. Couasnay, and A. Bourgine, Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/Slc20a2 underlies extracellular Pi sensing independently of Pi uptake, J Biol Chem, vol.293, issue.6, pp.2102-2116, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01677954

J. P. Kemp, J. A. Morris, and C. Medina-g-omez, Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis, Nat Genet, vol.49, issue.10, pp.1468-75, 2017.

N. Alonso, K. Estrada, and O. Albagha, Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density, Ann Rheum Dis, vol.77, issue.3, pp.378-85, 2018.

E. P. Paschalis, R. Mendelsohn, and A. L. Boskey, Infrared assessment of bone quality, Clin Orthop Relat Res, vol.469, issue.8, pp.2170-2178, 2011.

E. Davies, K. H. Muller, and W. C. Wong, Citrate bridges between mineral platelets in bone, Proc Natl Acad Sci U S A, vol.111, issue.14, pp.1354-63, 2014.