. Nidcd.-available and . Online, , 2017.

B. L. Fetterman and E. H. Domico, Speech recognition in background noise of cochlear implant patients. Otolaryngol. Head Neck Surg, vol.126, pp.257-263, 2002.

G. Clark, Cochlear Implants: Fundamentals and Applications

P. Blamey, F. Artieres, D. Ba?kent, F. Bergeron, A. Beynon et al., Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants: An update with 2251 patients, Audiol. Neurotol, vol.18, pp.36-47, 2013.

J. Kiefer, J. Müller, T. Pfennigdorff, F. Schön, J. Helms et al., Speech understanding in quiet and in noise with the CIS speech coding strategy (MED-EL Combi-40) compared to the multipeak and spectral peak strategies (nucleus), ORL J. Otorhinolaryngol. Relat. Spec, vol.58, pp.127-135, 1996.

, Appl. Sci, vol.2019, p.734

J. Kiefer, S. Hohl, E. Stürzebecher, T. Pfennigdorff, and W. Gstöettner, Comparison of speech recognition with different speech coding strategies (SPEAK, CIS and ACE) and their relationship to telemetric measures of compound action potentials in the nucleus CI 24M cochlear implant system, Audiology, vol.40, pp.32-42, 2001.

M. W. Skinner, L. K. Holden, L. A. Whitford, K. L. Plant, C. Psarros et al., Speech recognition with the nucleus 24 SPEAK, ACE and CIS speech coding strategies in newly implanted adults, Ear Hear, vol.23, pp.207-223, 2002.

S. J. Brockmeier, M. Grasmeder, S. Passow, D. Mawmann, M. Vischer et al., Comparison of musical activities of cochlear implant users with different speech-coding strategies, Ear Hear, vol.28, pp.49-51, 2007.

M. F. Dorman, P. C. Loizou, A. J. Spahr, and E. Maloff, A comparison of the speech understanding provided by acoustic models of fixed-channel and channel-picking signal processors for cochlear implants, J. Speech Lang. Hear. Res, vol.45, pp.783-788, 2002.

R. V. Shannon, Q. Fu, and J. Galvin, The number of spectral channels required for speech recognition depends on the difficulty of the listening situation, Acta Otolaryngol. Suppl, vol.124, pp.50-54, 2004.

C. A. Verschuur, Effect of stimulation rate on speech perception in adult users of the Med-El CIS speech processing strategy, Int. J. Audiol, vol.44, pp.58-63, 2005.

B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington et al., Better speech recognition with cochlear implants, Nature, vol.352, pp.236-238, 1991.

O. U. Qazi, B. Van-dijk, M. Moonen, and J. Wouters, Understanding the effect of noise on electrical stimulation sequences in cochlear implants and its impact on speech intelligibility, Hear. Res, vol.299, pp.79-87, 2013.

C. Garnham, M. O'driscoll, R. Ramsden, and S. Saeed, Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets, Ear Hear, vol.23, pp.540-552, 2002.

Y. Hu and P. C. Loizou, A new sound coding strategy for suppressing noise in cochlear implants, J. Acoust. Soc. Am, vol.124, pp.498-509, 2008.

A. Jeanvoine, D. Gnansia, E. Truy, and C. Berger-vachon, Contribution of Noise Reduction Algorithms: Perception Versus Localization Simulation in the Case of Binaural Cochlear Implant (BCI) Coding. In Emerging Trends in Computational Biology, Bioinformatics and System Biology, pp.307-324, 2015.

Q. Wang, R. Liang, S. Rahardja, L. Zhao, C. Zou et al., Piecewise-Linear Frequency Shifting Algorithm for Frequency Resolution Enhancement in Digital Hearing, Aids. Appl. Sci, vol.7, p.335, 2017.

F. Kallel, M. Frikha, M. Ghorbel, A. B. Hamida, and C. Berger-vachon, Dual-channel spectral subtraction algorithms based speech enhancement dedicated to a bilateral cochlear implant, Appl. Acoust, vol.73, pp.12-20, 2012.

F. Seldran, S. Gallego, H. Thai-van, and C. Berger-vachon, Influence of coding strategies in electric-acoustic hearing: A simulation dedicated to EAS cochlear implant, in the presence of noise, Appl. Acoust, vol.76, pp.300-309, 2014.

M. F. Dorman, P. C. Loizou, J. Fitzke, and Z. Tu, Recognition of monosyllabic words by cochlear implant patients and by normal-hearing subjects listening to words processed through cochlear implant signal processing strategies, Ann. Otol. Rhinol. Laryngol. Suppl, vol.185, pp.64-66, 2000.

P. C. Loizou, M. F. Dorman, Z. Tu, and J. Fitzke, Recognition of sentences in noise by normal-hearing listeners using simulations of speak-type cochlear implant signal processors, Ann. Otol. Rhinol. Laryngol. Suppl, vol.185, pp.67-68, 2000.

M. F. Dorman, P. C. Loizou, and J. Fitzke, The identification of speech in noise by cochlear implant patients and normal-hearing listeners using 6-channel signal processors, Ear Hear, vol.19, pp.481-484, 1998.

M. B. Winn, A. E. Rhone, M. Chatterjee, and W. J. Idsardi, The use of auditory and visual context in speech perception by listeners with normal hearing and listeners with cochlear implants, Front. Psychol, vol.4, 2013.

K. Perreaut, S. Gallego, C. Berger-vachon, and F. Millioz, Influence of Microphone Encrusting on the Efficiency of Cochlear Implants Preliminary Study with a Simulation of CIS and "n-of-m, Strategies. AMSE J. Ser. Model. C, vol.75, pp.199-208, 2014.

J. Hornickel, E. Skoe, and N. Kraus, Subcortical Laterality of Speech Encoding. Audiol. Neurotol, vol.14, pp.198-207, 2009.

R. J. Zatorre, P. Belin, and V. B. Penhune, Structure and function of auditory cortex: Music and speech, Trends Cogn. Sci. (Regul. Ed.), vol.6, pp.37-46, 2002.

H. Traunmüller, Analytical expressions for the tonotopic sensory scale, J. Acoust. Soc. Am, vol.88, pp.97-100, 1990.

J. Wouters, H. J. Mcdermott, and T. Francart, Sound Coding in Cochlear Implants: From electric pulses to hearing, IEEE Signal Process. Mag, vol.32, pp.67-80, 2015.

G. M. Sullivan and R. Feinn, Using Effect Size-Or Why the P Value Is Not Enough, J. Grad. Med. Educ, vol.4, pp.279-282, 2012.

R. A. Armstrong, When to use the Bonferroni correction, Ophthalmic Physiol. Opt, vol.34, pp.502-508, 2014.

D. L. Streiner and G. R. Norman, Correction for multiple testing: Is there a resolution? Chest, vol.140, pp.16-18, 2011.

M. W. Skinner, P. L. Arndt, and S. J. Staller, Nucleus 24 advanced encoder conversion study: Performance versus preference, Ear Hear, vol.23, pp.2-17, 2002.

F. Kallel, R. Laboissiere, A. Ben-hamida, and C. Berger-vachon, Influence of a shift in frequency distribution and analysis rate on phoneme intelligibility in noisy environments for simulated bilateral cochlear implants, Appl. Acoust, vol.74, pp.10-17, 2013.

D. Riss, J. Hamzavi, M. Blineder, S. Flak, W. Baumgartner et al., Effects of stimulation rate with the fs4 and hdcis coding strategies in cochlear implant recipients, Otol. Neurotol, vol.37, pp.882-888, 2016.

B. S. Wilson, X. Sun, R. Schatzer, and R. D. Wolford, Representation of fine structure or fine frequency information with cochlear implants, Int. Congr. Ser, vol.1273, pp.3-6, 2004.

M. F. Dorman and P. C. Loizou, The identification of consonants and vowels by cochlear implant patients using a 6-channel continuous interleaved sampling processor and by normal-hearing subjects using simulations of processors with two to nine channels, Ear Hear, vol.19, pp.162-166, 1998.

D. E. Aguiar, N. E. Taylor, J. Li, D. K. Gazanfari, T. M. Talavage et al., Information theoretic evaluation of a noiseband-based cochlear implant simulator, Hear. Res, vol.333, pp.185-193, 2015.

L. M. Friesen, R. V. Shannon, D. Baskent, and X. Wang, Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants, J. Acoust. Soc. Am, vol.110, pp.1150-1163, 2001.

P. C. Loizou, M. Dorman, and Z. Tu, On the number of channels needed to understand speech, J. Acoust. Soc. Am, vol.106, pp.2097-2103, 1999.