C. L. Alston, M. C. Rocha, N. Z. Lax, D. M. Turnbull, and R. W. Taylor, The genetics and pathology of mitochondrial disease, J. Pathol, vol.241, pp.236-250, 2017.

P. A. Andreux, R. H. Houtkooper, and J. Auwerx, Pharmacological approaches to restore mitochondrial function, Nat. Rev. Drug Discov, vol.12, pp.465-483, 2013.

C. Carmo, L. Naia, C. Lopes, and A. C. Rego, Mitochondrial Dysfunction in Huntington's Disease, Adv. Exp. Med. Biol, vol.1049, pp.59-83, 2018.

H. A. Elfawy and B. Das, Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies, Life Sci, vol.218, pp.165-184, 2019.

L. A. Kiyuna, R. P. Albuquerque, C. H. Chen, D. Mochly-rosen, and J. C. Ferreira, Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic, Biol. Med, vol.129, pp.155-168, 2018.

E. Murphy, H. Ardehali, R. S. Balaban, F. Dilisa, G. W. Dorn et al., Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association, Circ. Res, vol.118, 1960.

M. E. Patti and S. Corvera, The role of mitochondria in the pathogenesis of type 2 diabetes, Endocr. Rev, vol.31, pp.364-395, 2010.

R. Rossignol, Toward bioenergetic modulation therapy and the training of a new generation of European scientists, Int. J. Biochem. Cell Biol, vol.63, pp.2-9, 2015.

S. Vyas, E. Zaganjor, and M. Haigis, C. Mitochondria and Cancer. Cell, vol.166, pp.555-566, 2016.

A. W. El-hattab, A. M. Zarante, M. Almannai, and F. Scaglia, Therapies for mitochondrial diseases and current clinical trials, Mol. Genet. Metab, vol.122, pp.1-9, 2017.

W. J. Koopman, J. Beyrath, C. W. Fung, S. Koene, R. J. Rodenburg et al., Mitochondrial disorders in children: Toward development of small-molecule treatment strategies, EMBO Mol. Med, vol.8, pp.311-327, 2016.

C. Garone and C. Viscomi, Towards a therapy for mitochondrial disease: An update, Biochem. Soc. Trans, vol.46, pp.1247-1261, 2018.

M. Hirano, V. Emmanuele, and C. M. Quinzii, Emerging therapies for mitochondrial diseases, Essays Biochem, vol.62, pp.467-481, 2018.

S. M. Houten, S. Violante, F. V. Ventura, and R. J. Wanders, The Biochemistry and Physiology of Mitochondrial Fatty Acid beta-Oxidation and Its Genetic Disorders, Annu. Rev. Physiol, 2015.

S. J. Knottnerus, J. C. Bleeker, R. C. Wust, S. Ferdinandusse, L. Ijlst et al., Disorders of mitochondrial long-chain fatty acid oxidation and the carnitine shuttle, Rev. Endocr. Metab. Disord, vol.19, pp.93-106, 2018.

J. Baruteau, P. Sachs, P. Broue, M. Brivet, H. Abdoul et al., Ogier de Baulny, H. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: A French pediatric study from 187 patients. Complementary data, J. Inherit. Metab. Dis, vol.37, pp.137-139, 2014.

J. L. Merritt, M. Norris, and S. Kanungo, Fatty acid oxidation disorders, Ann. Transl. Med, vol.6, 2018.

S. E. Olpin, Pathophysiology of fatty acid oxidation disorders and resultant phenotypic variability, J. Inherit. Metab. Dis, vol.36, pp.645-658, 2013.

E. Kang, Y. M. Kim, M. Kang, S. H. Heo, G. H. Kim et al., Clinical and genetic characteristics of patients with fatty acid oxidation disorders identified by newborn screening, BMC Pediatr, vol.18, 2018.

M. J. Miller, L. C. Burrage, J. B. Gibson, M. E. Strenk, E. J. Lose et al., Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coA dehydrogenase (VLCAD) deficiency in the United States, Mol. Genet. Metab, vol.116, pp.139-145, 2015.

K. Yamada and T. Taketani, Management and diagnosis of mitochondrial fatty acid oxidation disorders: Focus on very-long-chain acyl-CoA dehydrogenase deficiency, J. Hum. Genet, vol.64, pp.73-85, 2019.

Y. Yang, L. Wang, B. Wang, S. Liu, B. Yu et al., Application of Next-Generation Sequencing Following Tandem Mass Spectrometry to Expand Newborn Screening for Inborn Errors of Metabolism: A Multicenter Study, Front. Genet, vol.10, 2019.

A. C. Rufer, R. Thoma, J. Benz, M. Stihle, B. Gsell et al., The crystal structure of carnitine palmitoyltransferase 2 and implications for diabetes treatment, Structure, vol.14, pp.713-723, 2006.

P. J. Isackson, M. J. Bennett, U. Lichter-konecki, M. Willis, W. L. Nyhan et al., CPT2 gene mutations resulting in lethal neonatal or severe infantile carnitine palmitoyltransferase II deficiency, Mol. Genet. Metab, vol.94, pp.422-427, 2008.

J. P. Bonnefont, F. Djouadi, C. Prip-buus, S. Gobin, A. Munnich et al., Carnitine palmitoyltransferases 1 and 2: Biochemical, molecular and medical aspects, Mol. Asp. Med, vol.25, pp.495-520, 2004.

J. N. Jernberg, C. E. Bowman, M. J. Wolfgang, and S. Scafidi, Developmental regulation and localization of carnitine palmitoyltransferases (CPTs) in rat brain, J. Neurochem, vol.142, pp.407-419, 2017.

A. Panov, Z. Orynbayeva, V. Vavilin, and V. Lyakhovich, Fatty acids in energy metabolism of the central nervous system, BioMed Res. Int, 2014.

M. Knobloch, G. A. Pilz, B. Ghesquiere, W. J. Kovacs, T. Wegleiter et al., A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity, vol.20, pp.2144-2155, 2017.

Z. Xie, A. Jones, J. T. Deeney, S. K. Hur, and V. A. Bankaitis, Inborn Errors of Long-Chain Fatty Acid beta-Oxidation Link Neural Stem Cell Self-Renewal to, Autism. Cell Rep, vol.14, pp.991-999, 2016.

R. P. Mcandrew, Y. Wang, A. W. Mohsen, M. He, J. Vockley et al., Structural basis for substrate fatty acyl chain specificity: Crystal structure of human very-long-chain acyl-CoA dehydrogenase, J. Biol. Chem, vol.283, pp.9435-9443, 2008.

M. Chegary, H. Brinke, J. P. Ruiter, F. A. Wijburg, M. S. Stoll et al., Mitochondrial long chain fatty acid beta-oxidation in man and mouse, Biochim. Biophys. Acta, vol.1791, pp.806-815, 2009.

J. Hesse, C. Braun, S. Behringer, U. Matysiak, U. Spiekerkoetter et al., The diagnostic challenge in very-long chain acyl-CoA dehydrogenase deficiency (VLCADD), J. Inherit. Metab. Dis, vol.41, pp.1169-1178, 2018.

M. Evans, B. S. Andresen, J. Nation, and A. Boneh, VLCAD deficiency: Follow-up and outcome of patients diagnosed through newborn screening in Victoria, Mol. Genet. Metab, vol.118, pp.282-287, 2016.

L. D. Pena, S. C. Van-calcar, J. Hansen, M. J. Edick, C. Walsh-vockley et al., Outcomes and genotype-phenotype correlations in 52 individuals with VLCAD deficiency diagnosed by NBS and enrolled in the IBEM-IS database, Mol. Genet. Metab, vol.118, pp.272-281, 2016.

P. Janeiro, R. Jotta, R. Ramos, C. Florindo, F. V. Ventura et al., Follow-up of fatty acid beta-oxidation disorders in expanded newborn screening era, Eur. J. Pediatr, 2019.

J. C. Bleeker, I. L. Kok, S. Ferdinandusse, W. L. Van-der-pol, I. Cuppen et al., Impact of NBS for VLCAD deficiency on genetic, enzymatic and clinical outcomes, J. Inherit. Metab. Dis, 2019.

B. S. Andresen, S. Olpin, B. J. Poorthuis, H. R. Scholte, C. Vianey-saban et al., Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency, Am. J. Hum. Genet, vol.64, pp.479-494, 1999.

E. F. Diekman, S. Ferdinandusse, L. Van-der-pol, H. R. Waterham, J. P. Ruiter et al., Fatty acid oxidation flux predicts the clinical severity of VLCAD deficiency, Genet. Med. Off. J. Am. Coll. Med. Genet, vol.17, pp.989-994, 2015.

S. Gobin-limballe, F. Djouadi, F. Aubey, S. Olpin, B. S. Andresen et al., Genetic basis for correction of very-long-chain acyl-coenzyme A dehydrogenase deficiency by bezafibrate in patient fibroblasts: Toward a genotype-based therapy, Am. J. Hum. Genet, vol.81, pp.1133-1143, 2007.

B. Fould, V. Garlatti, E. Neumann, D. Fenel, C. Gaboriaud et al., Structural and functional characterization of the recombinant human mitochondrial trifunctional protein, Biochemistry, vol.49, pp.8608-8617, 2010.

U. Spiekerkoetter, Z. Khuchua, Z. Yue, M. J. Bennett, and A. W. Strauss, General mitochondrial trifunctional protein (TFP) deficiency as a result of either alpha-or beta-subunit mutations exhibits similar phenotypes because mutations in either subunit alter TFP complex expression and subunit turnover, Pediatr. Res, vol.55, pp.190-196, 2004.

S. E. Olpin, Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults, Clin. Lab, vol.51, pp.289-306, 2005.

J. Purevsuren, T. Fukao, Y. Hasegawa, H. Kobayashi, H. Li et al., Clinical and molecular aspects of Japanese patients with mitochondrial trifunctional protein deficiency, Mol. Genet. Metab, vol.98, pp.372-377, 2009.

D. Ghezzi and M. Zeviani, Human diseases associated with defects in assembly of OXPHOS complexes, Essays Biochem, vol.62, pp.271-286, 2018.

G. S. Gorman, P. F. Chinnery, S. Dimauro, M. Hirano, Y. Koga et al., Mitochondrial diseases, Nat. Rev. Dis. Primers, vol.2, 2016.

W. J. Koopman, P. H. Willems, and J. A. Smeitink, Monogenic mitochondrial disorders, N. Engl. J. Med, vol.366, pp.1132-1141, 2012.
DOI : 10.1056/nejmra1012478

URL : https://repository.ubn.ru.nl/bitstream/2066/108720/1/108720.pdf

L. Craven, C. L. Alston, R. W. Taylor, and D. M. Turnbull, Recent Advances in Mitochondrial Disease, Annu. Rev. Genomics Hum. Genet, vol.18, pp.257-275, 2017.

W. J. Koopman, L. G. Nijtmans, C. E. Dieteren, P. Roestenberg, F. Valsecchi et al., Mammalian mitochondrial complex I: Biogenesis, regulation, and reactive oxygen species generation, Antioxid. Redox Signal, vol.12, pp.1431-1470, 2010.
DOI : 10.1089/ars.2009.2743

URL : https://repository.ubn.ru.nl/bitstream/2066/87452/1/87452.pdf

E. Fassone and S. Rahman, Complex I deficiency: Clinical features, biochemistry and molecular genetics, J. Med. Genet, vol.49, pp.578-590, 2012.
DOI : 10.1136/jmedgenet-2012-101159

URL : https://jmg.bmj.com/content/49/9/578.full.pdf

S. J. Hoefs, R. J. Rodenburg, J. A. Smeitink, . Van-den, and L. P. Heuvel, Molecular base of biochemical complex I deficiency, vol.12, pp.520-532, 2012.
DOI : 10.1016/j.mito.2012.07.106

F. Valsecchi, W. J. Koopman, G. R. Manjeri, R. J. Rodenburg, J. A. Smeitink et al., Complex I disorders: Causes, mechanisms, and development of treatment strategies at the cellular level, Dev. Disabil. Res. Rev, vol.16, pp.175-182, 2010.

C. Ugalde, R. J. Janssen, . Van-den, L. P. Heuvel, J. A. Smeitink et al., Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency, Hum. Mol. Genet, vol.13, pp.659-667, 2004.

S. Koene, R. J. Rodenburg, M. S. Van-der-knaap, M. A. Willemsen, W. Sperl et al., Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: What we learned from 130 cases, J. Inherit. Metab. Dis, vol.35, pp.737-747, 2012.

K. Bjorkman, K. Sofou, N. Darin, E. Holme, G. Kollberg et al., Broad phenotypic variability in patients with complex I deficiency due to mutations in NDUFS1 and NDUFV1. Mitochondrion, vol.21, pp.33-40, 2015.

H. Antonicka, I. Ogilvie, T. Taivassalo, R. P. Anitori, R. G. Haller et al., Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency, J. Biol. Chem, vol.278, pp.43081-43088, 2003.

W. J. Koopman, S. Verkaart, H. J. Visch, S. Van-emst-de-vries, L. G. Nijtmans et al., Human NADH:ubiquinone oxidoreductase deficiency: Radical changes in mitochondrial morphology?, Am. J. Physiol. Cell Physiol, vol.293, pp.22-29, 2007.

F. Diaz, Cytochrome c oxidase deficiency: Patients and animal models, Biochim. Biophys. Acta, vol.1802, pp.100-110, 2010.

M. Bourens and A. Barrientos, Human mitochondrial cytochrome c oxidase assembly factor COX18 acts transiently as a membrane insertase within the subunit 2 maturation module, J. Biol. Chem, vol.292, pp.7774-7783, 2017.

M. Bohm, E. Pronicka, E. Karczmarewicz, M. Pronicki, D. Piekutowska-abramczuk et al., Retrospective, multicentric study of 180 children with cytochrome C oxidase deficiency, Pediatr. Res, vol.59, pp.21-26, 2006.

N. Kovarova, P. Pecina, H. Nuskova, M. Vrbacky, M. Zeviani et al., Tissue-and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects, Biochim. Biophys. Acta, vol.1862, pp.705-715, 2016.

C. Cerqua, V. Morbidoni, M. A. Desbats, M. Doimo, C. Frasson et al., COX16 is required for assembly of cytochrome c oxidase in human cells and is involved in copper delivery to COX2, Biochim. Biophys. Acta Bioenerg, vol.1859, pp.244-252, 2018.

H. Hatakeyama and Y. I. Goto, Respiratory Chain Complex Disorganization Impairs Mitochondrial and Cellular Integrity: Phenotypic Variation in Cytochrome c Oxidase Deficiency, Am. J. Pathol, vol.187, pp.110-121, 2017.

M. Rak, P. Benit, D. Chretien, J. Bouchereau, M. Schiff et al., Mitochondrial cytochrome c oxidase deficiency, Clin. Sci, vol.130, pp.393-407, 2016.

M. Maj, N. Sriskandarajah, V. Hung, I. Browne, B. Shah et al., Identification of drug candidates which increase cytochrome c oxidase activity in deficient patient fibroblasts, vol.11, pp.264-272, 2011.

H. H. Szeto and A. V. Birk, Serendipity and the discovery of novel compounds that restore mitochondrial plasticity, Clin. Pharmacol. Ther, vol.96, pp.672-683, 2014.

B. K. Wagner, T. Kitami, T. J. Gilbert, D. Peck, A. Ramanathan et al., Large-scale chemical dissection of mitochondrial function, Nat. Biotechnol, vol.26, pp.343-351, 2008.

M. Kanabus, S. J. Heales, and S. Rahman, Development of pharmacological strategies for mitochondrial disorders, Br. J. Pharmacol, vol.171, pp.1798-1817, 2014.

A. Tenenbaum and E. Z. Fisman, Fibrates are an essential part of modern anti-dyslipidemic arsenal: Spotlight on atherogenic dyslipidemia and residual risk reduction, Cardiovasc. Diabetol, vol.11, 2012.

J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions, Prog. Lipid Res, vol.45, pp.120-159, 2006.

L. Burri, G. H. Thoresen, and R. K. Berge, The Role of PPARalpha Activation in Liver and Muscle, PPAR Res, 2010.

S. Kersten, Integrated physiology and systems biology of PPARalpha, Mol. Metab, vol.3, pp.354-371, 2014.

P. Lefebvre, G. Chinetti, J. C. Fruchart, and B. Staels, Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis, J. Clin. Investig, vol.116, pp.571-580, 2006.

F. Karpe and E. E. Ehrenborg, PPARdelta in humans: Genetic and pharmacological evidence for a significant metabolic function, Curr. Opin. Lipidol, vol.20, pp.333-336, 2009.

R. Manickam and W. Wahli, Roles of Peroxisome Proliferator-Activated Receptor beta/delta in skeletal muscle physiology, vol.136, pp.42-48, 2017.

N. S. Tan, M. Vazquez-carrera, A. Montagner, M. K. Sng, H. Guillou et al., Transcriptional control of physiological and pathological processes by the nuclear receptor PPARbeta/delta, Prog. Lipid Res, vol.64, pp.98-122, 2016.

M. Ahmadian, J. M. Suh, N. Hah, C. Liddle, A. R. Atkins et al., PPARgamma signaling and metabolism: The good, the bad and the future, Nat. Med, vol.19, pp.557-566, 2013.

W. Fan and R. Evans, PPARs and ERRs: Molecular mediators of mitochondrial metabolism, Curr. Opin. Cell Biol, vol.33, pp.49-54, 2015.

F. Djouadi, J. P. Bonnefont, L. Thuillier, V. Droin, N. Khadom et al., Correction of fatty acid oxidation in carnitine palmitoyl transferase 2-deficient cultured skin fibroblasts by bezafibrate, Pediatr. Res, vol.54, pp.446-451, 2003.

M. Yao, D. Yao, M. Yamaguchi, J. Chida, D. Yao et al., Bezafibrate upregulates carnitine palmitoyltransferase II expression and promotes mitochondrial energy crisis dissipation in fibroblasts of patients with influenza-associated encephalopathy, Mol. Genet. Metab, vol.104, pp.265-272, 2011.

F. Djouadi, F. Aubey, D. Schlemmer, and J. Bastin, Peroxisome Proliferator Activated Receptor delta (PPAR?) Agonist But Not PPAR alpha Corrects Carnitine Palmitoyl Transferase 2 Deficiency in Human Muscle Cells, J. Clin. Endocrinol. Metab, vol.90, pp.1791-1797, 2005.

A. Bugge, D. Holst, and . Agonists, Could tissue targeting pave the way? Biochimie, vol.136, pp.100-104, 2017.

J. M. Peters, T. Aoyama, A. M. Burns, and F. J. Gonzalez, Bezafibrate is a dual ligand for PPARalpha and PPARbeta: Studies using null mice, Biochim. Biophys. Acta, vol.1632, pp.80-89, 2003.

A. Tenenbaum, M. Motro, and E. Z. Fisman, Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: The bezafibrate lessons, Cardiovasc. Diabetol, 2005.

S. Yamaguchi, H. Li, J. Purevsuren, K. Yamada, M. Furui et al., Bezafibrate can be a new treatment option for mitochondrial fatty acid oxidation disorders: Evaluation by in vitro probe acylcarnitine assay, Mol. Genet. Metab, vol.107, pp.87-91, 2012.

T. Yasuno, K. Osafune, H. Sakurai, I. Asaka, A. Tanaka et al., Functional analysis of iPSC-derived myocytes from a patient with carnitine palmitoyltransferase II deficiency, Biochem. Biophys. Res. Commun, vol.448, pp.175-181, 2014.

F. Djouadi, F. Aubey, D. Schlemmer, J. P. Ruiter, R. J. Wanders et al., Bezafibrate increases very-long-chain acyl-CoA dehydrogenase protein and mRNA expression in deficient fibroblasts and is a potential therapy for fatty acid oxidation disorders, Hum. Mol. Genet, vol.14, pp.2695-2703, 2005.

S. Gobin-limballe, R. P. Mcandrew, F. Djouadi, J. J. Kim, and J. Bastin, Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches, Biochim. Biophys. Acta, vol.1802, pp.478-484, 2010.

H. Li, S. Fukuda, Y. Hasegawa, H. Kobayashi, J. Purevsuren et al., Effect of heat stress and bezafibrate on mitochondrial beta-oxidation: Comparison between cultured cells from normal and mitochondrial fatty acid oxidation disorder children using in vitro probe acylcarnitine profiling assay, Brain Dev, vol.32, pp.362-370, 2010.

F. Djouadi, F. Habarou, C. Le-bachelier, S. Ferdinandusse, D. Schlemmer et al., Mitochondrial trifunctional protein deficiency in human cultured fibroblasts: Effects of bezafibrate, J. Inherit. Metab. Dis, vol.39, pp.47-58, 2016.

C. Handschin and B. M. Spiegelman, Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis, and metabolism, Endocr. Rev, vol.27, pp.728-735, 2006.

R. C. Scarpulla, R. B. Vega, and D. P. Kelly, Transcriptional integration of mitochondrial biogenesis, Trends Endocrinol. Metab. TEM, vol.23, pp.459-466, 2012.

E. Hondares, O. Mora, P. Yubero, M. Rodriguez-de-la-concepcion, R. Iglesias et al., Thiazolidinediones and rexinoids induce peroxisome proliferator-activated receptor-coactivator (PGC)-1alpha gene transcription: An autoregulatory loop controls PGC-1alpha expression in adipocytes via peroxisome proliferator-activated receptor-gamma coactivation, Endocrinology, vol.147, pp.2829-2838, 2006.

M. Schuler, F. Ali, C. Chambon, D. Duteil, J. M. Bornert et al., PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes, Cell Metab, vol.4, pp.407-414, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188136

A. Ramjiawan, R. A. Bagchi, L. Albak, and M. P. Czubryt, Mechanism of cardiomyocyte PGC-1alpha gene regulation by ERRalpha, Biochem. Cell Biol. Biochim. Biol. Cell, vol.91, pp.148-154, 2013.

L. J. Eichner and V. Giguere, Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks, vol.11, pp.544-552, 2011.

V. Giguere, Transcriptional control of energy homeostasis by the estrogen-related receptors, Endocr. Rev, vol.29, pp.677-696, 2008.

J. P. Bonnefont, J. Bastin, A. Behin, and F. Djouadi, Bezafibrate for treatment of an inborn mitochondrial ß-oxidation defect, N. Engl. J. Med, vol.360, pp.838-840, 2009.

F. Z. Boufroura, C. Le-bachelier, C. Tomkiewicz-raulet, D. Schlemmer, J. F. Benoist et al., A new AMPK activator, GSK773, corrects fatty acid oxidation and differentiation defect in CPT2-deficient myotubes, Hum. Mol. Genet, vol.27, pp.3417-3433, 2018.

V. Aires, D. Delmas, C. Le-bachelier, N. Latruffe, D. Schlemmer et al., Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts, Orphanet J. Rare Dis, vol.9, p.79, 2014.

J. Bastin, A. Lopes-costa, and F. Djouadi, Exposure to resveratrol triggers pharmacological correction of fatty acid utilization in human fatty acid oxidation-deficient fibroblasts, Hum. Mol. Genet, 2011.

B. Seminotti, G. Leipnitz, A. Karunanidhi, C. Kochersperger, V. Y. Roginskaya et al., Mitochondrial energetics is impaired in very long-chain acyl-CoA dehydrogenase deficiency and can be rescued by treatment with mitochondria-targeted electron scavengers, Hum. Mol. Genet, 2018.

Z. Zolkipli, C. B. Pedersen, A. M. Lamhonwah, and N. Gregersen, Tein, I. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: Response to antioxidants, PLoS ONE, vol.6, 2011.

S. Luquet, J. Lopez-soriano, D. Holst, A. Fredenrich, J. Melki et al., Peroxisome proliferator-activated receptor delta controls muscle development and oxidative capability, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.17, pp.2299-2301, 2003.

Y. X. Wang, C. L. Zhang, R. T. Yu, H. K. Cho, M. C. Nelson et al., Regulation of muscle fiber type and running endurance by PPARdelta, PLoS Biol, vol.2, 2004.

J. Bastin, F. Aubey, A. Rotig, A. Munnich, and F. Djouadi, Activation of peroxisome proliferator-activated receptor pathway stimulates the mitochondrial respiratory chain and can correct deficiencies in patients' cells lacking its components, J. Clin. Endocrinol. Metab, vol.93, pp.1433-1441, 2008.

A. Hofer, N. Noe, C. Tischner, N. Kladt, V. Lellek et al., Defining the action spectrum of potential PGC-1alpha activators on a mitochondrial and cellular level in vivo, Hum. Mol. Genet, vol.23, pp.2400-2415, 2014.

A. Casarin, G. Giorgi, V. Pertegato, R. Siviero, C. Cerqua et al., Copper and bezafibrate cooperate to rescue cytochrome c oxidase deficiency in cells of patients with SCO2 mutations, Orphanet J
URL : https://hal.archives-ouvertes.fr/hal-00771058

N. Ioannou, I. P. Hargreaves, G. Allen, K. Duberley, J. M. Land et al., Bezafibrate induced increase in mitochondrial electron transport chain complex IV activity in human astrocytoma cells: Implications for mitochondrial cytopathies and neurodegenerative diseases, Biofactors, vol.36, pp.468-473, 2010.

T. Wenz, X. Wang, M. Marini, and C. T. Moraes, A metabolic shift induced by a PPAR panagonist markedly reduces the effects of pathogenic mitochondrial tRNA mutations, J. Cell. Mol. Med, vol.15, pp.2317-2325, 2011.

A. Golubitzky, P. Dan, S. Weissman, G. Link, J. D. Wikstrom et al., Screening for active small molecules in mitochondrial complex I deficient patient's fibroblasts, reveals AICAR as the most beneficial compound, PLoS ONE, vol.6, 2011.

D. Soiferman, O. Ayalon, S. Weissman, and A. Saada, The effect of small molecules on nuclear-encoded translation diseases, Biochimie, vol.100, pp.184-191, 2014.

L. Blanchet, J. A. Smeitink, S. E. Van-emst-de-vries, C. Vogels, M. Pellegrini et al., Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning, Sci. Rep, vol.5, 2015.

F. Distelmaier, H. J. Visch, J. A. Smeitink, E. Mayatepek, W. J. Koopman et al., The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency, J. Mol. Med, vol.87, pp.515-522, 2009.

W. J. Koopman, S. Verkaart, S. E. Van-emst-de-vries, S. Grefte, J. A. Smeitink et al., Mitigation of NADH: Ubiquinone oxidoreductase deficiency by chronic Trolox treatment, Biochim. Biophys. Acta, vol.1777, pp.853-859, 2008.

G. Leipnitz, A. W. Mohsen, A. Karunanidhi, B. Seminotti, V. Y. Roginskaya et al., Evaluation of mitochondrial bioenergetics, dynamics, endoplasmic reticulum-mitochondria crosstalk, and reactive oxygen species in fibroblasts from patients with complex I deficiency

A. Lopes-costa, C. Le-bachelier, L. Mathieu, A. Rotig, A. Boneh et al., Beneficial effects of resveratrol on respiratory chain defects in patients' fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling, Hum. Mol. Genet, vol.23, pp.2106-2119, 2014.

L. Mathieu, A. L. Costa, C. Le-bachelier, A. Slama, A. S. Lebre et al., Resveratrol attenuates oxidative stress in mitochondrial Complex I deficiency: Involvement of SIRT3. Free Radic, Biol. Med, vol.96, pp.190-198, 2016.

R. Felici, A. Lapucci, L. Cavone, S. Pratesi, R. Berlinguer-palmini et al., Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts, Mol. Pharmacol, vol.87, pp.965-971, 2015.

A. Iuso, S. Scacco, C. Piccoli, F. Bellomo, V. Petruzzella et al., Dysfunctions of cellular oxidative metabolism in patients with mutations in the NDUFS1 and NDUFS4 genes of complex I, J. Biol. Chem, vol.281, pp.10374-10380, 2006.

E. Pirinen, C. Canto, Y. S. Jo, L. Morato, H. Zhang et al., Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle, Cell Metab, vol.19, pp.1034-1041, 2014.

E. Polyak, J. Ostrovsky, M. Peng, S. D. Dingley, M. Tsukikawa et al., N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease, Mol. Genet. Metab, vol.123, pp.449-462, 2018.

B. De-paepe, K. Vandemeulebroecke, J. Smet, A. Vanlander, S. Seneca et al., Effect of resveratrol on cultured skin fibroblasts from patients with oxidative phosphorylation defects, Phytother. Res. PTR, vol.28, pp.312-316, 2014.

Y. Burelle, C. Bemeur, M. E. Rivard, J. Thompson-legault, G. Boucher et al., Des Rosiers, C. Mitochondrial vulnerability and increased susceptibility to nutrient-induced cytotoxicity in fibroblasts from leigh syndrome French canadian patients, PLoS ONE, vol.10, 2015.

U. N. Abdulhag, D. Soiferman, O. Schueler-furman, C. Miller, A. Shaag et al., Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy, Eur. J. Hum. Genet. EJHG, vol.23, pp.159-164, 2015.

L. Douiev and A. Saada, The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage, Biochim. Biophys. Acta Bioenerg, vol.1859, pp.893-900, 2018.

L. Douiev, D. Soiferman, C. Alban, and A. Saada, The Effects of Ascorbate, N-Acetylcysteine, and Resveratrol on Fibroblasts from Patients with Mitochondrial Disorders, J. Clin. Med, vol.6, 2016.

R. Acin-perez, E. Salazar, S. Brosel, H. Yang, E. A. Schon et al., Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects, EMBO Mol. Med, vol.1, pp.392-406, 2009.

D. P. Kelly and R. C. Scarpulla, Transcriptional regulatory circuits controlling mitochondrial biogenesis and function, Genes Dev, vol.18, pp.357-368, 2004.

C. Viscomi, E. Bottani, G. Civiletto, R. Cerutti, M. Moggio et al., In Vivo Correction of COX Deficiency by Activation of the AMPK/PGC-1alpha Axis, Cell Metab, vol.14, pp.80-90, 2011.

S. Yatsuga and A. Suomalainen, Effect of bezafibrate treatment on late-onset mitochondrial myopathy in mice, Hum. Mol. Genet, vol.21, pp.526-535, 2012.

L. M. Dillon, A. Hida, S. Garcia, T. A. Prolla, and C. T. Moraes, Long-term bezafibrate treatment improves skin and spleen phenotypes of the mtDNA mutator mouse, PLoS ONE, vol.7, 2012.

F. Djouadi and J. Bastin, Species differences in the effects of bezafibrate as a potential treatment of mitochondrial disorders, Cell Metab, vol.14, pp.715-716, 2011.

K. Romanino, L. Mazelin, V. Albert, A. Conjard-duplany, S. Lin et al., Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function, Proc. Natl. Acad. Sci, vol.108, pp.20808-20813, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02126913

C. Schafer, V. Moore, N. Dasgupta, S. Javadov, J. F. James et al., The Effects of PPAR Stimulation on Cardiac Metabolic Pathways in Barth Syndrome Mice, Front. Pharmacol, vol.9, p.318, 2018.

Y. Huang, C. Powers, S. K. Madala, K. D. Greis, W. D. Haffey et al., Cardiac metabolic pathways affected in the mouse model of barth syndrome, PLoS ONE, vol.10, 2015.

S. Jang, T. S. Lewis, C. Powers, Z. Khuchua, C. P. Baines et al., Elucidating Mitochondrial Electron Transport Chain Supercomplexes in the Heart During Ischemia-Reperfusion, Antioxid. Redox Signal, vol.27, pp.57-69, 2017.

J. P. Bonnefont, J. Bastin, P. Laforet, F. Aubey, A. Mogenet et al., Long-term follow-up of bezafibrate treatment in patients with the myopathic form of carnitine palmitoyltransferase 2 deficiency, Clin. Pharmacol. Ther, vol.88, pp.101-108, 2010.

M. C. Orngreen, K. L. Madsen, N. Preisler, G. Andersen, J. Vissing et al., Bezafibrate in skeletal muscle fatty acid oxidation disorders: A randomized clinical trial, Neurology, vol.82, pp.607-613, 2014.

K. Yamada, H. Shiraishi, E. Oki, M. Ishige, T. Fukao et al., Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan, Mol. Genet. Metab. Rep, vol.15, pp.55-63, 2018.

M. Takaoka, Of the phenolic substances of white hellbore (Veratrum Grandiflorum LOES. fil.), J. Fac. Sci. Hokkaido Imp. Univ, vol.3, pp.1-16, 1940.

S. Nonomura, H. Kanagawa, and A. Makimoto, Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of, Yakugaku zasshi: J. Pharm. Soc. Jpn, vol.83, pp.988-990, 1963.

J. A. Baur, K. J. Pearson, N. L. Price, H. A. Jamieson, C. Lerin et al., Resveratrol improves health and survival of mice on a high-calorie diet, Nature, vol.444, pp.337-342, 2006.

M. Lagouge, C. Argmann, Z. Gerhart-hines, H. Meziane, C. Lerin et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha, Cell, vol.127, pp.1109-1122, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188005

J. Bastin, F. Djouadi, and M. Resveratrol, Nutrients, vol.8, 2016.

B. Dasgupta and J. Milbrandt, Resveratrol stimulates AMP kinase activity in neurons, Proc. Natl. Acad. Sci, vol.104, pp.7217-7222, 2007.

V. W. Dolinsky, K. E. Jones, R. S. Sidhu, M. Haykowsky, M. P. Czubryt et al., Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats, J. Physiol, vol.590, pp.2783-2799, 2012.

K. J. Menzies, K. Singh, A. Saleem, and D. A. Hood, Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis, J. Biol. Chem, vol.288, pp.6968-6979, 2013.

N. L. Price, A. P. Gomes, A. J. Ling, F. V. Duarte, A. Martin-montalvo et al., SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function, Cell Metab, vol.15, pp.675-690, 2012.

Y. Mizuguchi, H. Hatakeyama, K. Sueoka, M. Tanaka, and Y. I. Goto, Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming, vol.34, pp.43-48, 2017.

D. Morvan and A. Demidem, NMR metabolomics of fibroblasts with inherited mitochondrial Complex I mutation reveals treatment-reversible lipid and amino acid metabolism alterations, Metab. Off. J. Metab. Soc, vol.14, 2018.

X. Hou, S. Xu, K. A. Maitland-toolan, K. Sato, B. Jiang et al., SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase, J. Biol. Chem, vol.283, 2008.
DOI : 10.1074/jbc.m802187200

URL : http://www.jbc.org/content/283/29/20015.full.pdf

S. J. Park, F. Ahmad, A. Philp, K. Baar, T. Williams et al., Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases, Cell, vol.148, pp.421-433, 2012.
DOI : 10.1186/1753-6561-6-s3-p73

URL : https://doi.org/10.1186/1753-6561-6-s3-p73

K. T. Howitz, K. J. Bitterman, H. Y. Cohen, D. W. Lamming, S. Lavu et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, vol.425, pp.191-196, 2003.

M. C. Haigis and D. A. Sinclair, Mammalian sirtuins: Biological insights and disease relevance, Annu. Rev. Pathol, vol.5, pp.253-295, 2010.
DOI : 10.1146/annurev.pathol.4.110807.092250

URL : http://europepmc.org/articles/pmc2866163?pdf=render

R. H. Houtkooper, E. Pirinen, and J. Auwerx, Sirtuins as regulators of metabolism and healthspan, Nat. Rev. Mol. Cell Biol, vol.13, pp.225-238, 2012.

C. Canto, Z. Gerhart-hines, J. N. Feige, M. Lagouge, L. Noriega et al., AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, vol.458, pp.1056-1060, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00383329

C. Canto, L. Q. Jiang, A. S. Deshmukh, C. Mataki, A. Coste et al., Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle, Cell Metab, vol.11, pp.213-219, 2010.

J. L. Bitterman and J. H. Chung, Metabolic effects of resveratrol: Addressing the controversies, Cell. Mol. Life Sci. CMLS, vol.72, pp.1473-1488, 2015.

M. T. Borra, B. C. Smith, and J. M. Denu, Mechanism of human SIRT1 activation by resveratrol, J. Biol. Chem, vol.280, pp.17187-17195, 2005.

K. Higashida, S. H. Kim, S. R. Jung, M. Asaka, J. O. Holloszy et al., Effects of resveratrol and SIRT1 on PGC-1alpha activity and mitochondrial biogenesis: A reevaluation, PLoS Biol, issue.11, 2013.

M. Kaeberlein, T. Mcdonagh, B. Heltweg, J. Hixon, E. A. Westman et al., Substrate-specific activation of sirtuins by resveratrol, J. Biol. Chem, vol.280, pp.17038-17045, 2005.

M. Pacholec, J. E. Bleasdale, B. Chrunyk, D. Cunningham, D. Flynn et al., and resveratrol are not direct activators of SIRT1, J. Biol. Chem, vol.285, pp.8340-8351, 2010.

J. L. Bowers, V. V. Tyulmenkov, S. C. Jernigan, and C. M. Klinge, Resveratrol acts as a mixed agonist/antagonist for estrogen receptors alpha and beta, Endocrinology, vol.141, pp.3657-3667, 2000.

J. Q. Chen, P. R. Cammarata, C. P. Baines, and J. D. Yager, Regulation of mitochondrial respiratory chain biogenesis by estrogens/estrogen receptors and physiological, pathological and pharmacological implications, Biochim. Biophys. Acta, vol.1793, pp.1540-1570, 2009.

S. S. Kulkarni and C. Canto, The molecular targets of resveratrol, Biochim. Biophys. Acta, vol.1852, pp.1114-1123, 2015.

Y. S. Lee, W. S. Kim, K. H. Kim, M. J. Yoon, H. J. Cho et al., Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states, Diabetes, vol.55, pp.2256-2264, 2006.

J. Bastin and F. Djouadi, Combination of Bezafibrate and of Resveratrol or Resveratrol Derivatives for the Treatment and Prevention of Diseases Involving a Mitochondrial Energy Dysfunction, 2016.

D. Carling, F. V. Mayer, M. J. Sanders, and S. J. Gamblin, AMP-activated protein kinase: nature's energy sensor, Nat. Chem. Biol, vol.7, pp.512-518, 2011.

D. G. Hardie, F. A. Ross, and S. A. Hawley, AMPK: A nutrient and energy sensor that maintains energy homeostasis, Nat. Rev. Mol. Cell Biol, vol.13, pp.251-262, 2012.

D. G. Hardie, Sensing of energy and nutrients by AMP-activated protein kinase, Am. J. Clin. Nutr, vol.93, pp.891-896, 2011.

C. Canto and J. Auwerx, AMP-activated protein kinase and its downstream transcriptional pathways, Cell. Mol. Life Sci. CMLS, vol.67, pp.3407-3423, 2010.

E. L. Greer, P. R. Oskoui, M. R. Banko, J. M. Maniar, M. P. Gygi et al., The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem, vol.282, pp.30107-30119, 2007.

D. M. Thomson, S. T. Herway, N. Fillmore, H. Kim, J. D. Brown et al., AMP-activated protein kinase phosphorylates transcription factors of the CREB family, J. Appl. Physiol, vol.104, pp.429-438, 1985.

C. Canto and J. Auwerx, PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure, Curr. Opin. Lipidol, vol.20, pp.98-105, 2009.

S. Jager, C. Handschin, J. St-pierre, and B. M. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha, Proc. Natl. Acad. Sci, vol.104, pp.12017-12022, 2007.

P. J. Fernandez-marcos and J. Auwerx, Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis, Am. J. Clin. Nutr, vol.93, pp.884-890, 2011.

C. Handschin, J. Rhee, J. Lin, P. T. Tarr, and B. M. Spiegelman, An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle, Proc. Natl. Acad. Sci, vol.100, pp.7111-7116, 2003.

S. Herzig and R. J. Shaw, AMPK: Guardian of metabolism and mitochondrial homeostasis, Nat. Rev. Mol. Cell Biol, vol.19, pp.121-135, 2018.

E. Q. Toyama, S. Herzig, J. Courchet, T. L. Lewis, . Jr et al., AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, vol.351, pp.275-281, 2016.

K. A. Coughlan, R. J. Valentine, N. B. Ruderman, and A. K. Saha, AMPK activation: A therapeutic target for type 2 diabetes?, Diabetes Metab. Syndr. Obes. Targets Ther, vol.7, pp.241-253, 2014.

S. Olivier, M. Foretz, and B. Viollet, Promise and challenges for direct small molecule AMPK activators, Biochem. Pharmacol, vol.153, pp.147-158, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01724341

B. Guigas, K. Sakamoto, N. Taleux, S. M. Reyna, N. Musi et al., Beyond AICA riboside: In search of new specific AMP-activated protein kinase activators, IUBMB Life, vol.61, pp.18-26, 2009.

E. Van-den-neste, G. Van-den-berghe, and F. Bontemps, AICA-riboside (acadesine), an activator of AMP-activated protein kinase with potential for application in hematologic malignancies, Expert Opin. Investig. Drugs, vol.19, pp.571-578, 2010.

K. Mullane, Acadesine: The prototype adenosine regulating agent for reducing myocardial ischaemic injury, Cardiovasc. Res, vol.27, pp.43-47, 1993.

B. Guigas, N. Taleux, M. Foretz, D. Detaille, F. Andreelli et al., AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside, Biochem. J, vol.404, pp.499-507, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478741

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab, vol.3, pp.403-416, 2006.

B. Egan and J. R. Zierath, Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab, vol.17, pp.162-184, 2013.

H. Hoppeler, Molecular networks in skeletal muscle plasticity, J. Exp. Biol, vol.219, pp.205-213, 2016.

R. Mounier, M. Theret, L. Lantier, M. Foretz, and B. Viollet, Expanding roles for AMPK in skeletal muscle plasticity, Trends Endocrinol. Metab. TEM, vol.26, pp.275-286, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01171734

A. M. Sanchez, R. B. Candau, A. Csibi, A. F. Pagano, A. Raibon et al., The role of AMP-activated protein kinase in the coordination of skeletal muscle turnover and energy homeostasis, Am. J. Physiol. Cell Physiol, vol.303, pp.475-485, 2012.

V. A. Narkar, M. Downes, R. T. Yu, E. Embler, Y. X. Wang et al., AMPK and PPARdelta agonists are exercise mimetics, Cell, vol.134, pp.405-415, 2008.

S. Peralta, S. Garcia, H. Y. Yin, T. Arguello, F. Diaz et al., Sustained AMPK activation improves muscle function in a mitochondrial myopathy mouse model by promoting muscle fiber regeneration, Hum. Mol. Genet, vol.25, pp.3178-3191, 2016.

M. Foretz, B. Guigas, L. Bertrand, M. Pollak, and B. Viollet, Metformin: From mechanisms of action to therapies, Cell Metab, vol.20, pp.953-966, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01171739

D. K. Coletta, A. Sriwijitkamol, E. Wajcberg, P. Tantiwong, M. Li et al., Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: A randomised trial, Diabetologia, vol.52, pp.723-732, 2009.

L. G. Fryer, A. Parbu-patel, and D. Carling, The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways, J. Biol. Chem, vol.277, pp.25226-25232, 2002.

N. K. Lebrasseur, M. Kelly, T. S. Tsao, S. R. Farmer, A. K. Saha et al., Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues, Am. J. Physiol. Endocrinol. Metab, vol.291, pp.175-181, 2006.

B. S. Cha, T. P. Ciaraldi, K. S. Park, L. Carter, S. R. Mudaliar et al., Impaired fatty acid metabolism in type 2 diabetic skeletal muscle cells is reversed by PPARgamma agonists, Am. J. Physiol. Endocrinol. Metab, vol.289, pp.151-159, 2005.

J. Sakamoto, H. Kimura, S. Moriyama, H. Odaka, Y. Momose et al., Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone, Biochem. Biophys. Res. Commun, vol.278, pp.704-711, 2000.

R. Rabol, R. Boushel, T. Almdal, C. N. Hansen, T. Ploug et al., Opposite effects of pioglitazone and rosiglitazone on mitochondrial respiration in skeletal muscle of patients with type 2 diabetes, Diabetes Obes. Metab, vol.12, pp.806-814, 2010.

P. R. Devchand, T. Liu, R. B. Altman, G. A. Fitzgerald, and E. E. Schadt, The Pioglitazone Trek via Human PPAR Gamma: From Discovery to a Medicine at the FDA and Beyond, Front. Pharmacol, vol.9, 1093.

R. K. Olsen, N. Cornelius, and N. Gregersen, Genetic and cellular modifiers of oxidative stress: What can we learn from fatty acid oxidation defects?, Mol. Genet. Metab, vol.110, pp.31-39, 2013.

R. K. Olsen, N. Cornelius, and N. Gregersen, Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism, J. Inherit. Metab. Dis, vol.38, pp.703-719, 2015.

M. Wajner and A. U. Amaral, Mitochondrial dysfunction in fatty acid oxidation disorders: Insights from human and animal studies, Biosci. Rep, vol.36, 2015.

A. M. Tonin, M. Grings, E. N. Busanello, A. P. Moura, G. C. Ferreira et al., Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain, Neurochem. Int, vol.56, pp.930-936, 2010.

G. Scaini, K. R. Simon, A. M. Tonin, E. N. Busanello, A. P. Moura et al., Toxicity of octanoate and decanoate in rat peripheral tissues: Evidence of bioenergetic dysfunction and oxidative damage induction in liver and skeletal muscle, Mol. Cell. Biochem, vol.361, pp.329-335, 2012.

S. P. Schmidt, T. J. Corydon, C. B. Pedersen, P. Bross, and N. Gregersen, Misfolding of short-chain acyl-CoA dehydrogenase leads to mitochondrial fission and oxidative stress, Mol. Genet. Metab, vol.100, pp.155-162, 2010.

J. Hagenbuchner, S. Scholl-buergi, D. Karall, and M. J. Ausserlechner, Very long-/and long Chain-3-Hydroxy Acyl CoA Dehydrogenase Deficiency correlates with deregulation of the mitochondrial fusion/fission machinery, Sci. Rep, vol.8, 2018.

E. L. Seifert, C. Estey, J. Y. Xuan, and M. E. Harper, Electron transport chain-dependent and -independent mechanisms of mitochondrial H 2 O 2 emission during long-chain fatty acid oxidation, J. Biol. Chem, vol.285, pp.5748-5758, 2010.

E. Barbieri and P. Sestili, Reactive oxygen species in skeletal muscle signaling, J. Signal Transduct, 2012.

J. Yun, T. Finkel, and . Mitohormesis, Cell Metab, vol.19, pp.757-766, 2014.

P. Roestenberg, G. R. Manjeri, F. Valsecchi, J. A. Smeitink, P. H. Willems et al., Pharmacological targeting of mitochondrial complex I deficiency: The cellular level and beyond, vol.12, pp.57-65, 2012.

S. Verkaart, W. J. Koopman, S. E. Van-emst-de-vries, L. G. Nijtmans, L. W. Van-den-heuvel et al., Superoxide production is inversely related to complex I activity in inherited complex I deficiency, Biochim. Biophys. Acta, vol.1772, pp.373-381, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00501647

A. Wojtala, A. Karkucinska-wieckowska, V. A. Sardao, J. Szczepanowska, P. Kowalski et al., Modulation of mitochondrial dysfunction-related oxidative stress in fibroblasts of patients with Leigh syndrome by inhibition of prooxidative p66Shc pathway, vol.37, pp.62-79, 2017.

M. Mattiazzi, C. Vijayvergiya, C. D. Gajewski, D. C. Devivo, G. Lenaz et al., The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants, Hum. Mol. Genet, vol.13, pp.869-879, 2004.

A. M. Voets, P. J. Lindsey, S. J. Vanherle, E. D. Timmer, J. J. Esseling et al., Poll-The, B.T.; et al. Patient-derived fibroblasts indicate oxidative stress status and may justify antioxidant therapy in OXPHOS disorders, Biochim. Biophys. Acta, 1817.

C. M. Quinzii, L. C. Lopez, R. W. Gilkerson, B. Dorado, J. Coku et al., Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ10 deficiency, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol, vol.24, pp.3733-3743, 2010.

M. Moran, H. Rivera, M. Sanchez-arago, A. Blazquez, B. Merinero et al., Mitochondrial bioenergetics and dynamics interplay in complex I-deficient fibroblasts, Biochim. Biophys. Acta, vol.1802, pp.443-453, 2010.

S. Verkaart, W. J. Koopman, J. Cheek, S. E. Van-emst-de-vries, L. W. Van-den-heuvel et al., Mitochondrial and cytosolic thiol redox state are not detectably altered in isolated human NADH:ubiquinone oxidoreductase deficiency, Biochim. Biophys. Acta, vol.1772, pp.1041-1051, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00501648

I. P. Hargreaves, Coenzyme Q10 as a therapy for mitochondrial disease, Int. J. Biochem. Cell Biol, vol.49, pp.105-111, 2014.

P. Yu-wai-man, D. Soiferman, D. G. Moore, F. Burte, and A. Saada, Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy, vol.36, pp.36-42, 2017.

M. Bodmer, P. Vankan, M. Dreier, K. W. Kutz, and J. Drewe, Pharmacokinetics and metabolism of idebenone in healthy male subjects, Eur. J. Clin. Pharmacol, vol.65, pp.493-501, 2009.

V. Giorgio, M. Schiavone, C. Galber, M. Carini, T. Da-ros et al., The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects, Biochim. Biophys. Acta Bioenerg, vol.1859, pp.901-908, 2018.

Y. Chen, J. Zhang, Y. Lin, Q. Lei, K. L. Guan et al., Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS, EMBO Rep, vol.12, pp.534-541, 2011.

R. Tao, M. C. Coleman, J. D. Pennington, O. Ozden, S. H. Park et al., Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress, Mol. Cell, vol.40, pp.893-904, 2010.

R. M. Parodi-rullan, X. Chapa-dubocq, P. J. Rullan, S. Jang, and S. Javadov, High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities, Front. Pharmacol, vol.8, p.275, 2017.

A. Chiarugi, C. Dolle, R. Felici, and M. Ziegler, The NAD metabolome-A key determinant of cancer cell biology, Nat. Rev. Cancer, vol.12, pp.741-752, 2012.

S. Imai, . The, and . World, A new systemic regulatory network for metabolism and aging-Sirt1, systemic NAD biosynthesis, and their importance, Cell Biochem. Biophys, vol.53, pp.65-74, 2009.

M. Pittelli, R. Felici, V. Pitozzi, L. Giovannelli, E. Bigagli et al., Pharmacological effects of exogenous NAD on mitochondrial bioenergetics, DNA repair, and apoptosis, Mol. Pharmacol, vol.80, pp.1136-1146, 2011.

S. Vyas and P. Chang, New PARP targets for cancer therapy, Nat. Rev. Cancer, vol.14, pp.502-509, 2014.

C. Canto and J. Auwerx, Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)?, Pharmacol. Rev, vol.64, pp.166-187, 2012.

C. J. Lord and A. Ashworth, The DNA damage response and cancer therapy, Nature, vol.481, pp.287-294, 2012.

E. Katsyuba and J. Auwerx, Modulating NAD(+) metabolism, from bench to bedside, EMBO J, vol.36, pp.2670-2683, 2017.

L. Mouchiroud, R. H. Houtkooper, and J. Auwerx, NAD(+) metabolism: A therapeutic target for age-related metabolic disease, Crit. Rev. Biochem. Mol. Biol, vol.48, pp.397-408, 2013.

E. Verdin, NAD(+) in aging, metabolism, and neurodegeneration, Science, vol.350, pp.1208-1213, 2015.

C. Canto, K. J. Menzies, and J. Auwerx, NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus, Cell Metab, vol.22, pp.31-53, 2015.

R. H. Houtkooper, C. Canto, R. J. Wanders, and J. Auwerx, The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways, Endocr. Rev, vol.31, pp.194-223, 2010.

L. R. Stein and S. Imai, The dynamic regulation of NAD metabolism in mitochondria, Trends Endocrinol. Metab. TEM, vol.23, pp.420-428, 2012.

J. Yoshino, K. F. Mills, M. J. Yoon, and S. Imai, Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet-and age-induced diabetes in mice, Cell Metab, vol.14, pp.528-536, 2011.

C. Canto, R. H. Houtkooper, E. Pirinen, D. Y. Youn, M. H. Oosterveer et al., The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity, Cell Metab, vol.15, pp.838-847, 2012.

P. Bai, C. Canto, H. Oudart, A. Brunyanszki, Y. Cen et al., PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation, Cell Metab, vol.13, pp.461-468, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00586349

J. C. Bleeker and R. H. Houtkooper, Sirtuin activation as a therapeutic approach against inborn errors of metabolism, J. Inherit. Metab. Dis, vol.39, pp.565-572, 2016.

G. Karamanlidis, C. F. Lee, L. Garcia-menendez, S. C. Kolwicz, . Jr et al., Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure, Cell Metab, vol.18, pp.239-250, 2013.

R. Felici, L. Cavone, A. Lapucci, D. Guasti, D. Bani et al., PARP inhibition delays progression of mitochondrial encephalopathy in mice, Neurother. J. Am. Soc. Exp. Neurother, vol.11, pp.651-664, 2014.

R. Cerutti, E. Pirinen, C. Lamperti, S. Marchet, A. A. Sauve et al., NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease, Cell Metab, vol.19, pp.1042-1049, 2014.

N. A. Khan, M. Auranen, I. Paetau, E. Pirinen, L. Euro et al., Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3, EMBO Mol. Med, vol.6, pp.721-731, 2014.

S. A. Trammell, M. S. Schmidt, B. J. Weidemann, P. Redpath, F. Jaksch et al., Nicotinamide riboside is uniquely and orally bioavailable in mice and humans, Nat. Commun, 2016.

T. Van-de-weijer, E. Phielix, L. Bilet, E. G. Williams, E. R. Ropelle et al., Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans, Diabetes, vol.64, pp.1193-1201, 2015.

D. De-rasmo, G. Gattoni, F. Papa, A. Santeramo, C. Pacelli et al., The beta-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts, Eur. J. Pharmacol, vol.652, pp.15-22, 2011.

Y. K. Peterson, R. B. Cameron, L. P. Wills, R. E. Trager, C. C. Lindsey et al., beta2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis, Bioorg. Med. Chem. Lett, vol.23, pp.5376-5381, 2013.

R. Acin-perez, E. Salazar, M. Kamenetsky, J. Buck, L. R. Levin et al., Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation, Cell Metab, vol.9, pp.265-276, 2009.

S. Papa, D. D. Rasmo, Z. Technikova-dobrova, D. Panelli, A. Signorile et al., Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases, FEBS Lett, vol.586, pp.568-577, 2012.

S. Papa, S. Scacco, D. De-rasmo, A. Signorile, F. Papa et al., cAMP-dependent protein kinase regulates post-translational processing and expression of complex I subunits in mammalian cells, Biochim. Biophys. Acta, vol.1797, pp.649-658, 2010.

L. P. Wills, R. E. Trager, G. C. Beeson, C. C. Lindsey, Y. K. Peterson et al., The beta2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis, J. Pharmacol. Exp. Ther, vol.342, pp.106-118, 2012.

F. Zhang, L. Zhang, Y. Qi, and H. Xu, Mitochondrial cAMP signaling, Cell. Mol. Life Sci. CMLS, vol.73, pp.4577-4590, 2016.

Z. Gerhart-hines, J. E. Dominy, . Jr, S. M. Blattler, M. P. Jedrychowski et al., The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+), Mol. Cell, vol.44, pp.851-863, 2011.

J. Vockley, J. Charrow, J. Ganesh, M. Eswara, G. A. Diaz et al., Triheptanoin treatment in patients with pediatric cardiomyopathy associated with long chain-fatty acid oxidation disorders, Mol. Genet. Metab, vol.119, pp.223-231, 2016.

J. Vockley, D. Marsden, E. Mccracken, S. Deward, A. Barone et al., Long-term major clinical outcomes in patients with long chain fatty acid oxidation disorders before and after transition to triheptanoin treatment-A retrospective chart review, Mol. Genet. Metab, vol.116, pp.53-60, 2015.

R. K. Olsen, S. E. Olpin, B. S. Andresen, Z. H. Miedzybrodzka, M. Pourfarzam et al., ETFDH mutations as a major cause of riboflavin-responsive multiple acyl-CoA dehydrogenation deficiency, Brain J. Neurol, vol.130, pp.2045-2054, 2007.

R. K. Olsen, E. Konarikova, T. A. Giancaspero, S. Mosegaard, V. Boczonadi et al., Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency, Am. J. Hum. Genet, vol.98, pp.1130-1145, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01850412

J. Xu, D. Li, J. Lv, X. Xu, B. Wen et al., ETFDH Mutations and Flavin Adenine Dinucleotide Homeostasis Disturbance Are Essential for Developing Riboflavin-Responsive Multiple Acyl-Coenzyme A Dehydrogenation Deficiency, Ann. Neurol, vol.84, pp.659-673, 2018.

E. Tubbs and J. Rieusset, Metabolic signaling functions of ER-mitochondria contact sites: Role in metabolic diseases, J. Mol. Endocrinol, vol.58, pp.87-106, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01604137

R. Bravo-sagua, V. Parra, C. Lopez-crisosto, P. Diaz, A. F. Quest et al., Calcium Transport and Signaling in Mitochondria, Compr. Physiol, vol.7, pp.623-634, 2017.

C. Giorgi, S. Marchi, and P. Pinton, The machineries, regulation and cellular functions of mitochondrial calcium, Nat. Rev. Mol. Cell Biol, vol.19, pp.713-730, 2018.

D. M. Arduino and F. Perocchi, Pharmacological modulation of mitochondrial calcium homeostasis, J. Physiol, vol.596, pp.2717-2733, 2018.

R. J. Wanders, H. R. Waterham, and S. Ferdinandusse, Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front, Cell Dev. Biol, vol.3, 2015.

M. Schrader, L. F. Godinho, J. L. Costello, and M. Islinger, The different facets of organelle interplay-an overview of organelle interactions, Front. Cell Dev. Biol, vol.3, 2015.

N. Shai, E. Yifrach, C. W. Van-roermund, N. Cohen, C. Bibi et al., Systematic mapping of contact sites reveals tethers and a function for the peroxisome-mitochondria contact, Nat. Commun, vol.9, p.1761, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01959227

V. Birault, R. Solari, J. Hanrahan, and D. Y. Thomas, Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis, Curr. Opin. Chem. Biol, vol.17, pp.353-360, 2013.

P. B. Davis, Another Beginning for Cystic Fibrosis Therapy, N. Engl. J. Med, vol.373, pp.274-276, 2015.

B. S. Quon and S. Rowe, New and emerging targeted therapies for cystic fibrosis, BMJ, vol.352, 2016.