A. C. Abreu, R. R. Tavares, A. Borges, F. Mergulhão, and M. Simões, Current and emergent strategies for disinfection of hospital environments, J Antimicrob Chemother, vol.68, pp.2718-2732, 2013.
DOI : 10.1093/jac/dkt281

URL : https://academic.oup.com/jac/article-pdf/68/12/2718/2055527/dkt281.pdf

H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin Infect Dis, vol.48, pp.1-12, 2009.

M. Bouwknegt, S. Van-dorp, and E. Kuijper, Burden of Clostridium difficile infection in the United States, N Engl J Med, vol.372, p.2368, 2015.

G. G. Rao, Risk factors for the spread of antibiotic-resistant bacteria, Drugs, vol.55, pp.323-330, 1998.

J. J. Merianos, Quaternary ammonium antimicrobial compounds, Disinfection, sterilization, and preservation, pp.225-230, 1991.

P. Gilbert and L. E. Moore, Cationic antiseptics: diversity of action under a common epithet, J Appl Microbiol, vol.99, pp.703-715, 2005.
DOI : 10.1111/j.1365-2672.2005.02664.x

S. Wessels and H. Ingmer, Modes of action of three disinfectant active substances: a review, Regul Toxicol Pharmacol, vol.67, pp.456-467, 2013.

E. Bore, M. Hébraud, I. Chafsey, C. Chambon, C. Skjaeret et al., Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses, Microbiology, vol.153, pp.935-946, 2007.
DOI : 10.1099/mic.0.29288-0

URL : http://mic.microbiologyresearch.org/deliver/fulltext/micro/153/4/935.pdf?itemId=/content/journal/micro/10.1099/mic.0.29288-0&mimeType=pdf&isFastTrackArticle=

D. Caldwell, W. A. Cox, P. F. Rowe, and L. R. , The antibacterial activity of new derivatives of 4-aminoquinoline and 4-aminoquinaldine, J Pharm Pharmacol, vol.13, pp.554-564, 1961.

N. N. Daoud, N. A. Dickinson, and P. Gilbert, Antimicrobial activity and physico-chemical properties of some alkyldimethylbenzylammonium chlorides, Microbios, vol.37, pp.73-85, 1983.

P. Gilbert and A. Al-taae, Antimicrobial activity of some alkyltrimethylammonium bromides, Lett Appl Microbiol, vol.1, pp.101-104, 1985.
DOI : 10.1111/j.1472-765x.1985.tb01498.x

W. B. Hugo and M. Frier, Mode of action of the antibacterial compound dequalinium acetate, Appl Microbiol, vol.17, pp.118-127, 1969.

Â. S. Inácio, N. S. Domingues, A. Nunes, P. T. Martins, M. J. Moreno et al., Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis, J Antimicrob Chemother, vol.71, pp.641-654, 2016.

W. E. Knox and V. H. Auerbach, The action of cationic detergents on bacteria and bacterial enzymes, J Bacteriol, vol.58, pp.443-452, 1949.

B. Moen, K. Rudi, E. Bore, and S. Langsrud, Subminimal inhibitory concentrations of the disinfectant benzalkonium chloride select for a tolerant subpopulation of Escherichia coli with inheritable characteristics, Int J Mol Sci, vol.13, pp.4101-4123, 2012.

M. Salton, The adsorption of cetyltrimethylammonium bromide by bacteria, its action in releasing cellular constituents and its bactericidal effects, J Gen Microbiol, vol.5, pp.391-404, 1951.

M. M. Yenson, Precipitating effect of cationic detergents on soluble starch, Nature, vol.159, p.813, 1947.

P. A. Araújo, F. Mergulhão, L. Melo, and M. Simões, The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency, Biofouling, vol.30, pp.675-683, 2014.

J. W. Klimek and J. H. Bailey, Factors influencing the rate of killing of Escherichia coli exposed to benzalkonium chloride, Appl Microbiol, vol.4, pp.53-59, 1956.

A. D. Russell, Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations, Lancet Infect Dis, vol.3, issue.03, pp.833-841, 2003.

E. Tomlinson, M. R. Brown, and S. S. Davis, Effect of colloidal association on the measured activity of alkylbenzyldimethylammonium chlorides against Pseudomonas aeruginosa, J Med Chem, vol.20, pp.1277-1282, 1977.

M. G. Smith, T. A. Gianoulis, S. Pukatzki, J. J. Mekalanos, L. N. Ornston et al., New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis, Genes Dev, vol.21, pp.601-614, 2007.
DOI : 10.1101/gad.1510307

URL : http://genesdev.cshlp.org/content/21/5/601.full.pdf

A. T. Tucker, E. M. Nowicki, J. M. Boll, G. A. Knauf, N. C. Burdis et al., Defining gene-phenotype relationships in Acinetobacter baumannii through one-step chromosomal gene inactivation, mBio, vol.5, pp.1313-1327, 2014.
DOI : 10.1128/mbio.01313-14

URL : http://mbio.asm.org/content/5/4/e01313-14.full.pdf

J. M. Boll, A. A. Crofts, K. Peters, V. Cattoir, W. Vollmer et al., A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient Acinetobacter baumannii, Proc Natl Acad Sci U S A, vol.113, pp.6228-6237, 2016.
DOI : 10.1073/pnas.1611594113

URL : http://www.pnas.org/content/113/41/E6228.full.pdf

R. Henry, B. Crane, D. Powell, D. Lucas, D. Li et al., The transcriptomic response of Acinetobacter baumannii to colistin and doripenem alone and in combination in an in vitro pharmacokinetics/pharmacodynamics model, J Antimicrob Chemother, vol.70, pp.1303-1313, 2015.

L. A. Arroyo, C. M. Herrera, L. Fernandez, J. V. Hankins, M. S. Trent et al., The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A, Antimicrob Agents Chemother, vol.55, pp.3743-3751, 2011.

M. Vaara, Increased outer membrane resistance to ethylenediaminetetraacetate and cations in novel lipid A mutants, J Bacteriol, vol.148, pp.426-434, 1981.

J. Sun, Z. Deng, and A. Yan, Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations, Biochem Biophys Res Commun, vol.453, pp.254-267, 2014.
DOI : 10.1016/j.bbrc.2014.05.090

URL : https://doi.org/10.1016/j.bbrc.2014.05.090

G. Rajamohan, V. B. Srinivasan, and W. A. Gebreyes, Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides, J Antimicrob Chemother, vol.65, pp.228-232, 2010.

G. E. Richmond, L. P. Evans, M. J. Anderson, M. E. Wand, L. C. Bonney et al., The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner, mBio, vol.7, pp.430-446, 2016.

E. J. Yoon, Y. N. Chabane, S. Goussard, E. Snesrud, P. Courvalin et al., Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii, mBio, vol.6, pp.309-324, 2015.

M. A. Kohanski, D. J. Dwyer, J. Wierzbowski, G. Cottarel, and J. J. Collins, Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death, Cell, vol.135, pp.679-690, 2008.
DOI : 10.1016/j.cell.2008.09.038

URL : https://doi.org/10.1016/j.cell.2008.09.038

J. Ling, C. Cho, L. T. Guo, H. R. Aerni, J. Rinehart et al., Protein aggregation caused by aminoglycoside action is prevented by a hydrogen peroxide scavenger, Mol Cell, vol.48, pp.713-722, 2012.
DOI : 10.1016/j.molcel.2012.10.001

URL : https://doi.org/10.1016/j.molcel.2012.10.001

A. K. Marr, J. Overhage, M. Bains, and R. Hancock, The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility, Microbiology, vol.153, pp.474-482, 2007.

R. Rosen, D. Biran, E. Gur, D. Becher, M. Hecker et al., Protein aggregation in Escherichia coli: role of proteases, FEMS Microbiol Lett, vol.207, pp.9-12, 2002.
DOI : 10.1111/j.1574-6968.2002.tb11020.x

URL : https://academic.oup.com/femsle/article-pdf/207/1/9/19108348/207-1-9.pdf

E. Gur, D. Biran, and E. Z. Ron, Regulated proteolysis in Gram-negative bacteria-how and when?, Nat Rev Microbiol, vol.9, pp.839-848, 2011.
DOI : 10.1038/nrmicro2669

T. Tomoyasu, A. Mogk, H. Langen, P. Goloubinoff, and B. Bukau, Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol, Mol Microbiol, vol.40, pp.397-413, 2001.

J. Frauenfeld, J. Gumbart, E. O. Van-der-sluis, S. Funes, M. Gartmann et al., Cryo-EM structure of the ribosome-SecYE complex in the membrane environment, Nat Struct Mol Biol, vol.18, pp.614-621, 2011.

F. Robert and L. Brakier-gingras, A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome, J Biol Chem, vol.278, pp.44913-44920, 2003.
DOI : 10.1074/jbc.m306534200

URL : http://www.jbc.org/content/278/45/44913.full.pdf

J. E. Gomez, B. B. Kaufmann-malaga, C. N. Wivagg, P. B. Kim, M. R. Silvis et al., Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment, Elife, vol.6, issue.20420, 2017.

M. Perry, M. J. De-groot, R. Helliwell, D. Leishman, M. Tristani-firouzi et al., Structural determinants of HERG channel block by clofilium and ibutilide, Mol Pharmacol, vol.66, pp.240-249, 2004.
DOI : 10.1124/mol.104.000117

URL : http://molpharm.aspetjournals.org/content/molpharm/66/2/240.full.pdf

J. Rychter, F. Espín, D. Gallego, P. Vergara, M. Jiménez et al., Colonic smooth muscle cells and colonic motility patterns as a target for irritable bowel syndrome therapy: mechanisms of action of otilonium bromide, Ther Adv Gastroenterol, vol.7, pp.156-166, 2014.

P. E. Tiku and P. T. Nowell, Selective inhibition of K(, 1991.

, mbio.asm.org, vol.9, pp.2394-2411, 2018.

K. Na and . Bretylium, Br J Pharmacol, vol.104, pp.895-900

Y. R. Zhao, L. Ding, H. W. Fan, Y. Yu, X. M. Qi et al., Determination of the unstable drug otilonium bromide in human plasma by LC-ESI-MS and its application to a pharmacokinetic study, J Chromatogr B Analyt Technol Biomed Life Sci, vol.878, pp.2896-2900, 2010.

T. Mah, Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBCB), J Vis Exp, issue.83, 2014.

T. M. Korman, Diagnosis and management of Clostridium difficile infection, Semin Respir Crit Care Med, vol.36, pp.31-43, 2015.

M. Tischer, G. Pradel, K. Ohlsen, and U. Holzgrabe, Quaternary ammonium salts and their antimicrobial potential: targets or nonspecific interactions, ChemMedChem, vol.7, pp.22-31, 2012.

T. Hashimoto and K. Maruoka, Recent development and application of chiral phase-transfer catalysts, Chem Rev, vol.107, pp.5656-5682, 2007.

J. Y. Maillard, Bacterial resistance to biocides in the healthcare environment: should it be of genuine concern?, J Hosp Infect, vol.65, issue.2, pp.60-72, 2007.

G. Kramer, T. Rauch, W. Rist, S. Vorderwülbecke, H. Patzelt et al., L23 protein functions as a chaperone docking site on the ribosome, Nature, vol.419, pp.171-174, 2002.

V. Nowotny and K. H. Nierhaus, Initiator proteins for the assembly of the 50S subunit from Escherichia coli ribosomes, Proc Natl Acad Sci U S A, vol.79, pp.7238-7242, 1982.

E. Bousquet, V. Cecchetti, M. De-regis, E. Mannucci, G. Orzalesi et al., Quaternary salts of aminoethyl-p-aminobenzoates and aminoethyl-paminobenzamides. Synthesis and pharmacologic activity, Farm Ed Sci, vol.39, pp.3-15, 1984.

J. K. Triantafillidis and G. Malgarinos, Long-term efficacy and safety of otilonium bromide in the management of irritable bowel syndrome: a literature review, Clin Exp Gastroenterol, vol.7, pp.75-82, 2014.

Y. Bhattarai, M. Pedrogo, D. A. Kashyap, and P. C. , Irritable bowel syndrome: a gut microbiota-related disorder?, Am J Physiol Gastrointest Liver Physiol, vol.312, pp.52-62, 2017.

L. M. Mcmurry, M. Oethinger, and S. B. Levy, Triclosan targets lipid synthesis, Nature, vol.394, pp.531-532, 1998.

H. Lu and P. J. Tonge, Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway, Acc Chem Res, vol.41, pp.11-20, 2008.

I. Wiegand, K. Hilpert, and R. Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat Protoc, vol.3, pp.163-175, 2008.

T. G. Dong, B. T. Ho, D. R. Yoder-himes, and J. J. Mekalanos, Identification of T6SS-dependent effector and immunity proteins by Tn-seq in Vibrio cholerae, Proc Natl Acad Sci U S A, vol.110, pp.2623-2628, 2013.

B. W. Davies, R. W. Bogard, T. S. Young, and J. J. Mekalanos, Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence, Cell, vol.149, pp.358-370, 2012.

N. Wang, E. A. Ozer, M. J. Mandel, and A. R. Hauser, Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung, mBio, vol.5, pp.1163-1177, 2014.

Q. Li, R. K. Lex, H. Chung, S. M. Giovanetti, J. Z. Ji et al., The pluripotency factor NANOG binds to GLI proteins and represses hedgehog-mediated transcription, J Biol Chem, vol.291, pp.7171-7182, 2016.

A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Anal Chem, vol.74, pp.5383-5392, 2002.

A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold, A statistical model for identifying proteins by tandem mass spectrometry, Anal Chem, vol.75, pp.4646-4658, 2003.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat Genet, vol.25, pp.25-29, 2000.

A. C. Jacobs, M. G. Thompson, C. C. Black, J. L. Kessler, L. P. Clark et al., AB5075, a highly virulent isolate of Acinetobacter baumannii, as a model strain for the evaluation of pathogenesis and antimicrobial treatments, mBio, vol.5, pp.1076-1090, 2014.

S. K. Zhang, J. W. Song, F. Gong, S. B. Li, H. Y. Chang et al., Design of an-helical antimicrobial peptide with improved cell-selective and potent anti-biofilm activity, Sci Rep, vol.6, p.27394, 2016.