J. Ferlay, H. Shin, F. Bray, D. Forman, C. Mathers et al., cancer incidence and mortality worldwide: Iarc cancerbase no, International Agency for Research on Cancer, vol.29, issue.10, p.2010, 2008.

M. Deeley, A. Chen, R. Datteri, J. Noble, A. Cmelak et al., Comparison of manual and automatic segmentation methods for brain structures in the presence 425 of space-occupying lesions: a multi-expert study, Physics in medicine and biology, p.56, 2011.

P. Bondiau, G. Malandain, S. Chanalet, P. Marcy, J. Habrand et al., Atlas-based automatic segmentation of MR images: Validation study on the brainstem in radiotherapy context, International Journal of Radiation Oncology*Biology*Physics, vol.61, issue.1, pp.289-298, 2005.
DOI : 10.1016/j.ijrobp.2004.08.055

URL : https://hal.archives-ouvertes.fr/inria-00615664

K. O. Babalola, B. Patenaude, P. Aljabar, J. Schnabel, D. Kennedy et al., An evaluation of four automatic methods of segmenting the subcortical structures in the brain, NeuroImage, vol.47, issue.4, pp.1435-1447, 2009.
DOI : 10.1016/j.neuroimage.2009.05.029

J. Dolz, L. Massoptier, and M. Vermandel, Segmentation algorithms of subcortical brain structures on MRI for radiotherapy and radiosurgery: A survey, IRBM, vol.36, issue.4, 2015.
DOI : 10.1016/j.irbm.2015.06.001

G. Malandain and D. Lefkopoulos, Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context, Radiotherapy and oncology, vol.87, issue.1, pp.93-99, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00616079

Y. Guo, G. Wu, L. A. Commander, S. Szary, V. Jewells et al., Segmenting hippocampus from infant brains by sparse patch matching 445 with deep-learned features, Medical Image Computing and Computer- Assisted Intervention?MICCAI 2014, pp.308-315, 2014.

W. Zhang, R. Li, H. Deng, L. Wang, W. Lin et al., Deep convolutional neural networks for multi-modality isointense infant brain image segmentation, NeuroImage, vol.108, pp.214-224, 2015.
DOI : 10.1016/j.neuroimage.2014.12.061

S. Powell, V. A. Magnotta, H. Johnson, V. K. Jammalamadaka, R. Pierson et al., Registration and machine learning-based automated segmentation of subcortical and cerebellar brain structures, NeuroImage, vol.39, issue.1, pp.238-247, 2008.
DOI : 10.1016/j.neuroimage.2007.05.063

E. Y. Kim and H. Johnson, Multi-structure segmentation of multi-modal brain 455 images using artificial neural networks, in: SPIE Medical Imaging, International Society for Optics and Photonics, pp.76234-76234, 2010.

J. Dolz, S. Ken, H. Leroy, N. Reyns, A. Laprie et al., Supervised machine learning method to segment the brainstem on mri in multicenter brain tumor treatment context, p.460

A. Criminisi, T. Sharp, and A. Blake, Geos: Geodesic image segmentation, in: Computer Vision?ECCV, pp.99-112, 2008.

C. Montagne, A. Kodewitz, V. Vigneron, V. Giraud, and S. Lelandais, 3d 465 local binary pattern for pet image classification by svm, application to early alzheimer disease diagnosis, Proc. of the 6th International Conference on Bio-Inspired Systems and Signal Processing, pp.2013-145, 2013.

Y. Bengio, Learning deep architectures for ai, Foundations and trends, p.470
DOI : 10.1561/2200000006

P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol, Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, The Journal of Machine Learning Research, vol.11, pp.3371-3408, 2010.

P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, Extracting and composing robust features with denoising autoencoders, Proceedings of the 25th international conference on Machine learning, ICML '08, pp.1096-1103, 2008.
DOI : 10.1145/1390156.1390294

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-485, 2011.
DOI : 10.1145/1961189.1961199

R. B. Palm, Prediction as a candidate for learning deep hierarchical models of data