M. Tahiliani, K. Koh, Y. Shen, W. Pastor, H. Bandukwala et al., Conversion of 5-Methylcytosine to 5-Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1, Science, vol.324, issue.5929, pp.930-935, 2009.
DOI : 10.1126/science.1170116

S. Kriaucionis and N. Heintz, The Nuclear DNA Base 5-Hydroxymethylcytosine Is Present in Purkinje Neurons and the Brain, Science, vol.324, issue.5929, pp.929-959, 2009.
DOI : 10.1126/science.1169786

S. Ito, L. Shen, Q. Dai, S. Wu, L. Collins et al., Tet Proteins Can Convert 5-Methylcytosine to 5-Formylcytosine and 5-Carboxylcytosine, Science, vol.333, issue.6047, pp.1300-1303, 2011.
DOI : 10.1126/science.1210597

Y. He, B. Li, Z. Li, P. Liu, Y. Wang et al., Tet-Mediated Formation of 5-Carboxylcytosine and Its Excision by TDG in Mammalian DNA, Science, vol.333, issue.6047, pp.1303-1310, 2011.
DOI : 10.1126/science.1210944

A. Sérandour, S. Avner, F. Oger, M. Bizot, F. Percevault et al., Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers, Nucleic Acids Research, vol.40, issue.17, pp.8255-65, 2012.
DOI : 10.1093/nar/gks595

H. Stroud, S. Feng, M. Kinney, S. Pradhan, S. Jacobsen et al., 5-Hydroxymethylcytosine is associated with enhancers and gene bodies in human embryonic stem cells, Genome Biology, vol.12, issue.6
DOI : 10.1016/j.stem.2010.03.018

K. Szulwach, X. Li, Y. Li, C. Song, J. Han et al., Integrating 5-Hydroxymethylcytosine into the Epigenomic Landscape of Human Embryonic Stem Cells, PLoS Genetics, vol.4, issue.6, p.1002154, 2011.
DOI : 10.1371/journal.pgen.1002154.s005

H. Wu, D. 'alessio, A. Ito, S. Wang, Z. Cui et al., Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells, Genes & Development, vol.25, issue.7, pp.679-84, 2011.
DOI : 10.1101/gad.2036011

C. Song, K. Szulwach, Y. Fu, Q. Dai, C. Yi et al., Selective chemical labeling reveals the genome-wide distribution of, p.5

M. Yu, G. Hon, K. Szulwach, C. Song, L. Zhang et al., Base-Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome, Cell, vol.149, issue.6, pp.1368-80, 2012.
DOI : 10.1016/j.cell.2012.04.027

M. Booth, M. Branco, G. Ficz, D. Oxley, F. Krueger et al., Quantitative Sequencing of 5-Methylcytosine and 5-Hydroxymethylcytosine at Single-Base Resolution, Science, vol.336, issue.6083, pp.934-941, 2012.
DOI : 10.1126/science.1220671

Y. Huang, W. Pastor, Y. Shen, M. Tahiliani, D. Liu et al., The Behaviour of 5-Hydroxymethylcytosine in Bisulfite Sequencing, PLoS ONE, vol.5, issue.1, p.8888, 2010.
DOI : 10.1371/journal.pone.0008888.g005

M. Robinson, A. Statham, T. Speed, and S. Clarck, Protocol matters: which methylome are you actually studying?, Epigenomics, vol.2, issue.4, pp.587-98, 2010.
DOI : 10.2217/epi.10.36

A. Petterson, T. Chung, D. Tan, X. Sun, and X. Jia, RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution, Genome Biology, vol.15, issue.9, p.456, 2014.
DOI : 10.1186/s13059-014-0456-5

Z. Sun, J. Terragni, J. Borgaro, Y. Liu, S. Guan et al., High-Resolution Enzymatic Mapping of Genomic 5-Hydroxymethylcytosine in Mouse Embryonic Stem Cells, Cell Reports, vol.3, issue.2, pp.567-76, 2013.
DOI : 10.1016/j.celrep.2013.01.001

H. Wang, S. Guan, A. Quimby, D. Cohen-karni, S. Pradhan et al., Comparative characterization of the PvuRts1I family of restriction enzymes and their application in mapping genomic 5-hydroxymethylcytosine, Nucleic Acids Research, vol.39, issue.21, pp.9294-305, 2011.
DOI : 10.1093/nar/gkr607

H. Rhee and B. Pugh, Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution, Cell, vol.147, issue.6, pp.1408-1427, 2011.
DOI : 10.1016/j.cell.2011.11.013

A. Sérandour, G. Brown, J. Cohen, and J. Carroll, Development of an Illumina-based ChIP-exonuclease method provides insight into FoxA1-DNA binding properties, Genome Biology, vol.14, issue.12, p.147, 2013.
DOI : 10.1093/bioinformatics/btr064

H. Shin, T. Liu, A. Manrai, and X. Liu, CEAS: cis-regulatory element annotation system, Bioinformatics, vol.25, issue.19, pp.2605-2611, 2009.
DOI : 10.1093/bioinformatics/btp479

G. Hon, C. Song, T. Du, J. F. Selvaraj, S. Lee et al., 5mC Oxidation by Tet2 Modulates Enhancer Activity and Timing of Transcriptome Reprogramming during Differentiation, Molecular Cell, vol.56, issue.2, pp.286-97, 2014.
DOI : 10.1016/j.molcel.2014.08.026

H. Guo, P. Zhu, X. Wu, X. Li, L. Wen et al., Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing, Genome Research, vol.23, issue.12, pp.2126-2161, 2013.
DOI : 10.1101/gr.161679.113

S. Smallwood, H. Lee, C. Angermueller, F. Krueger, H. Saadeh et al., Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity, Nature Methods, vol.480, issue.8, pp.817-837, 2014.
DOI : 10.1016/j.molcel.2012.06.019

Y. Stelzer, C. Shivalila, F. Soldner, S. Markoulaki, and R. Jaenisch, Tracing Dynamic Changes of DNA Methylation at Single-Cell Resolution, Cell, vol.163, issue.1, pp.218-247, 2015.
DOI : 10.1016/j.cell.2015.08.046

T. Liu, J. Ortiz, L. Taing, C. Meyer, B. Lee et al., Cistrome: an integrative platform for transcriptional regulation studies, Genome Biology, vol.12, issue.8, p.83, 2011.
DOI : 10.1101/gr.115519.110

M. Swarnalatha, A. Singh, and V. Kumar, The epigenetic control of E-box and Myc-dependent chromatin modifications regulate the licensing of lamin B2 origin during cell cycle, Nucleic Acids Research, vol.40, issue.18, pp.9021-9056, 2012.
DOI : 10.1093/nar/gks617

M. Campanero, M. Armstrong, and E. Flemington, CpG methylation as a mechanism for the regulation of E2F activity, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6481-6487, 2000.
DOI : 10.1073/pnas.100340697

V. Pierard, A. Guiguen, L. Coin, G. Wijmeersch, C. Vanhulle et al., DNA Cytosine Methylation in the Bovine Leukemia Virus Promoter Is Associated with Latency in a Lymphoma-derived B-cell Line: POTENTIAL INVOLVEMENT OF DIRECT INHIBITION OF cAMP-RESPONSIVE ELEMENT (CRE)-BINDING PROTEIN/CRE MODULATOR/ACTIVATION TRANSCRIPTION FACTOR BINDING, Journal of Biological Chemistry, vol.285, issue.25, pp.19434-19483, 2010.
DOI : 10.1074/jbc.M110.107607

V. Handa and A. Jeltsch, Profound Flanking Sequence Preference of Dnmt3a and Dnmt3b Mammalian DNA Methyltransferases Shape the Human Epigenome, Journal of Molecular Biology, vol.348, issue.5, pp.1103-1115, 2005.
DOI : 10.1016/j.jmb.2005.02.044

L. Hu, Z. Li, J. Cheng, Q. Rao, W. Gong et al., Crystal Structure of TET2-DNA Complex: Insight into TET-Mediated 5mC Oxidation, Cell, vol.155, issue.7, pp.1545-55, 2013.
DOI : 10.1016/j.cell.2013.11.020

Y. Cheng, Z. Ma, B. Kim, W. Wu, P. Cayting et al., Principles of regulatory information conservation between mouse and human, Nature, vol.15, issue.7527, pp.371-376, 2014.
DOI : 10.1038/nature13985

D. Schmidt, M. Wilson, C. Spyrou, G. Brown, J. Hadfield et al., ChIP-seq: Using high-throughput sequencing to discover protein???DNA interactions, Methods, vol.48, issue.3, pp.240-248, 2009.
DOI : 10.1016/j.ymeth.2009.03.001

M. Cox, D. Peterson, and P. Biggs, SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data, BMC Bioinformatics, vol.11, issue.1, p.485, 2010.
DOI : 10.1186/1471-2105-11-485

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, issue.16, pp.2078-2087, 2009.
DOI : 10.1093/bioinformatics/btp352

Y. Zhang, T. Liu, C. Meyer, J. Eeckhoute, D. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137