A. Ratchford, A. Chang, M. Chi, R. Sheridan, and K. Moley, Maternal diabetes adversely affects AMP-activated protein kinase activity and cellular metabolism in murine oocytes, AJP: Endocrinology and Metabolism, vol.293, issue.5, pp.1198-1206, 2007.
DOI : 10.1152/ajpendo.00097.2007

Q. Wang, A. Ratchford, M. Chi, E. Schoeller, A. Frolova et al., Maternal Diabetes Causes Mitochondrial Dysfunction and Meiotic Defects in Murine Oocytes, Molecular Endocrinology, vol.23, issue.10, pp.1603-1612, 2009.
DOI : 10.1210/me.2009-0033

S. Downs and A. Mastropolo, The Participation of Energy Substrates in the Control of Meiotic Maturation in Murine Oocytes, Developmental Biology, vol.162, issue.1, pp.154-168, 1994.
DOI : 10.1006/dbio.1994.1075

G. Thouas, A. Trounson, E. Wolvetang, and G. Jones, Mitochondrial Dysfunction in Mouse Oocytes Results in Preimplantation Embryo Arrest in Vitro1, Biology of Reproduction, vol.71, issue.6, pp.1936-1942, 2004.
DOI : 10.1095/biolreprod.104.033589

G. Perez, A. Trbovich, R. Gosden, and J. Tilly, Reproductive biology: Mitochondria and the death of oocytes, Nature, vol.21, issue.6769, pp.500-501, 2000.
DOI : 10.1038/35000651

J. Van-blerkom, Mitochondria in human oogenesis and preimplantation embryogenesis: engines of metabolism, ionic regulation and developmental competence, Reproduction, vol.128, issue.3, pp.269-280, 2004.
DOI : 10.1530/rep.1.00240

B. Kahn, T. Alquier, D. Carling, and D. Hardie, AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metabolism, vol.1, issue.1, pp.15-25, 2005.
DOI : 10.1016/j.cmet.2004.12.003

B. Zheng and L. Cantley, Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.819-822, 2007.
DOI : 10.1073/pnas.0610157104

L. Zhang, L. Young, and M. Caplan, AMP-activated protein kinase regulates the assembly of epithelial tight junctions, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17272-17277, 2006.
DOI : 10.1073/pnas.0608531103

A. Nakano and S. Takashima, LKB1 and AMP-activated protein kinase: regulators of cell polarity, Genes to Cells, vol.104, issue.9, pp.737-747, 2012.
DOI : 10.1111/j.1365-2443.2012.01629.x

L. Tosca, S. Crochet, P. Ferré, F. Foufelle, S. Tesseraud et al., AMP-activated protein kinase activation modulates progesterone secretion in granulosa cells from hen preovulatory follicles, Journal of Endocrinology, vol.190, issue.1, pp.85-97, 2006.
DOI : 10.1677/joe.1.06828

L. Tosca, P. Froment, P. Solnais, F. Foufelle, and J. Dupont, Adenosine 5???-Monophosphate-Activated Protein Kinase Regulates Progesterone Secretion in Rat Granulosa Cells, Endocrinology, vol.146, issue.10, pp.4500-4513, 2005.
DOI : 10.1210/en.2005-0301

S. Downs and J. Chen, Induction of meiotic maturation in mouse oocytes by adenosine analogs, Molecular Reproduction and Development, vol.108, issue.9, pp.1159-1168, 2006.
DOI : 10.1002/mrd.20439

M. Mayes, M. Laforest, C. Guillemette, R. Gilchrist, and F. Richard, Adenosine 5???-Monophosphate Kinase-Activated Protein Kinase (PRKA) Activators Delay Meiotic Resumption in Porcine Oocytes1, Biology of Reproduction, vol.76, issue.4, pp.589-597, 2007.
DOI : 10.1095/biolreprod.106.057828

L. Tosca, S. Uzbekova, C. Chabrolle, and J. Dupont, Possible Role of 5???AMP-Activated Protein Kinase in the Metformin-Mediated Arrest of Bovine Oocytes at the Germinal Vesicle Stage During In Vitro Maturation1, Biology of Reproduction, vol.77, issue.3, pp.452-465, 2007.
DOI : 10.1095/biolreprod.107.060848

M. Reverchon, M. Cornuau, L. Cloix, C. Ramé, F. Guerif et al., Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis, Molecular Human Reproduction, vol.19, issue.5, pp.313-326, 2013.
DOI : 10.1093/molehr/gat002

URL : https://hal.archives-ouvertes.fr/hal-01129746

J. Chen and S. Downs, AMP-activated protein kinase is involved in hormone-induced mouse oocyte meiotic maturation in vitro, Developmental Biology, vol.313, issue.1, pp.47-57, 2008.
DOI : 10.1016/j.ydbio.2007.09.043

J. Chen, E. Hudson, M. Chi, A. Chang, K. Moley et al., AMPK regulation of mouse oocyte meiotic resumption in vitro, Developmental Biology, vol.291, issue.2, pp.227-238, 2006.
DOI : 10.1016/j.ydbio.2005.11.039

C. Larosa and S. Downs, Meiotic Induction by Heat Stress in Mouse Oocytes: Involvement of AMP-Activated Protein Kinase and MAPK Family Members, Biology of Reproduction, vol.76, issue.3, pp.476-486, 2007.
DOI : 10.1095/biolreprod.106.057422

G. Kidder and B. Vanderhyden, Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence, Canadian Journal of Physiology and Pharmacology, vol.88, issue.4, pp.399-413, 2010.
DOI : 10.1139/Y10-009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3025001

J. Van-blerkom, Mitochondrial function in the human oocyte and embryo and their role in developmental competence, Mitochondrion, vol.11, issue.5, pp.297-813, 2011.
DOI : 10.1016/j.mito.2010.09.012

W. De-vries, L. Binns, K. Fancer, J. Dean, R. Moore et al., Expression of Cre recombinase in mouse oocytes: A means to study maternal effect genes, genesis, vol.12, issue.2, pp.110-112, 2000.
DOI : 10.1002/(SICI)1526-968X(200002)26:2<110::AID-GENE2>3.0.CO;2-8

X. Fu, J. Zhao, M. Zhu, M. Foretz, B. Viollet et al., AMP-Activated Protein Kinase ??1 but Not ??2 Catalytic Subunit Potentiates Myogenin Expression and Myogenesis, Molecular and Cellular Biology, vol.33, issue.22, pp.4517-4525, 2013.
DOI : 10.1128/MCB.01078-13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838187

B. Viollet, F. Andreelli, S. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-98, 2003.
DOI : 10.1172/JCI16567

P. Jennings, J. Merriman, E. Beckett, P. Hansbro, and K. Jones, Increased zona pellucida thickness and meiotic spindle disruption in oocytes from cigarette smoking mice, Human Reproduction, vol.26, issue.4, pp.878-884, 2011.
DOI : 10.1093/humrep/deq393

M. Bertoldo, E. Guibert, P. Tartarin, V. Guillory, and P. Froment, Effect of metformin on the fertilizing ability of mouse spermatozoa, Cryobiology, vol.68, issue.2, pp.262-268, 2014.
DOI : 10.1016/j.cryobiol.2014.02.006

URL : https://hal.archives-ouvertes.fr/hal-01129820

P. Froment, C. Staub, S. Hembert, C. Pisselet, M. Magistrini et al., Reproductive Abnormalities in Human Insulin-Like Growth Factor-Binding Protein-1 Transgenic Male Mice, Endocrinology, vol.145, issue.4, pp.2080-2091, 2004.
DOI : 10.1210/en.2003-0956

P. Froment, J. Dupont, and J. Christophe-marine, Mdm2 exerts pro-apoptotic activities by antagonizing insulin-like growth factor-I-mediated survival, Cell Cycle, vol.7, issue.19, pp.3098-3103, 2008.
DOI : 10.4161/cc.7.19.6807

L. Li, R. Pan, R. Li, B. Niemann, A. Aurich et al., Mitochondrial Biogenesis and Peroxisome Proliferator-Activated Receptor-?? Coactivator-1?? (PGC-1??) Deacetylation by Physical Activity: Intact Adipocytokine Signaling Is Required, Diabetes, vol.60, issue.1, pp.157-167, 2011.
DOI : 10.2337/db10-0331

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3012167

C. Canto, L. Jiang, A. Deshmukh, C. Mataki, A. Coste et al., Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle, Cell Metabolism, vol.11, issue.3, p.20197054, 2010.
DOI : 10.1016/j.cmet.2010.02.006

M. Silvestre, B. Viollet, P. Caton, J. Leclerc, I. Sakakibara et al., The AMPK-SIRT signaling network regulates glucose tolerance under calorie restriction conditions, Life Sciences, vol.100, issue.1, pp.55-60, 2014.
DOI : 10.1016/j.lfs.2014.01.080

P. Brower and R. Schultz, Intercellular communication between granulosa cells and mouse oocytes: Existence and possible nutritional role during oocyte growth, Developmental Biology, vol.90, issue.1, pp.144-153, 1982.
DOI : 10.1016/0012-1606(82)90219-6

H. Zheng, W. Li, Y. Wang, Z. Liu, Y. Cai et al., Glycogen synthase kinase-3 beta regulates Snail and ??-catenin expression during Fas-induced epithelial???mesenchymal transition in gastrointestinal cancer, European Journal of Cancer, vol.49, issue.12, pp.2734-2746, 2013.
DOI : 10.1016/j.ejca.2013.03.014

S. Kuure, A. Popsueva, M. Jakobson, K. Sainio, and H. Sariola, Glycogen Synthase Kinase-3 Inactivation and Stabilization of beta-Catenin Induce Nephron Differentiation in Isolated Mouse and Rat Kidney Mesenchymes, Journal of the American Society of Nephrology, vol.18, issue.4, pp.1130-1139, 2007.
DOI : 10.1681/ASN.2006111206

J. Jorgensen, Defining the neighborhoods that escort the oocyte through its early life events and into a functional follicle, Molecular Reproduction and Development, vol.108, issue.12, pp.960-976, 2013.
DOI : 10.1002/mrd.22232

G. Arismendi-morillo, Electron microscopy morphology of the mitochondrial network in human cancer, The International Journal of Biochemistry & Cell Biology, vol.41, issue.10, pp.2062-2068, 2009.
DOI : 10.1016/j.biocel.2009.02.002

J. Peluso, N-cadherin mediated cell contact inhibits germinal vesicle breakdown in mouse oocytes maintained in vitro, Reproduction, vol.131, issue.3, pp.429-437, 2006.
DOI : 10.1530/rep.1.00863

N. Machell and R. Farookhi, E- and N-cadherin expression and distribution during luteinization in the rat ovary, Reproduction, vol.125, issue.6, pp.791-800, 2003.
DOI : 10.1530/rep.0.1250791

J. Cerda, S. Reidenbach, S. Pratzel, and W. Franke, Cadherin-Catenin Complexes During Zebrafish Oogenesis: Heterotypic Junctions Between Oocytes and Follicle Cells1, Biology of Reproduction, vol.61, issue.3, pp.692-704, 1999.
DOI : 10.1095/biolreprod61.3.692

J. Gittens and G. Kidder, Differential contributions of connexin37 and connexin43 to oogenesis revealed in chimeric reaggregated mouse ovaries, Journal of Cell Science, vol.118, issue.21, pp.5071-5078, 2005.
DOI : 10.1242/jcs.02624

A. Simon, D. Goodenough, E. Li, and D. Paul, Female infertility in mice lacking connexin 37, Nature, vol.385, issue.6616, pp.525-529, 1997.
DOI : 10.1038/385525a0

I. Alesutan, M. Sopjani, C. Munoz, S. Fraser, B. Kemp et al., Inhibition of Connexin 26 by the AMP-Activated Protein Kinase, The Journal of Membrane Biology, vol.91, issue.Suppl 1, pp.151-158, 2011.
DOI : 10.1007/s00232-011-9353-y

Y. Chi, K. Gao, K. Li, S. Nakajima, S. Kira et al., Purinergic control of AMPK activation by ATP released through connexin 43 hemichannels - pivotal roles in hemichannel-mediated cell injury, Journal of Cell Science, vol.127, issue.7, pp.1487-1499, 2014.
DOI : 10.1242/jcs.139089

A. Ratchford, C. Esguerra, and K. Moley, Decreased Oocyte-Granulosa Cell Gap Junction Communication and Connexin Expression in a Type 1 Diabetic Mouse Model, Molecular Endocrinology, vol.22, issue.12, pp.2643-2654, 2008.
DOI : 10.1210/me.2007-0495

O. Rufas, B. Fisch, S. Ziv, and R. Shalgi, Expression of cadherin adhesion molecules on human gametes, Molecular Human Reproduction, vol.6, issue.2, pp.163-169, 2000.
DOI : 10.1093/molehr/6.2.163

S. Ziv, O. Rufas, and R. Shalgi, Cadherins expression during gamete maturation and fertilization in the rat, Molecular Reproduction and Development, vol.131, issue.4, pp.547-556, 2002.
DOI : 10.1002/mrd.10149

I. Edry, S. Sela-abramovich, and N. Dekel, Meiotic arrest of oocytes depends on cell-to-cell communication in the ovarian follicle, Molecular and Cellular Endocrinology, vol.252, issue.1-2, pp.102-106, 2006.
DOI : 10.1016/j.mce.2006.03.009

Y. Kalma, I. Granot, D. Galiani, A. Barash, and N. Dekel, Luteinizing Hormone-Induced Connexin 43 Down-Regulation: Inhibition of Translation, Endocrinology, vol.145, issue.4, pp.1617-1624, 2004.
DOI : 10.1210/en.2003-1051

K. Araki, K. Naito, S. Haraguchi, R. Suzuki, M. Yokoyama et al., Meiotic Abnormalities of c-mos Knockout Mouse Oocytes: Activation after First Meiosis or Entrance into Third Meiotic Metaphase1, Biology of Reproduction, vol.55, issue.6, pp.1315-1324, 1996.
DOI : 10.1095/biolreprod55.6.1315

T. Choi, S. Rulong, J. Resau, K. Fukasawa, W. Matten et al., Mos/mitogen-activated protein kinase can induce early meiotic phenotypes in the absence of maturation-promoting factor: a novel system for analyzing spindle formation during meiosis I., Proceedings of the National Academy of Sciences, vol.93, issue.10, pp.4730-4735, 1996.
DOI : 10.1073/pnas.93.10.4730

L. Mehlmann, Y. Saeki, S. Tanaka, T. Brennan, A. Evsikov et al., The Gs-Linked Receptor GPR3 Maintains Meiotic Arrest in Mammalian Oocytes, Science, vol.306, issue.5703, pp.1947-1950, 2004.
DOI : 10.1126/science.1103974

R. Thomas, D. Armstrong, and R. Gilchrist, Bovine Cumulus Cell-Oocyte Gap Junctional Communication During In Vitro Maturation in Response to Manipulation of Cell-Specific Cyclic Adenosine 3???,5???-Monophosophate Levels1, Biology of Reproduction, vol.70, issue.3, pp.548-556, 2004.
DOI : 10.1095/biolreprod.103.021204

S. Gharibi, M. Hajian, S. Ostadhosseini, M. Forouzanfar, and M. Nasr-esfahani, Effect of phosphodiesterase type 3 inhibitor on nuclear maturation and??in??vitro development of ovine oocytes, Theriogenology, vol.80, issue.4, pp.302-312, 2013.
DOI : 10.1016/j.theriogenology.2013.04.012

A. Luciano, S. Modina, R. Vassena, E. Milanesi, A. Lauria et al., Role of Intracellular Cyclic Adenosine 3???,5???-Monophosphate Concentration and Oocyte-Cumulus Cells Communications on the Acquisition of the Developmental Competence During In Vitro Maturation of Bovine Oocyte1, Biology of Reproduction, vol.70, issue.2, pp.465-472, 2004.
DOI : 10.1095/biolreprod.103.020644

F. Albuz, M. Sasseville, M. Lane, D. Armstrong, J. Thompson et al., Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes, Human Reproduction, vol.25, issue.12, pp.2999-3011, 2010.
DOI : 10.1093/humrep/deq246

H. Funahashi, T. Cantley, and B. Day, Synchronization of Meiosis in Porcine Oocytes by Exposure to Dibutyryl Cyclic Adenosine Monophosphate Improves Developmental Competence Following in Vitro Fertilization1, Biology of Reproduction, vol.57, issue.1, pp.49-53, 1997.
DOI : 10.1095/biolreprod57.1.49

C. Schelbach, K. Kind, M. Lane, and J. Thompson, Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes, Reproduction, Fertility and Development, vol.22, issue.5, pp.771-779, 2010.
DOI : 10.1071/RD09193

L. Frank, M. Sutton-mcdowall, H. Brown, D. Russell, R. Gilchrist et al., Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of Heat shock protein 90, Human Reproduction, vol.29, issue.6, pp.1292-1303, 2014.
DOI : 10.1093/humrep/deu066

K. Moley, W. Vaughn, A. Decherney, and M. Diamond, Effect of diabetes mellitus on mouse pre-implantation embryo development, Reproduction, vol.93, issue.2, pp.325-332, 1991.
DOI : 10.1530/jrf.0.0930325

P. Quinn and R. Wales, The relationships betwen the ATP content of preimplantation mouse embryos and their development in vitro during culture, Journal of Reproduction and Fertility, vol.1973, pp.301-309, 1973.

P. Tartarin, E. Guibert, A. Touré, C. Ouiste, J. Leclerc et al., Inactivation of AMPK??1 Induces Asthenozoospermia and Alters Spermatozoa Morphology, Endocrinology, vol.153, issue.7, pp.3468-3481, 2012.
DOI : 10.1210/en.2011-1911

URL : https://hal.archives-ouvertes.fr/hal-01129777

L. Dugan, Y. You, S. Ali, M. Diamond-stanic, S. Miyamoto et al., AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function, Journal of Clinical Investigation, vol.123, issue.11, pp.4888-4899, 2013.
DOI : 10.1172/JCI66218DS1

H. Zong, J. Ren, L. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences, vol.99, issue.25, pp.15983-15987, 2012.
DOI : 10.1073/pnas.252625599

D. Egan, D. Shackelford, M. Mihaylova, S. Gelino, R. Kohnz et al., Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy, Science, vol.331, issue.6016, pp.456-461, 2011.
DOI : 10.1126/science.1196371

M. Bertoldo, Y. Locatelli, O. Neill, C. Mermillod, and P. , Impacts of and interactions between environmental stress and epigenetic programming during early embryo development, Reproduction, Fertility and Development, vol.27, issue.8, 2014.
DOI : 10.1071/RD14049

URL : https://hal.archives-ouvertes.fr/hal-01353285

L. Wakeling, L. Ions, and D. Ford, Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions?, AGE, vol.14, issue.4, pp.327-341, 2009.
DOI : 10.1007/s11357-009-9104-5

A. Vaquero, M. Scher, D. Lee, H. Erdjument-bromage, P. Tempst et al., Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin, Molecular Cell, vol.16, issue.1, pp.93-105, 2004.
DOI : 10.1016/j.molcel.2004.08.031

L. Nelson, R. Valentine, J. Cacicedo, M. Gauthier, Y. Ido et al., A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells, AJP: Cell Physiology, vol.303, issue.1, pp.4-13, 2012.
DOI : 10.1152/ajpcell.00296.2011

R. Ya and S. Downs, Summary, Zygote, vol.20, issue.01, pp.91-102, 2014.
DOI : 10.1083/jcb.200907161

D. Bendale, P. Karpe, R. Chhabra, S. Shete, H. Shah et al., 17-?? Oestradiol prevents cardiovascular dysfunction in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation, British Journal of Pharmacology, vol.108, issue.4, pp.779-795, 2013.
DOI : 10.1111/bph.12290

M. Hernandez, Q. Shao, X. Yang, S. Luh, M. Kandouz et al., A histone deacetylation-dependent mechanism for transcriptional repression of the gap junction gene cx43 in prostate cancer cells, The Prostate, vol.276, issue.11, pp.1151-1161, 2006.
DOI : 10.1002/pros.20451

T. Ogawa, T. Hayashi, M. Tokunou, K. Nakachi, J. Trosko et al., Suberoylanilide Hydroxamic Acid Enhances Gap Junctional Intercellular Communication via Acetylation of Histone Containing Connexin 43 Gene Locus, Cancer Research, vol.65, issue.21, pp.9771-9778, 2005.
DOI : 10.1158/0008-5472.CAN-05-0227

T. Akiyama, M. Nagata, and F. Aoki, Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice, Proceedings of the National Academy of Sciences, vol.103, issue.19, pp.7339-7344, 2006.
DOI : 10.1073/pnas.0510946103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1464342

D. Hardie, Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress, Biochemical Society Symposium, vol.64, pp.13-27, 1999.

C. Larosa and S. Downs, Stress Stimulates AMP-Activated Protein Kinase and Meiotic Resumption in Mouse Oocytes, Biology of Reproduction, vol.74, issue.3, pp.585-592, 2006.
DOI : 10.1095/biolreprod.105.046524