L19. Lymphoid neogenesis in vascular chronic inflammation.
Antonino Nicoletti, Jamila Khallou-Laschet, Kevin Guedj, Marc Clement, Anh-Thu Gaston, Marion Morvan, Charles-Antoine Dutertre, Jean-Baptiste Michel, Olivier Thaunat, Giuseppina Caligiuri

To cite this version:

HAL Id: inserm-00805493
https://www.hal.inserm.fr/inserm-00805493
Submitted on 28 Mar 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Lymphoid neogenesis in vascular chronic inflammation

Antonino Nicoletti1,2, Jamila Khallou-Laschet1,2, Kevin Guedj1,2, Marc Clement1,2, Anh-Thu Gaston1,2, Marion Morvan1,2, Charles-Antoine Dutertre1,2, Jean-Baptiste Michel1,2, Olivier Thaunat3,4, Giuseppina Caligiuri1,2

1: Unité 698, Institut National de la Santé et de la Recherche Médicale, Hôpital Xavier Bichat, Paris, France.
3: Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation Rénale et d’Immunologie Clinique, Lyon, France.
4: Université de Lyon, Lyon, France.

Address correspondence to:
Antonino Nicoletti, PhD
INSERM UMRS698 GH Bichat-Claude Bernard, 46 rue Henri Huchard, 75877 PARIS Cedex 18 (France)
Tel: +33 (0) 1 40 25 75 56; Fax: +33 (0) 1 40 25 86 02
E-mail: antonino.nicoletti@inserm.fr

Text word count: 1046 (w/o references)
In contrast to secondary lymphoid organs (SLOs) that arise during development at predetermined locations, the formation of tertiary lymphoid organs (TLOs) can occur in adults at ectopic sites in any tissue in the context of persistent inflammatory disorders, such as autoimmune diseases, cancer, and organ transplantation (1-3). The molecular mechanisms underlying the organization of chronic inflammatory infiltrates into ectopic lymphoid tissue recapitulates some of those involved in lymphoid organogenesis during development (4, 5) and hence this process has been referred to as lymphoid neogenesis. Beyond anatomical similarities with SLOs, ectopic lymphoid tissues are fully functional and support the development of local adaptive immune responses, including the priming of naive lymphocytes (6), generation of memory subsets, and germinal center reactions (clonal expansions, somatic hypermutations, immunoglobulin class switching and antibody production), which are suspected to contribute to the exacerbation of chronic inflammatory diseases (7, 8).

1/ TLOs in rejected organs

We have undertaken several studies in the context of alloimmunity and have demonstrated 1/ that the graft is not only the target of the alloimmune response but also a site where this response actually develops, so as to optimize the communication between the targeted tissue and the immune effectors (9), 2/ that TLOs provide survival signal to B-cells, allowing them to escape rituximab-induced apoptosis, thereby thwarting therapeutic efficiency (10), 3/ that anti-MHC humoral response is more intense and more diverse in TLOs [the abnormal activation of CD4+ T cells promotes the development of an exaggerated pathogenic immune humoral response in TLOs due to a defective immune regulation (11) and the intragraft microenvironment interferes with peripheral deletion of autoreactive immature B cells that, in turn, produce antibodies against intracellular autoantigens.
that intragraft humoral immune response appears uncoupled from the systemic response and that TLO formation recapitulate organogenesis of SLOs (13). While these data demonstrate that chronic rejection is associated with the development of lymphoid nodular infiltrates within rejected organs, evidence for the involvement of these lymphoid structures in the rejection process came from a model of rat aortic interposition model where lymphoid nodular infiltrates was evidenced in the adventitia of the chronically rejected aortic grafts (3). We could demonstrate that nodular lymphoid structures were functional ectopic germinal centers that participate in the rejection process of the grafted organ. In addition, this showed that the vascular stroma was sufficient to promote and support lymphoid neogenesis.

2/ TLOs in atherothrombosis

Interestingly, TLOs are also present in the context of atherothrombosis. Indeed, TLOs were detected in the adventitia of human atherosclerotic arteries as early as the 1950s (14), a process that has been recently revisited (15-18). We could also characterize adventitial lymphoid aggregates distributed all along the aortic segment in atherosclerosis-prone ApoE KO mice. These structures were defined as TLOs because they are composed of B cell follicles surrounded by T cells, a prototypic organization reported for ectopic germinal centers (4). IgM and IgD staining revealed the presence of two subsets of B cells with different maturation states. Moreover, these TLOs included blood vessels, lymphatic networks, and FRC-like cells, suggesting that these aggregates are proper structures to induce and maintain local immune responses. These adventitial blood and lymphatic networks are essential for the recruitment and drainage of immune effectors (19-22). Interestingly, the TLOs were polarized towards the media, suggesting that effectors inside the aortic wall may be involved in the lymphangiogenesis and angiogenesis associated with the
formation of adventitial TLOs. In this respect, it is important to note that human VSMCs are able to trigger intramural angiogenesis through the production of VEGF-A(23).

3/ Mechanisms of lymphoid neogenesis in the aorta

A detailed characterization of TLOs in ApoE KO mouse aortas showed that vascular smooth muscle cells (VSMCs) in the media express the chemokines CXCL13, CCL19, CCL21, and CXCL16, triggering the recruitment of leukocytes to the adventitia(16). This raised the question of the identity of the cellular and molecular factors that confer an organizer (LTo) potential upon VSMCs. We hypothesized that macrophages could act as Lymphoid Tissue inducer (LTi) cells in diseased arteries. Indeed, macrophages are key players in host defense and tissue homeostasis and are heterogeneous and plastic cells that can mount different programs of polarized activation according to microenvironmental cues (24). M1-polarized macrophages are considered as pro-inflammatory cells that produce high levels of effectors, such as the cytokine interleukin-1β, while M2-polarized macrophages are rather reparative cells, promoting the synthesis of extracellular matrix components. In the context of advanced atheroma, plaque-infiltrated macrophages have an M1 pro-inflammatory profile(25, 26).

Our data suggest that M1 inflammatory macrophages are relevant LTi candidates because they express high LT-α and TNF-α levels. However, instead of acting through “classical” cell-cell interactions that characterize LTo induction, intimal macrophages assume an LTi role remotely, via soluble factors, thus endowing VSMCs with LTo functions. We further showed that the effect of M1 macrophages on VSMCs involved TNFR1/2 signaling and was LTβR-independent
The results obtained in vitro were corroborated by those collected in an in vivo aortic transposition model. Indeed, we demonstrated the presence of adventitial aortic TLOs in LTβR KO segments that had been transplanted into ApoE KO mice. Together, these findings demonstrate that, in the context of atherosclerosis-associated lymphoid neogenesis, LTβR signaling is dispensable.

To definitively validate these observations, we used collagen scaffolds seeded with VSMCs that had been stimulated ex vivo with M1 conditioned medium (CM) or with control media. These scaffolds were then implanted subcutaneously in mice. Three weeks after implantation, we found that scaffolds seeded with M1 CM-stimulated VSMCs contained lymphoid cell aggregates, which were not detected in scaffolds containing unstimulated VSMCs. The lymphoid cells that composed these aggregates were CD3+ T and B220+ B cells. SMA-positive VSMCs surrounding the aggregates expressed CCL19, CCL20, and CXCL16.

In summary, for the first time, our most recent data show that classical LTi cells might not be mandatory for the development of TLOs, a role that can be assumed by macrophages. Indeed, in the context of atherosclerosis, soluble mediators produced by intimal M1 macrophages activate medial VSMCs through their TNF receptors independently of LTβR signaling. These findings support the hypothesis that radial hydraulic conductance conveys information from the intima toward the adventitia in the following manner: intimal macrophages transmit LTi-inducing signals to medial VSMCs, which, in turn, orchestrate chemoattraction and lymphoid neogenesis in the adventitia.
References

