A noncanonical release of GABA and glutamate modulates neuronal migration.

Jean-Bernard Manent, Michaël Demarque, Isabel Jorquera, Christophe Pellegrino, Yehezkel Ben-Ari, Laurent Aniksztejn, Alfonso Represa

To cite this version:

HAL Id: inserm-00484364
https://www.hal.inserm.fr/inserm-00484364
Submitted on 18 May 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Development/Plasticity/Repair

A Noncanonical Release of GABA and Glutamate Modulates Neuronal Migration

Jean-Bernard Manent, Michaël Demarque, Isabel Jorquera, Christophe Pellegrino, Yehezkel Ben-Ari, Laurent Aniksztejn, and Alfonso Represa

Institut National de la Santé et de la Recherche Médicale U29, Campus de Luminy BP13, 13273 Marseille, France

Immature neurons express GABA and glutamate receptors before synapse formation, and both transmitters are released at an early developmental stage. We have now tested the hypothesis that the ongoing release of GABA and glutamate modulates neuronal migration. Using 5-bromo-2′-deoxyuridine labeling and cocultures of hippocampal slices obtained from naive and green fluorescent protein-transgenic mice, we report that migration is severely affected by GABA_A or NMDA receptor antagonist treatments. These effects were also present in munc18-1 knock-out slices in which soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent vesicular secretion of transmitters has been deleted. GABA_A antagonists were more efficient than NMDA antagonists to reduce cell migration, in keeping with the earlier maturation of GABAergic mechanisms. We conclude that GABA and, to a lesser degree, glutamate released in a SNARE-independent mechanism exert a paracrine action on neuronal migration.

Key words: neuron; migration; neurotransmitter; GABA; glutamate; hippocampus

Introduction

Neuronal migration is one of the critical steps of the CNS construction. Once generated in the germinal layers where they become postmitotic, immature neurons (or neuroblasts) start to migrate to reach their target fields. In the cerebral cortex, this process is well documented, with the presence of two modes of migration: (1) a radial, glial-guided mode of migration for the principal cells, identified by the early pioneering studies conducted by Rakic and colleagues (Rakic, 1971, 1972; Rakic et al., 1974), and (2) a tangential mode of migration for the interneurons, proposed by O’Rourke et al. (1992) and confirmed by Anderson et al. (1997) [for a review on both modes of migration, see Nadarajah and Parnavelas (2002)]. In the hippocampus, the process has been less investigated, but the same modes of migration likely proceed. The early birthdating studies from Bayer (1980) identified the timing of genesis of the pyramidal cells of the CA1 region between embryonic day 16 (E16) and E18 in rats [birthdates corrected according to Paxinos et al., 2001], the morning after mating being considered as E0]. Once generated, these cells start their migration toward the stratum pyramidale between E17 and E19–E20. In mice, this process occurs slightly earlier, with cells being generated between E14 and E16 (Stanfield and Cowan, 1979) and migrating afterward.

As they migrate throughout the cerebral tissue, immature neurons are influenced by several factors that modulate their journey. Among these factors, transmitters have been shown to play an important role. Indeed, several studies that focused on various brain structures (cerebellar cortex, cerebral cortex, olfactory epithelium, basal forebrain) and neuronal subtypes (granule cells, cortical neurolasts, tangentially migrating interneurons, luteinizing hormone-releasing hormone neuroblasts, gonadotropin-releasing hormone neuroblasts) have been performed using different protocols (dissociated cells in microchemotaxis chambers, slice preparation). These studies have led to the conclusion that transmitters, GABA and glutamate, acting on several receptor subtypes (GABA_A, GABA_B, NMDA, AMPA) have a crucial modulatory effect on migrating neuroblasts, acting as motility-promoting signals (Behar et al., 1998, 1999, 2000, 2001; Hirai et al., 1999; Simonian and Herbsen, 2001; Lopez-Bendito et al., 2003), acceleratory signals (Komuro and Rakic, 1993), or stop signals (Behar et al., 1998, 2000; Fuechsel et al., 1998; Bles et al., 2000; Simonian and Herbsen, 2001; Kihara et al., 2002). However, in contrast to these observations, there is no deficit in cortical layering and synapse formation in mice in which vesicular release has been deleted: munc18–1 mutant mice (Verhage et al., 2000) or munc13-1/2 double knock-out (KO) mice (Varequaux et al., 2002). The reasons for this contradiction have not been elucidated.

In a recent study, we showed that in the prenatal (E18–E20) and postnatal [postnatal day 0 (P0) to P3] hippocampus of rats and mice (Demarque et al., 2002), there is a calcium- and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-independent release of GABA and glutamate. These transmitters generated large slow currents in maturing neurons, including neurons that have no functional synapses. This paracrine mode of communication, which is mediated by the activa-
tion of GABA_4 and NMDA receptors, is restricted to an early developmental stage. Interestingly, this release is present in munc18-1 mutant mice (Demarque et al., 2002), suggesting that a SNARE-independent release of GABA and glutamate may contribute to the construction of brain structures.

To investigate this issue, we designed a hippocampal organotypic slice coculture assay in which fluorescent migrating pyramidal neurons can be observed easily. Using this technique, patch-clamp recordings of migrating cells indicated that these cells expressed functional GABA_A and sometimes NMDA receptors. Applications of antagonists of GABA_A (bicuculline) or NMDA ([55,10R]-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine and 25 mm Petri dishes containing culture medium (MEM, 10% horse serum, Campden Instruments, Leicester, UK), and slices were collected into 35 mm Petri dishes. Animals.

Materials and Methods

Animals. Experiments were performed on E17–E18 rats and E16–E17 mouse embryos. Wistar rats were obtained from Janvier (Janvier, France). We also used Swiss mice (Janvier), green fluorescent protein (GFP)-transgenic mice (a gift from Dr. M. Okabe, Osaka University, Osaka, Japan) (Okabe et al., 1997), or munc18-1 mutant mice (a gift from Dr. T. C. Sudhof, University of Texas, Dallas, TX) (Verhage et al., 2000) deficient for the brain-specific isoform of the mammalian homolog of UNC18, also called Nsecl or RbSec1 [for a review on SNAREs and their role in synaptic vesicle fusion, see Hata et al. (1993) and Rizo and Sudhof (2002)]. The GFP UNC18, also called nSec1 or RbSec1 [for a review on SNAREs and their role in synaptic vesicle fusion, see Hata et al. (1993) and Rizo and Sudhof (2002)] embryos were selected from the wild-type nonfluorescent littermates. The munc18-1 mutant embryos were used because these animals exhibit a peculiar tucked posture and edematous appearance. Further, the migration substrate, fluorescent age-related cortical slices were cocultured with wild-type hippocampal slices. In this condition, cortical cells migrated but failed to reach the pyramidal layer, suggesting that a hippocampal environment is specific for normal hippocampal cell migration.

The permissiveness of the host environment for migration was assessed using various experimental conditions [i.e., homotypic (mouse vs mouse), heterotypic (mouse vs rat), homochronic (age-related slices) or heterochronic slices], revealing no differences in the amount and distribution of migrated cells. The majority of coculture assays presented here were performed using homotypic, homochronic slices. Concerning the “hippocampal” specificity of the migration substrate, fluorescent age-related cortical slices were cocultivated with wild-type hippocampal slices. In this condition, cortical cells migrated but failed to reach the pyramidal layer, suggesting that a hippocampal environment is specific for a normal hippocampal cell migration.

Electrophysiological recordings of migrating cells. Cocultured organotypic slices were placed in a recording chamber where they were fully submerged and superfused at a flow rate of 2–3 ml/min with an oxygenated artificial CSF of the following composition (in mM): 126 NaCl, 3.5 KCl, 2 CaCl_2, 1.3 MgCl_2, 25 NaHCO_3, 1.2 NaHPO_4, and 10 glucose (95% O_2 and 5% CO_2, pH 7.4, 32–34°C). GFP migrating neuroblasts were visualized with a fluorescent upright microscope (Axioskop; Zeiss, Oberkochen, Germany) equipped with an appropriate filter and recorded using the patch-clamp technique in the whole-cell configuration. Mouse hippocampal slices had a maximum of 8–10 Migration substrate, fluorescent age-related cortical slices were cocultivated with wild-type hippocampal slices. In this condition, cortical cells migrated but failed to reach the pyramidal layer, suggesting that a hippocampal environment is specific for a normal hippocampal cell migration.

Electrophysiological recordings of migrating cells. Cocultured organotypic slices were placed in a recording chamber where they were fully submerged and superfused at a flow rate of 2–3 ml/min with an oxygenated artificial CSF of the following composition (in mM): 126 NaCl, 3.5 KCl, 2 CaCl_2, 1.3 MgCl_2, 25 NaHCO_3, 1.2 NaHPO_4, and 10 glucose (95% O_2 and 5% CO_2, pH 7.4, 32–34°C). GFP migrating neuroblasts were visualized with a fluorescent upright microscope (Axioskop; Zeiss, Oberkochen, Germany) equipped with an appropriate filter and recorded using the patch-clamp technique in the whole-cell configuration. Mouse hippocampal slices had a maximum of 8–10 Migration substrate, fluorescent age-related cortical slices were cocultivated with wild-type hippocampal slices. In this condition, cortical cells migrated but failed to reach the pyramidal layer, suggesting that a hippocampal environment is specific for a normal hippocampal cell migration.

Brdu incorporation into dividing cells. After undergoing their final division at the level of the neuroepithelium, postmitotic cells, presumptive neuroblasts, start to migrate to reach their target layers. Brdu is incorporated into those dividing cells during the S phase of their cell cycle and remains integrated into their DNA during their life span. Thus, Brdu allows the monitoring of age-related postmitotic migrating cells, from their birthplace to their target layer. The Brdu signal is, however, diluted if the cells undergo additional rounds of division, being distributed to the daughter cells.

Brdu was either administered by an intraperitoneal injection of the pregnant animals with 50 mg of Brdu per kilogram of body weight 2 h before the preparation of the slices or applied in culture as described above. When injections were performed in pregnant animals for birth-
Migrating neuroblasts express functional GABA_λ and NMDA receptors

Parallel immunocytochemical experiments (Fig. 2) showed that migrating neuroblasts were immunoreactive to NMDA (Fig. 2A–C, NR1) and GABA_λ (Fig. 2D–F) receptors, suggesting that they could respond to ambient transmitters released from adjacent structures (see supplemental data and Fig. S1C, available at www.jneurosci.org as supplemental material). To determine the functionality of these receptors, we performed electrophysiological experiments in which migrating neuroblasts in the coculture assay were patch-clamp recorded after 1 DIV (Fig. 2G). Only the well-oriented migrating neuroblasts were included in the electrophysiological analysis. These migrating cells had a mean capacitance of 6.0 ± 0.3 pF (n = 25), a resting membrane potential of −47 ± 8 mV (measured with a KCl-filled electrode; n = 6), and an input resistance of 3.3 ± 1.8 GΩ (n = 6). In some neuroblasts (4 of 10), a depolarizing pulse evoked a small action potential (or spikelet) of 10–20 mV amplitude (Fig. 2H), generated at a membrane threshold approximately −30 mV, suggesting that some of these cells are potentially excitable. We then determined whether these cells expressed functional GABA and glutamate receptors.

Bath application of GABA (100 μM; n = 2) or isoguvacine (10 μM; n = 7), specific agonists of GABA_λ receptors, generated currents [37 ± 2 pA (n = 2) or 49 ± 12 pA (n = 6 of 7 cells), respectively] (Fig. 2I). These currents were blocked by bicuculline (20 μM), a specific antagonist of GABA_λ receptors (Fig. 2J).

Bath application of glutamate (100 μM; n = 4) also generated a current of 20 ± 17 pA. In addition, NMDA (30–100 μM) generated currents of 54 ± 14 pA in 6 of 12 migrating cells (Fig. 2I). These currents were not observed when 50 μM D-APV (specific competitive antagonist of NMDA receptors) was coapplied with NMDA. Bath application of 3–30 μM AMPA (agonist of
AMPA/KA receptors) failed to evoke any currents in all migrating neuroblasts recorded (mean capacitance, 5.5 ± 0.6 pF; n = 4), suggesting that those cells do not express functional AMPA/KA receptors. When agonists for NMDA and GABA_α receptors were sequentially applied, GABA- but not NMDA-evoked currents were observed in 4 of 10 cells, GABA- and NMDA-evoked currents were observed in 5 of 10 cells, and only NMDA-evoked currents were observed in only 1 of 10 cells. These data suggest that the majority of migrating neuroblasts expressed GABA_α receptors (9 of 10 cells) and only a subset coexpressed NMDA receptors (5 of 10 cells). Therefore, functional GABA_α receptors predominate in that they are present in almost all migrating neuroblasts.

As illustrated in our previous report, ambient GABA can activate maturing pyramidal cells in a tonic manner (Demarque et al., 2002). We therefore investigated whether migrating neuroblasts were also tonically activated by ambient GABA. When specific antagonists of the GABA_α receptors (20 μM bicuculline plus 100 μM picrotoxin) were coapplied, a current associated with a decrease in the basal noise was unmasked in some migrating cells (2 of 10 cells). The addition of glutamate receptor antagonists failed to generate any current. This suggests that ambient GABA can activate migrating neuroblasts in a tonic manner. However, only a subset of them would be concerned or alternatively would be tonically activated only during a transient period of their journey to the pyramidal cell layer.

GABA_α and NMDA receptor antagonists perturb neuronal migration in the coculture assay
To determine the role of GABA and glutamate on migration, we tested the effects of the treatments with antagonists of the receptors functionally expressed by migrating neuroblasts (i.e., antag-
Figure 2. Receptor expression and electrophysiological properties of migrating neuroblasts. **A–C**, Immunostaining of an E17 slice cocultured for 1 DIV showing a migrating neuroblast double-labeled with antibodies against GFP (green; **A** and top panels in **B** and **C**) and NR1 subunit of the NMDA receptor (red; **A** and middle panels in **B** and **C**). Squares surrounding the soma and the tip of the leading process are shown enlarged in **B** and **C**. Green and red channels are merged in the bottom panels in **B** and **C**. Immunostaining of E17 slices cocultured for 1 DIV showing a migrating neuroblast double-labeled with antibodies against GFP (green; **D** and top panels in **E** and **F**) and GABAA receptor (red; **D** and middle panels in **E** and **F**). Squares surrounding the soma and the tip of the leading process are shown enlarged in **E** and **F**. Green and red channels are merged in the bottom panels in **E** and **F**. Photomicrograph of a GFP-positive migrating neuroblast recorded with a pipette filled with rhodamine. Left, GFP-positive neuroblast originated into the fluorescent slice (GFP slice) migrating onto the nonfluorescent hippocampal slice (WT slice). The arrow points the leading process, and the arrowhead points to the trailing process. Middle, The same neuroblast shown in light transmission (Light Transm.), impaled with the patch pipette. Right, The same neuroblast filled with rhodamine (Rhod.). **H**, Spikelet evoked by depolarizing pulses applied to a migrating neuroblast recorded with a KCl-filled pipette solution. The capacitance of the cell was 10 pF. The spikelet (indicated with an asterisk and shown at lower time scale on the right) is evoked at a membrane potential of −25 mV. **I**, Currents mediated by bath application of NMDA and isoguvacine and recorded at 30 mV in the same cell (**C**m, 6 pF) with a CsGlu-filled pipette solution. Both receptor-mediated currents are blocked by their respective antagonists. **J**, Migrating neuroblast (**C**m, 3 pF) recorded at 30 mV with a CsGlu-filled pipette solution. Bath application of GABAA receptor antagonists generates an inward current associated with a decrease of the basal noise. Depolarizing pulses (5 mV, 10 ms, applied every 10 s) show that these effects are not associated with changes in the serial resistance. The bottom traces show representative responses to the current pulse before (a) and at the plateau (b) of the tonic current. Scale bars: **A, D**, 20 μm; **B, E**, 5 μm; **C, F**, 2 μm; **G, H**, 10 μm.
onists of GABA_A and NMDA receptors). Cells in the hippocampal organotypic slices coculture assay were allowed to migrate in a culture medium supplemented with pharmacological agents. After 1 DIV, migrated cells were quantified, and results were expressed as migration indices (see Materials and Methods). After 1 DIV in the presence of 10 μM MK801, an antagonist of the NMDA receptors, the migration index was reduced by 2.8 units (from 10.05 ± 0.87 in the control condition to 7.19 ± 1.25 after MK801; p = 0.090; six experiments; 298 cells). After 1 DIV in the presence of 50 μM bicuculline, an antagonist of the GABA_A receptors, the migration index was reduced by 3.1 units (from 10.05 ± 0.87 in the control condition to 6.92 ± 0.68 after bicuculline; p = 0.018; six experiments; 419 cells).

We also investigated the morphological characteristics of migrating neuroblasts located in the migration area (i.e., from the neuroepithelium to the stratum oriens). We first examined the orientation of the leading processes, considering this orientation as an index of the direction of migration (see Materials and Methods) (Fig. 3A). There were no significant differences between groups (control slices, MK801-treated slices, and bicuculline-treated slices), with the majority of cells (on average, 73.02 ± 4.32% for the three conditions) (Fig. 3B) migrating with a minimal deviation from the correct direction of migration (the majority of cells for the three conditions migrated with a mean deviation of 30.65 ± 0.93°). We then measured the length of the leading processes after treatment with MK801 and bicuculline. We noticed a significant reduction in the length of the leading processes, after 1 DIV in the presence of MK801 (49.64 ± 1.20 μm; p = 0.004; 8 experiments; 418 cells) (Fig. 3C,D) and after 1 DIV in the presence of bicuculline (46.09 ± 1.08 μm; p = 3.50E-08; 8 experiments; 404 cells) (Fig. 3C,D), compared with the control condition (53.46 ± 0.68 μm; 24 experiments; 1182 cells) (Fig. 3C,D).

Thus, antagonizing the effects of GABA and glutamate impaired neuronal migration in the coculture assay, affecting the length of the leading processes but without affecting the orientation of the migration, suggesting a motility defect rather than a guidance defect. However, the amplitude of the effects of treatments with antagonists was slightly blurred by the fact that migrating neuroblasts in the coculture assay are likely to represent a heterogeneous population of cells, being generated at different time periods, resulting in successive waves of migration. To be able to investigate the effect of antagonist application on a single age-related population of migrating cells, we shifted to label premigratory cells by using BrdU incorporation into dividing cells on isolated hippocampal organotypic slices.

GABA_A and NMDA receptor antagonists perturb the migration of BrdU-labeled cells in hippocampal organotypic slices culture

The effects of the application of receptor antagonists were evaluated on a population of age-related premigratory cells labeled with BrdU. Cells in isolated hippocampal organotypic slices were pulse-labeled with BrdU for 2 h and allowed to migrate in a culture medium supplemented with pharmacological agents. After 1 DIV, BrdU-labeled migrating cells were quantified, and the results are shown in Fig. 4, as explained previously. Under these conditions, we were able to investigate the migration of a virtually unique and homogenous wave of BrdU+ migrating cells, those generated during the pulse of BrdU. The migration of this homogenous population of cells was then only influenced by factors (and supplemental pharmacological agents) that were present in their own environment. After 1 DIV in the presence of 10 μM MK801, the migration index was reduced by 8 units (from 10.00 ± 2.09 in the control condition to 1.96 ± 0.26 after MK801; p = 0.0003; 12 experiments; 1519 cells) (Fig. 4B). After 1 DIV in the presence of 50 μM bicuculline, the migration index was reduced by 9 units (from 10.00 ± 2.09 in the control condition to 1.15 ± 0.26 after bicuculline; p = 0.0002; 11 experiments; 1129 cells) (Fig. 4B). Importantly, the pharmacological treatments had no effects on the total number of BrdU-labeled cells (data not shown), suggesting that the proliferation rate and cell survival were not affected by the treatments. Thus, antagonizing the effects of GABA and glutamate acting through GABA_A and NMDA receptors, respectively, reduced the number of neuroblasts that migrated to their correct target layer. We next investigated whether a nonconventional SNARE-independent release of transmitters mediates these effects (Demarque et al., 2002).

Hippocampal cytoarchitecture and receptor expression are not altered in munc18-1 mice

In agreement with a previous study (Verhage et al., 2000), the general architecture of the cortex was not altered in munc18-1 KO mice. Thus, in E17 hippocampal slices from munc18-1 mu-
tant mice, the CA1 pyramidal layer was not different from controls (Fig. 5). Furthermore, few pyramidal cells already displayed a MAP2-positive short apical dendrite (Fig. 5C, D, insets), suggesting that the apical dendrite outgrowth would not require the vesicular secretion of transmitters. Moreover, there was no obvious difference in receptor expression in the mutant compared with the wild type. The NR1 subunit of the NMDA receptors was present throughout the strata oriens and pyramidale (Fig. 5A, B), mainly expressed around the soma (i.e., from the neuroepithelium to the stratum oriens), with the average of the control values being set to 10. **p < 0.001. The number of experiments is given in parentheses. CTRL, Control; BICU, bicuculline.

Figure 4. GABA₂ and NMDA receptor antagonists prevent the BrdU-labeled cells from migrating to the stratum pyramidale in hippocampal organotypic slice culture. A, Immunostaining for BrdU on hippocampal organotypic slices cultured for 1 DIV without any treatment (control condition; left), in the presence of 10 μM MK801 (middle), and in the presence of 50 μM bicuculline (right). In the absence of any treatment, the majority of BrdU + cells after 1 DIV has migrated to settle into the stratum pyramidale (s. pyr.). After 1 DIV, in the presence of MK801 or bicuculline, BrdU + cells that have failed to migrate are mainly distributed into the migration area (i.e., neuroepithelium/stratum oriens (s. or.)). Scale bar, 20 μm. B, Histogram showing the migration indices obtained after treatment for 1 DIV with 10 μM MK801 or 50 μM bicuculline compared with the untreated control condition. The migration indices are expressed (± SEM) as the ratio between the percentage of cells that reached the stratum pyramidale after 1 DIV and the percentage of cells that were still in the migration area (i.e., from the neuroepithelium to the stratum oriens), with the average of the control values being set to 10. **p < 0.001. The number of experiments is given in parentheses. CTRL, Control; BICU, bicuculline.

Using BrdU incorporation on isolated hippocampal organotypic slices, we found no significant difference in the total number of BrdU + migrated cells in wild-type slices (118.67 ± 31.69 BrdU + migrated cells; nine experiments) compared with munc18-1 slices (146.33 ± 13.65 BrdU + migrated cells; p = 0.18; three experiments). Furthermore, the amount of BrdU + mi-
migrating cells in the stratum pyramidale of the wild type (99.55 ± 8.58 BrdU+ migrated cells in the stratum pyramidale; nine experiments) was not significantly different from the mutant (70 ± 25.16 BrdU+ migrated cells in the stratum pyramidale; p = 0.17; three experiments). These observations suggest that neuronal migration is not affected by the absence of vesicular secretion of transmitters. Because transmitters are released by a SNARE-independent mechanism in these neurons (Demarque et al., 2002), we tested whether the effects of GABA and NMDA on neuronal migration persist in munc18-1-deficient mice.

The effects of GABA and NMDA receptor antagonists persist in hippocampal organotypic slices from munc18-1 mutant mice

We investigated the effects of treatments with antagonists of the GABA_A and the NMDA receptors on neuronal migration in the absence of transmitter secretion through synaptic vesicles in munc18-1 mutant mice. To quantify the effects of the application of receptor antagonists, we performed BrdU incorporation on isolated hippocampal organotypic slices from munc18-1 mutant mice (Fig. 6). On isolated slices as investigated here, we were able to study the impact of the absence of vesicular secretion of transmitters on migration, what could not have been possible on cocultivated slices, in which SNARE-dependent mechanisms could have been present in the GFP donor slice and in the GFP migrating cells. After 1 DIV in the presence of 10 μM MK801, an antagonist of the NMDA receptors, the migration index was reduced by 7 units (from 10.01 ± 3.45 in the control condition to 2.86 ± 1.54 after MK801; eight experiments; 1385 cells) (Fig. 6 B). However, this effect was not significant (p = 0.053) because of a relative variability of the data, and we could not exclude that part of the glutamate involved in the modulation of cell migration may have a vesicular origin. After 1 DIV in the presence of 50 μM bicuculline, an antagonist of the GABA_A receptors, the migration index was reduced by 9 units (from 10.01 ± 3.45 in the control condition to 0.82 ± 0.20 after bicuculline; p = 0.002; seven experiments; 1314 cells) (Fig. 6B). Thus, in the absence of vesicular release of transmitters through SNARE-dependent mechanisms, neuronal migration occurred but was impaired when cells were allowed to migrate in a medium supplemented with antagonists of receptors to the transmitters. This indicates that the activation of mainly GABA_A receptors by endogenous transmitters still occurs in munc18-1-deficient mice and is involved in the modulation of CA1 pyramidal cell migration. This also suggests that transmitters (and mainly GABA) released independently of the SNARE machinery are able to modulate neuronal migration in a paracrine manner.

Discussion

Our results suggest that the release of GABA and glutamate through unconventional SNARE-independent mechanisms modulate neuronal migration. This is based on experiments showing that: (1) receptors to the transmitters GABA and glutamate are present in the migration area and are functional on migrating neuroblasts; (2) treatments with antagonists of the GABA_A and the NMDA receptors strongly impair neuronal migration in our models; (3) neuronal migration and construction of the stratum pyramidale are normal in the absence of SNARE-dependent vesicular secretion of transmitters in munc18-1 mutant mice; and (4) the effects of treatments with antagonists persist in munc18-1 mutant mice. Therefore, the early expression of receptors in neurons that bear no functional synapses enables a modulation of migration by endogenous GABA and glutamate, possibly providing a mechanism for the activity-dependent regulation of brain development. Also, because these actions are not dependent on conventional vesicular release of transmitters, other mechanisms yet to be determined may control the presence and diffusion of transmitters in the extracellular space.

Paracrine transmitters?

Transmitters have been shown to play a crucial role in the modulation of brain construction, from the regulation of proliferation and migration to the modulation of differentiation and survival (Nguyen et al., 2001), acting in that sense as environmental (or epigenetic) factors. However, the mode of action of these transmitters and their mode of secretion are completely unknown. In our previous study (Demarque et al., 2002), we re-
ported the presence of a paracrine mode of intercellular communication through transmitters in the developing hippocampus, at a stage in which synapses are absent. This paracrine communication is based on the activation of receptors present in cells that have no synapses, by endogenous transmitters released through calcium- and SNARE-independent mechanisms (Demarque et al., 2002). Here, we demonstrate that the transmitters involved in this paracrine nonsynaptic mode of communication may be responsible of the modulation of neuronal migration, thus confirming that paracrine transmitters influence brain construction. This study shed new light on the results of the numerous studies investigating the modulatory role played by the transmitters during CNS development (Komuro and Rakic, 1993; Behar et al., 1998, 1999, 2000, 2001; Fueshko et al., 1998; Hirai et al., 1999; Bless et al., 2000; Simonian and Herbsion, 2001; Kihara et al., 2002; Lopez-Bendito et al., 2003). As suggested by Owens and Kriegstein (2002), one could hypothesize that the modulation of neuronal migration by transmitters in those previous studies might be mediated exclusively by a nonvesicular release.

These paracrine transmitters have a nonvesicular (or SNARE-independent) origin, but the exact origin and mode of secretion of these transmitters remains to be investigated. One could hypothesize that transmitters might be released either from more mature neurons in the vicinity of migrating neuroblasts and/or at the level of the target fields, or from glial cells (i.e., astrocytes or radial glial cells), or alternatively from migrating neuroblasts themselves [i.e., in an autocrine/paracrine manner (Bolteus and Bordey, 2004)]. The mode of secretion is also unknown, but we could suggest that transmitters might be released either through exchangers (Warr et al., 1999), gap junction hemichannels (CoTRina et al., 1998; Ye et al., 2003), ATP receptors (Wang et al., 2002; Duan et al., 2003), or volume-sensitive chloride channels (Kimelberg et al., 1990; Pasantes-Morales et al., 1994; Mongin and Kimelberg, 2002).

Paracrine transmitters as developmental signals
An increasing amount of evidences, including those provided in our study, suggest that transmitters act as developmental signals (Nguyen et al., 2001; Owens and Kriegstein, 2002). These “informative” transmitters may establish morphogenetic gradients that guide migrating neuroblasts to their target fields (i.e., positional signaling), or create a permissive substrate for migration, giving to the neuroblasts the conditions required for motility, or a combination of both. Transmitters may also establish and maintain a level of activity adequate for migrating neuroblasts to respond to the “classical” guidance cues. In addition, transmitters could stimulate the secretion of these guidance cues from surrounding cells, glial cells (astrocytes or radial glial cells) or more mature neurons, present along the migrating pathway and/or at the level of the target field. A “guiding action” of transmitters is unlikely because the leading process orientation (considered as an index of the direction of migration) is unaffected after treatments with antagonists in our study. However, we measured the leading process orientation of migrating neuroblasts “freezed” in the position they had just before fixation, bypassing the fact that the leading process is a highly dynamic structure. Additional studies, more dynamic (i.e., time-lapse high-power microscopy), are required and in process to answer that question. Interestingly, a study by Zheng et al. (1996) reported a turning response of the growth cones of Xenopus spinal neurons submitted to glutamate application, the turning response being blocked by the NMDA receptor antagonist AP-5. A “motility-promoting action” of transmitters is more likely, because the activation of the ionotropic receptors by transmitters has been shown to evoke calcium influxes. This is the case for the activation of the NMDA receptors, coupled with a calcium conductance, as well as for the GABA_A receptors, the activation of which in young postnatal hippocampal pyramidal cells and interneurons has been shown to induce intracellular calcium rise (Leinekugel et al., 1995). Furthermore, activation of GABA_A and NMDA receptors in tangentially migrating interneurons has been shown to induce intracellular calcium rise (Soria and Valdeolmillos, 2002). The same group, however, showed recently that the intracellular calcium rise induced by pressure application of kainate, NMDA, or muscimol did not elicit motility (Moya and Valdeolmillos, 2004). These results are quite contradictory to the studies conducted by Komuro and Rakic (1998) and more recently by Kumada and Komuro (2004), which have demonstrated a tight correlation between calcium rise and motility in neurons migrating in the cerebellum, both being importantly decreased after blockade of NMDA receptors. Calcium orchestrated the dynamic of the cytoskeleton: the assembly of the microtubules (Rakic et al., 1996) as well as the assembly of the actin network (Rivas and Hatten, 1995). In that respect, the reduction in the length of the leading process observed after treatment with receptor antagonists in our study might be one of the consequences of a cytoskeleton disruption.

It would be interesting to investigate the response of migrating neuroblasts to transmitters as a function of their migratory status (i.e., resting cells vs actively migrating cells). We postulate that the morphologies of the migrating neuroblasts (orientation, length, and branching of their leading processes), as well as their responses to the transmitters would vary along their journey. Interestingly, we found a tonic activation of GABA_A receptors in only 20% of assayed cells. Similar tonic GABA_A-generated currents have been observed in many cell types [including very immature CA1 pyramidal cells (Demarque et al., 2002)]. They might control neuronal excitability and information processing (Semyanov et al., 2004) and eventually contribute to modulate the motility of migrating neuroblasts.

To play a developmental role, paracrine transmitters should be able to diffuse into the extracellular space. This diffusion is allowed by the presence of a large, non-cohesive, extracellular space and a relative immaturity of the reuptake mechanisms, both creating the adequate conditions for a long-distance communication. Indeed, in the hippocampus, only glutamate transporters, but not the main GABA transporter GAT-1, contribute to the clearance of transmitters at birth (Demarque et al., 2002). This difference in the maturation of GABA transporters could explain the greater impact of the treatments with GABAergic antagonists in our study compared with glutamatergic antagonists. In addition, the difference in the functional expression of ionotropic receptors on migrating neuroblasts, as described in the present study, with the majority of cells expressing GABA_A receptors argues in the same direction. This is in favor of a central role played by GABA as the key excitatory transmitter in developing brains (Represa and Ben-Ari, 2005). Other subtypes of GABA receptors such as GABA_B might be involved in the modulation of migration in our model, as is the case for tangentially migrating interneurons (Lopez-Bendito et al., 2003). A role for GABA_B receptors in the hippocampus is unlikely, because Gaírsa et al. (1995) showed that postsynaptic GABA_B receptors are absent or not functional during the first postnatal days in this structure.

In a more general perspective, it may be proposed that paracrine SNARE-independent transmitters contribute to modulate...
not only cell migration but also proliferation, neuronal matura-

References

Anderson SA, Eisenstat DD, Shi L, Rubenstein JL (1997) Interneuron mi-
migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474 – 476.

Moya F, Valdeolmos M (2004) Polarized increase of calcium and nucleo-

Nadarajah B, Parnavelas JG (2002) Modes of neuronal migration in the develop-

O’Rourke NA, Dailey ME, Smith SJ, McConnell SK (1992) Diverse migrato-

Owens DF, Kriegstein AR (2002) Developmental neurotransmitters? Neu-
ron 26:989 – 991.

Rakic P (1972) Mode of cell migration to the superficial layers of fetal mon-

Rakic P, Stensas IJ, Sayre E, Sidman RL (1974) Computer-aided three-

Rakic P, Knyihar-Csillik E, Csillik B (1995) Polarization of microtubule assem-
blies during neuronal cell migration. Proc Natl Acad Sci USA 93:9218 –9222.

Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal develop-
ment. Trends Neurosci, in press.

Rivas RJ, Hatten ME (1995) Motility and cytoskeletal organization of mig-

Simonian SX, Herbsin AE (2001) Differing, spatially restricted roles of ionotropic glutamate receptors in regulating the migration of GnRH neu-