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Abstract

Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which

invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propo:
new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Leger
moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with var
point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pai
recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and
better discriminative power than the methods based on geometric or complex moments.

Author Keywords Blur Invariants; Blurred Image Data mining; Gaussian noiselmaging; Legendre MomentsPattern RecognitionPixel ; Robustness Symmetrit
Blur.

Introduction

Image processing is a very active area that has impacts in many domains from remote sensing, robotics, traffic surv
medicine. Automatic target recognition and tracking, character recognition, three-dimensional (3-D) scene analysis and reconst
only a few objectives to deal with. Since the real sensing systems are usually imperfect and the environmental conditions ar:
over time, the acquired images often provide a degraded version of the true scene. An important class of degradations we are f.
practice is image blurring, which can be caused by diffraction, lens aberration, wrong focus, and atmospheric turbulence.
recognition, two options have been widely explored either through a two steps approach by restoring the image and thei
recognition methods, or by designing a direct one-step solution, free of blurring effects. In the former case, the point sprea
(PSF), most often unknown in real applications, should be estintatgd @n the latter case, finding a set of invariants that are
affected by blurring is the key problem and the subject of this paper.

The pioneering work in this field was performed by Flusser and Suévho derived invariants to convolution with an arbitre
centrosymmetric PSF. These invariants have been successfully used in template matching of satellig& @magatern recognitior¥ @
120 @in blurred digit and character recogniticili @22 @n normalizing blurred images into canonical forrd8 @34 @and in
focus/defocus quantitative measuremé&st @More recently, Flusser and Zitova introduced the combined blur-rotation invagi@n@nd
reported their successful application to satellite image registratibr@nd camera motion estimatioh8 @Suk and Flusser furthe
proposed a set of combined invariants which are invariant to affine transform and th9bl@rhe extension of blur invariants b
-dimensions has also been investigag @21 @All the existing methods to derive the blur invariants are based on geometric mc
or complex moments. However, both geometric moments and complex moments contain redundant information and are sensiti
especially when high-order moments are concerned. This is due to the fact that the kernel polynomials are not orthogonal.

Teague has suggested the use of orthogonal moments to recover the image from n@@mete/as shown that the orthogon
moments are better than other types of moments in terms of information redundancy, and are more robu3cgiaiseted by Teh
and Chin23 @he moment invariants are considered reliable features in pattern recognition if they are insensitive to the presenc
noise. Consequently, it could be expected that the use of orthogonal moments in the construction of blur invariant provis
recognition results. To the autheksowledge, no orthogonal moments have been used to construct the blur invariants.

Page1/20
IEEE Trans Image Process . Author manuscript



In this paper, we propose a new method to derive a set of blur invariants based on orthogonal Legendre moments (for a re
on moments, refer t®4 @27 @ The organization of this paper is as follows: in Section 2, we review the theory of blur invarie
geometric moments and the definition of Legendre moments. In Section 3, we establish a relationship between the Legendre 1
the blurred image and those of the original image and the PSF. Based on this relationship, a set of blur invariants using Legend
is provided. The experimental results for evaluating the performance of the proposed descriptors are given in Section 4. Fin
concluding remarks are provided.

BLUR INVARIANTS AND LEGENDRE MOMENTS

This section first reviews the theory of blur invariants of geometric moments proposed by Flusser &n@%uiand then present
some basic definitions of Legendre moments.

Blur invariants of geometric moments

The two-dimensional (2-D) geometric moment of orgerd ), with image intensity functioh(x , y ), is defined as

mpq J\l}[ x¥PVaf(x, Vidxdy,

where, without loss of generality, we assume that the image furfi¢tiqry ) is defined on the squarél, 1@, 1@

The corresponding central moment of imég@e, y ) is defined as

q
0= J I e x0T yip)"re yieaty
with the coordinates* %) denoting the centroid df(x , y )

(f i
xg'= miﬂ b2 :iﬁ"}
a1 0 A

m{ mifl

Letg (x,y) be a blurred version of the original im&fgx , y ). The blurring is classically described by the convolution

gix, VI=(f * h)x V)

whereh (x, y ) is the PSF of the imaging system, artnotes linear convolution.

In this paper, we assume that the P8¢ , y ), is a centrally symmetric image function and the imaging system is energy-prese
that is,

hx Y)=h(=x =i
1
f_lflh(x Vxdy= 1.

As noted by Flusse# @he assumption of centrally symmetry is not a significant limitation of practical utilization of the me
Most real sensors and imaging systems have PSFs with certain degrees of symmetry. In many cases they have even higher sy
central, such as axial or radial symmetry. Thus, the central symmetry assumption is general enough to describe almost &
situations.

Lemma 1l
The centroid of the blurred imaggXx , y ) is related to the centroid of the original imddg , y ) and that of the PSiF(x ,y ) as
g — (1 iH)
X0 XG + XOJ

=

In particular, ifh (x , y ) is centrally symmetric, the®t' =>8'=C. In such a case, we ha*¢' =x& ¥ =3,
The proof of Lemma 1 can be found $h @

Legendre moments
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The 2-D p q)th order Legendre moment of image functiqr , y ) is defined as28 @

1
=] _lflelszquﬂx Vdxdy, pa=012

wherePp (x) is thep th-order orthonormal Legendre polynomials given by

Pyx) =£meiﬁ

k=0
with
ey
2 !
) — k =evern
o=V 2 7w P
Q p—k=odd

The corresponding central moments are defined as

1
10 = [ |7 Pobe~ XPOP v — 1t Yidedy
where the coordinates %) are defined inJ).
Method

In this section, we first establish a relationship between the Legendre moments of the blurred image and those of the orig
and the PSF. We then derive a set of blur moment invariants.

Legendre moments of the blurred image

The 2-D normalized Legendre moments of blurred imgde,, y ), are defined by

L8y =1" I Po0P )gtx, yidixdly

=1 I PuxIPLOT ¢ hix, Vieixdy

= [* I PP @ bifix - g,y - bidadbldxdy
=1 Wa Bl S Pox+ alP oy + DI, YidxdVidadb

In the rest of this subsection, we discuss how to express the Legendre moments of blurred image défined teyrGs of Legendre
moments of the original image and the PSF.

Making the notatiotJy, (x) (P,(x),P,(x),*, P, (x)) TandM, (x) (1,x, *,xM) Twhere the superscrifitindicates the vectol
transposition, we have

whereC,, (cpk), with0 7k 7p 7M isa M 1)"™ 1) lower triangular matrix whose elemeng;skare given by 10).

Since all the diagonal elements@f , ==~*"%:, are not zero, the matr®,, is non-singular, thus

M (%) = (Cpg T Upg(X) = Dy U f(X)

whereD,, (d; ), with 0 7k 7p 7M , is the inverse matrix &, . The elements db,, are given by29 @

] k-
= I Pk o
| S R——" BNESL p— k=even
k= (EE] T (et
o] p—k=o0dd

By expanding 14 ), we obtain
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i=0
Similarly,
am= f AmsF {al
=0

Replacing the variabke by x ain (9), we have

-
Pp(x+aj=i ComiX +a) = ifl . Jepmxkarmk
med meOk=0
Substitution of {6) and (7) into (18) yields
P MM k i
Pp(x+aj|=z 3' |_ k_lCEmZMdMPE{XJZE A 15 Pl

L [i4 -k Fr
:zp EMZ:OZ | e |Cf-7mdkz ks E {1X)IP {a)
Zp j kz lcpmdm m-is P{XIP )

E. 1

J=DI=jn=lt=0

Similarly, we have

The following theorem reveals the relationship between the Legendre moments of the blurred image and those of the orig
and the PSF.

Theorem 1

Letf (x, y) be the original image function and the RS , y ) be an arbitrary image function, agdx , y ) be a blurred version &f(

X, Y ), then the relations
Fray FT
iif_ﬂ?gi}f_ Siizl N [enmC ant i1

=0=0  =01=0 k=im=itsl=f =+t

-3 T 55 53 (T eittmnsitns

=0 =00 l=tmitsl=ind+H

and

hold for everyp andq .
Proof

Substituting 19) and @0) into (12), we have

J'l hq 'E-':’Ul‘r |iii§| v |Cnmdk: ks {(X)Ps X|iiiil |C:1ndudn—zzp,r{y |f>< yidx

'i=0 h=im=k 8=0 b Dl eli=0

The above equation can be rewritten as
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e -1
o] Fro P
L ZZZ:_ZMZ kz Z )ZH H;.l kA " | Cp, mdm-hsdi'c iCq ndn—z :r'i11 uxf—ul
zﬂﬁﬂz LI:SZ’:;Z Z Z |Cp qu,ndk idm‘—k sdudn—gr
i"n:k+.5‘ n=lH"

The proof of 21) is now complete. The proof a22) is very similar to that ofA1), it is omitted here.
Theorem 2
If h(x,y) satisfies the conditions of central symmetry, then
* Lih=L: for everyp andq ;
*If (p q) is odd, therk=0
Proof

Using Lemma 1, the assertion of (a) can be easily proven. To demonstrate (b), it is notiegd ahat (&) PP, (x ). Using this
relationship, we can deduce the result.

Blur invariants of Legendre moments

With the help of Theorems 1 and 2, we are now ready to construct a set of blur invariants of Legendre moments through the
theorem.

Theorem 3

Letf (x,y) be an image function. Let us define the following functiéfi: N ™ zR.

If (p q) is even then

Iipglf=0

If (p q) is odd then

ig—j 5 I g
. MY
et S 0 FE S sttt

s=01=0 k=l m=k+si=j =1+
WHHHQ

Then,l (p, q) is invariant to centrally symmetric blur for apyandq . The numbep qis called the order of the invariant.
The proof of Theorem 3 is given Appendix A.

Using the Legendre central moments instead of Legendre moments, we can obtain a set of invariants to translation and to
are formally similar td (p, q)(f).

Theorem 4

Letf (x,y) be an image function. Let us define the following functiéfi : N ™ zR.

If (p q) is even then

I g =

If (p q) is odd then

ig—j 5 I g
, T
T af' -t ZZ 18 8,183 S (Mt i

== k=i m=ktrl=j =1+
'3'*:1+J<§'-’-‘+t?
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Then,l (p q) is invariant to centrally symmetric blur and to translation formagpdq .

The proof of Theorem 4 is very similar to that of Theorem 3, it is thus omitted here. It should be ndtéul,thatin (26) deals with
translation of both the image and the PSF.

Based onZ6), we can construct a set of blur and translation invariants of Legendre moments and express them in explicit
invariants of the third, fifth and seventh orders are listefpipendix B.

EXPERIMENTAL RESULTS

In this section, some experiments are described in order to show the invariance of the proposed method to varimus S
robustness to different kinds of noise. The comparison with some existing methods in terms of recognition accuracy is also provi

Test of invariance and robustness to noise

A toy cat image, whose size is 1228 Fig. 1), has been chosen from the public Columbia datal®8s€This image was ther
successively degraded by out-of-focus blur, averaging mask, Gaussian function and motion filter as re@ox@&2 @nd 39 @rlhe
parameters (standard deviation of the Gaussian function) of Gaussian blur was chosen equal to 0.5, and the parametans the
angle in the counterclockwise directiof, O corresponds to a horizontal motion, ad i/2 corresponds to a vertical motion.) of motit
blur set to 0. Other parameters such as the size for averaging blur, the radius for out-of-focus and the depth for motion filter w
equal to the size of blur mask in all the experiments. We first checked that the eighteen Legendre moment invariants of order t
(listed inAppendix B) were exactly equal to those of the original image whatever the blurring mode (the corresponding numerici
are omitted here).

Let us define the vectotg (10, r), 1(1,r 41),*,1(r,0)) andlkr) (I;,1,*, 1) for any odd value of 83. The relative error
between the two images is computed by
i)

~|:ﬂ =
177 -1
Ef, g)=
1170

where ||.|| is Euclidean normlir? space. In the following experiments, moment invariants of order up Yoare used.

The next experiment was carried out to verify the performance of the invariants to both image blur and noise. The original
was blurred by a ® averaging mask and a zero-mean Gaussian noise with standard deviation (STD) from 1 to 50 was add
examples of the blurred image with additive Gaussian noise or salt-and-pepper noise are $tigwa.iflots inFig. 3 compare the
relative error defined by27 ) for Flusses method based on geometric moment invariants (GMI) where eighteen blur invariants ¢
from central moments are uséd @he complex moment invariants (CMI) reporteddfi @nd the present Legendre moment invaria
(LMI) up to order seven by averaging blur with different Gaussian noises. It can be seen from the figure that the proposed ¢
perform better than the GMI and CMI. Then, the cat image was blurred byta tiotion filter, and the same Gaussian noise was ad
The resultsKig. 4) again indicate the better behavior of the proposed method. Similarly, the original cat image was degraded on
by out-of-focus blur (13 pixel-radius of the PSF support) and by adding a salt-and-pepper noise with noise densities varying frot
0.2 (se€Fig. 5) and, on another hand, by Gaussian blur (the PSF was a Gaussian function with 15 pixel-radius of support) with
salt-and-pepper noise (sE@. 6). It can be also seen that a better robustness is achieved whatever the PSF or the additive noises

Classification results

This experiment was carried out to compare the discrimination power of the GMI, CMI and LMI. A set of alphanumeric ch
whose size is 580 pixels Fig. 7) is used for the recognition task. The reason for choosing such a character set is that the ele
subset®, o), 2, Z, 7, T'and 9, q can be easily misclassified due to their similarity. The testing set is generated by adding av
blur, out-of-focus blur, Gaussian blur and motion blur with mask of sizés43%, 58, 68, 7™, 88, 979, 10™0, 1171, 1272 pixels,
respectively. The parametérf Gaussian blur was chosen equal to 1 or 2, and the paraéudtarotion blur set to 0 or 1, forming a s
of 480 images. Note that the original images as well as the blurred images are mapped onto the area of orthogonality, and the a
the blurred images in this experiment is™80. This is followed by adding a white Gaussian noise with different standard devie
salt-and-pepper noise with different noise densities and multiplicative noise with different noise densities. The Euclidean distan
here as the classification measurable 1shows the classification rates using the different moment invariants. One can observe fr
table that the recognition results are quite good for the different methods in the noise-free case. The classification rates remain t
and moderate noise levels but decrease significantly when the noise level goes up. However, if the GMI behaves better than tt
LMI approach is the only one providing a rate close to or overWBatever the noise nature and its level.
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In the next example, eight objects were selected from the Coil-100 image database of Columbia University as an original
(seeFig. 8). The actual size of the blurred images in this experiment iStB80Fig. 9shows some examples of the blurred and corrug
images. The recognition results are displayetiahle 2. They lead to the same conclusions regarding the performance of the resj
moment invariants but the decrease in recognition rate is more significant when the noise level is increased. This is also true fc
The CMI do not perform well in these experiments due to their additional invariance to rotation. The worse numerical stability i<
the combined invariance. The orthogonality of LMI explains the difference in performance with GMI.

We also compared the computational load of the GMI, CMI and LMI in these two experiments. The programs were implen
MATLAB 6.5 on a PC P4 2.4 GHZ, 512M RAM. It can be seen fitables 1land2 that the GMI and the LMI computations are mu
faster than the CMI ones. This is due to the fact that the computation of the complex moments requires a mapping transformatit
time consuming.

Real image analysis

In the last experiment, we tested the performance of the invariants on images degraded by real out-of-focus blur. A sequer
pictures of a comb lying on a black ground was taken by a digital camera (Panasonic DMC-FZ50). The images differ from eac
the level of out-of-focus blur. The picture was captured 8 times from the same position but with different focus depth, manually s
test images are depictedfig. 10. The values of GMI, CMI and LMI were computed for each im3gdle 3depicts the values o/ é,
where édenotes the mean of eight real images &atite standard deviation. From this table, it can be seen that the minimal value
LMl is 3.42 and the maximum value of the LMI is 6.15which are lower than those obtained with GMI (resp. 4,912.43 ) and the
CMI (resp. 7.47 , 7.54 ).

Conclusion AND PERSPECTIVES

In this paper, we have proposed a new approach to derive a set of blur invariants using the orthogonal Legendre mor
relationship between the Legendre moments of the blurred image and those of the original image and the PSF has been este
using this relationship, a set of blur invariants based on Legendre moments has been derived. The experiments conducted st
distinct situations demonstrated that the proposed descriptors are more robust to noise and have better discriminative pow
methods based on geometric or complex moments.

One weak point of these descriptors is that they are only invariant to translation, but not invariant under image scaling an
The derivation of combined invariants to both geometric transformation and blur is currently under investigation.
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Appendix A

The theoretical derivations provided here allow getting the expressions of the Legendre invariants to translation and blur. To pro
3, we need first the following Lemma.

Lemma 2
Letp,i,jandtbe given integers satisfying®@ 7p 11,07 7p |i 11,07t 7p }i }j, let us define
I o—J & f N
Flp i 0= i S z ii |_?.I.T.|C%”dhid*ufﬂmdhsdwm
F=Hj =i ri=lhj =tk

i I £
B m
Glp g 0= i S Z ii: | 1] 1 Jean@ iy ComiGm ics

= = fnH k=i ks
where the coefficients y andd,, ,are respectively given bylQ) and @5), then we havé (p,i,j,t) G(p,i,j,t).
Proof
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By changing the order of summation &l(), we have

. ‘J' Z"“ | 1
Fipij rj:zp Cpm Z:.Z ||L Ilc.ﬁ'ndiidn—udksdm—kt

=meﬂp,mF {Bmi gt

myn
Fipm i jt Sjiiil [ e M BN e P

=0 n=Dk=0s=0

where

Similarly, (A2 ) can be written as

. “ m H
Gilp i J Tﬁ:zp Cpm YE E l.L ;|Cmdudn—ndkzdm—ks

=Zp - CemGAD M, 1, 1)

where
P
Gipmijt Sii | ?lcmdu{in_“dk A ics
E=0 n=0k=0s=0
To prove the Lemma, it suffices to probg (p, m,i,j,t) G,(p,m,i,j,t). Since botlC,, (¢ ’j) andD,, (d, 'j) are lower triangul:

matrices, it is clear tha, ; 0if s>k, andcg ,, 0if n>s. Using these properties and changing the order of summatiév ingnd A6 ),

m(n'
Fipmijt figil N JCenGy i s meica

k=0s=0r=01=0

.o (P
Gip.m i jt)= f Skzi ) ) o Tee RTe MR P N

h=0 s=0 =010

we have

(A7) can be further written as

1 (P
Fipm i j rll=zw ) } } |_ ) ) e B e S
E P
Z'Q Z’ml " |dii n—u m—kth "ji'c.:‘.'c.m

where the conventid®/=? if k > mis used in the above equation.

Since the matriD,, is the inverse of,, , we have*~*, thus, A9 ) becomes

o —
Fipm i j rjl=z”°’ S N P
k =0 Loy
B me A1k

Lettinge,, d,,/u ,we have
Fi{pm i t)= m!ff €1iCk-1iCmke = m!ff Erm-k-1i€LiCkr
k=01=0 k=00

From the above equation, it can easily be obtained
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Flpmit ji= m!leggm—k—Ejemekj = F??!ZZZZEH_H@;{;EU
=F(p mi jt) (makingthechangeofwvariables k=1land!l=k)

Making the change of variable n al in (A7), we can deduce
Fj_':.lr-)’:li r”: L..L I-:IZF:I_':.E'!I FHJ j: !:l I-:l

Combining A12) and A13) and usingA7 ), we obtain

i m Il
Fipm i O=F{pmJti= Z jHZJHI i | 116 snG A o s

ZHZHZWZ T |cmdudn_”dm_“dkE{ma}ﬂngthechangeofvamableJL m—Kk)
=

= ?‘i"! H
Zk&ZrﬁZnﬂﬂzhﬁ k) Ilcsndudn—ndkzdm—ks

=G mijt
The proof of Lemma 2 is now complete.

Proof of Theorem 3

We only need to prove the Theorem for the case wherés odd. We will to do this by mathematical induction. It can be easily verifie
the resultis true fop g 1. Forp g 3, four cases need to be considered:{1)3,q 0); ()¢ 2,9 1);3)¢ 1,9 2;@ ¢ 0,9
3). We provide here the demonstrationdor2 andq 1, other cases can be proved in a similar manner. We deducerinét

L Jai kjm mm
=) J=0 IG J) f__ L I CE‘,mCLndkjdm—k,stdn—Lt
aa o m=k+.5' =l

O<it j<3

?F’Z > Y ZHZ |t 12 1nttia i o+ 1O 13@2 19, ) (o
=0 k=1 netrg -0 ) ks

Using Theorem 2, it can be obtained fra2d ) that
(@ _
Loo=
ifl ig) ifl
Lj,c::l =Lip Lg1=Llos
I:]".l if i
f_.z.:. = 2.:. + ELQ@L% + JELQOLI:O%
Lu—‘ﬂ+ﬂ§LW
if i) 7 (A if) y i)
LA =L+ EJ_L L7+ 215158 - ‘Elo,lf—oo
Substituting the above equations inéd.6 ) and using the relationshi(: 0/ =110"=L{; andi0 1"=10 1"=14; we havd (2,1Y9) 1 (2,1)1).

Suppose that Theorem 3 is valid for all invariants of order gp tp 12, then we get
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Ipqf?—Ip g

a-t m n
ZF Z j=0 f!jig:lzhoz m=il.c+z—,rzn=1-l-t fl pm q,nd;l.:zdm—ksdi dn—!,t
=0

g
Z’ Z‘H m H
0 ek r.=1+e‘

[f] if

=Lpg—Lpg
q q-J gt

- : ‘ﬂEE ‘” ) O N

Zmyz J=0 IIJT L ‘Z_Z ki Cﬁ'mcq;n ki -k st jHin-1r

Lag L0 iti<ptg i'c_i m=k+ Ty AN

Using the propertyo(()’o)2 2, equation (25%an be rewritten as

ig—J 5 t g
. TR
= Zi 1 FYI TS 5 (7 et it

s=01=0 k=i =k +s = jr=Ht

Using @1), we have

P =g 2 q-
—Liﬂqzzt_:oz FOLEEZHZE Z :Z:HJFZ Z ||r\ |Cﬁ'mcq:ndkidm—ksdudn—1t Liﬂ

=] = rn=l+t
£ q—t
- E J=0 L ZL;Z L(TY_Y ‘z Z ||Lll |C}5'i'?lcq.ndﬁ;idm—ksdudn—n
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> o L STIRAp G i s b
in HhRiPHg M sﬁ:z
where
Hr
Alp gl jsti= Si SZI N e andi @i s A1y
k=im=k+sl=j n=d+t
Similarly

”—SZ L‘ﬂ MAS 61 s 1)

i=0 j=0 .s"=0i!‘=|:3|
i<

Substituting A18) and A20) into (A16) and usingA17 ), we obtain
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it can be easily verified fromA@9) thatA (p,q,p,q,0,0) A(s,t,s,t,0,0) (d 0'0)2, thus, we hav® (p,q) B 4p,q). Using thi
relationship, A21) can be rewritten as

.l

ZLOﬂ

Ip,g? -1y g

=) X s 1603 Y SIS TLOAG LSS Y e LRAB G 1 1S D

j TH<pHa

—sp) Yo 16T S LSS T IRAG bi s ARG i is D

Lo Pt

Changing the order of summation and shifting the indices in the above equation, we obtain
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Using A19), we have
}_’3', () I j, I, j, 5 1)
=1 i—J
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whereF (p,i,i ¢s)andG (p,i,i ¢s) are respectlvely given bAl ) and A2).

Using Lemma 2, we have
Tpgijt Jst=0
Thus
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The proof of Theorem 3 has been completed.

Appendix B: LIST OF LEGENDRE MOMENT INVARIANTS UP TO THE SEVENTH ORDER

The expressions given below provide to the interested readers all the elements to replicate our method and to apply it to other ex

® Third order

I3 0= iao
I2 1= ‘T-'El
(1 2)=L,,
10 3)= Lo

® Fifth order
377 3(385 LygLyg
I150)=Lsp— "5 L3o- SLaq

| - e - - = -
4 D=Ly~ 2 Ly~ 2 7Ly L +\2 1Ly Loy

/5 J105 521
13 2)=Ls,— g'jﬁilz— 7 L3o- ﬁ|TL20112+ =5 Lysloy+ LooLso|

_ _ _ 5 . yios . - mPi. - .

12 3= Lo3—3\2 1L21_£L03_L_3u 5 LosLos + 75 LisLya+ Lol
7

10 4=Ly,- Tﬁﬁlz—ﬁ(?ﬁlzloz‘ﬂl'g 1111103

| - W7 - 385 L
10, 5)=Log— V2 Lo - FBhsle

® Seventh order
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Fig. 1
The standard gray-level image of cat with size 128

Fig. 2

Some examples of the blurred image: (a) averaging blur with additive zero-mean Gaussian noi4@; §)Dnotion blur with additi\
zero-mean Gaussian noise, STRO; (c) out-of-focus blur with additive salt-and-pepper noise, dendit@1, (d) Gaussian blur with addit
salt-and-pepper noise, density).02.

(b)
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Fig. 3
Relative error for averaging blur with Gaussian noise showtign2(a). Horizontal axis: standard deviation of noise; vertical axis: re
error between the corrupted image and original image.
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Fig. 4

Relative error for motion blur with Gaussian noise showfRign 2(b). Horizontal axis: standard deviation of noise; vertical axis: re
error between the corrupted image and original image.
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Fig. 5
Relative error for out-of-focus blur with salt-and-pepper noise showsgir2(c). Horizontal axis: noise density; vertical axis: relative ¢

between the corrupted image and original image.
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Fig. 6

Relative error for Gaussian blur adding salt-and-pepper noise shdvig. iB(d). Horizontal axis: noise density; vertical axis: relative ¢
between the corrupted image and original image.

1

10 T T T

Relative Error

=2 L 1 1
0 0.05 0.1 0.15 0.2
Noise Densities

Fig. 7
Original images of alphanumeric characters for invariant character recognition
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Fig. 8
Eight objects selected from the Coil-100 image database of Columbia University

Fig. 9
Some examples of the blurred images corrupted by various types of noise

Fig. 10
The comb. The extent of out-of-focus blur increases from Imagel to Image8.

Imagel Image2 Image3 Image4
Image5 Image6 Image7 Image8
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Table 1

The recognition rates obtained respectively with GMI, CMI and LMI for alphanumeric charaagr fn

GMI CMI LMI
Noise-free 100 100 100
Additive white noise with STD1 92.08 91.88 100
Additive white noise with STD3 85 82.92 97.71
Additive white noise with STD5 77.29 75.42 920
Additive salt-and-pepper noise with noise density.2 91.04 87.08 97.92
Additive salt-and-pepper noise with noise densif4 83.75 83.54 94.79
Additive salt-and-pepper noise with noise densify.8 77.33 75.67 90
Additive multiplicative noise with noise density0.01 95.83 90.63 98.13
Additive multiplicative noise with noise density0.03 95 86.88 97.5
Additive multiplicative noise with noise density0.05 91.25 85.21 95
Computation time 6.86s 27.08s 6.95s
Table 2
The recognition rates of the GMI, CMI and LMI in object recogniti'(:)irg'(g)

GMI CMI LMI
Noise-free 100 100 100
Additive white noise with STD8 78.33 80 96.25
Additive white noise with STD16 68.96 62.71 83.96
Additive white noise with STD25 60.42 50.62 74.79
Additive salt-and-pepper noise with noise densif/01 87.29 76.46 97.08
Additive salt-and-pepper noise with noise densif.02 73.33 64.38 85.83
Additive salt-and-pepper noise with noise densit).03 68.13 56.46 79.37
Additive multiplicative noise with noise density0.1 100 99.17 100
Additive multiplicative noise with noise density0.3 96.25 87.92 99.38
Additive multiplicative noise with noise density0.5 90 81.88 95.63
Computation time 9.42s 44.14s 9.80s
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Table 3
GMI CMI and LMI values of the real imagesll:llg' 10

Imagel Image2 Image3 Image4 Image5 Image6 Image7 Image8 a/é
G (5, 0) 80.328 80.319 0.324 30.322 80.324 &0.329 3.357 80.363 5.07
C(5,0) 35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54
L (5, 0) %66.3 %66.3 8.2 8.5 9.1 %69.9 &1.9 &2.8 3.42
Gl4,1) 80.0622 &0.0658 &.0671 80.0669 &0.0669 80.0674 &.0720 &0.0725 491
C(4,1) 50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5
L (4,1) 1.4 2.4 2.8 2.9 &3.0 &3.0 3.1 &3.2 4.62
G(3,2) §.0190 &.0179 0.0174 &.0165 &.0166 &0.0169 &.0219 80.0222 12.43
C(3,2) 60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47
L3, 2) &2.9 &3.0 3.4 3.4 &3.5 &3.7 4.2 &4.3 3.72
GI(2,3) 80.0262 é.0278 30.0278 30.0274 8.0273 é0.0274 &.0313 &.0316 6.98
CI(2,3) 60.14 59.86 59.13 58.88 58.90 59.07 68.92 69.59 7.47
L (2, 3) 40.6 a1.7 2.1 2.2 2.2 42.2 2.5 2.5 5.16
G(1,4) &.0485 &0.0479 &.0480 &.0468 &.0471 &0.0475 &.0549 &.0554 7.11
C(1,4) 50.20 50.02 49.40 49.18 49.21 49.33 57.61 58.15 7.5
L (1, 4) 8.84 8.79 38.89 38.72 8.79 28.86 .98 &0.06 6.15
G0, 5) &0.223 &0.250 &0.257 30.257 &.257 &.258 3.269 &.269 5.67
CI0, 5) 35.01 34.95 34.51 34.34 34.38 34.44 40.28 40.62 7.54
L (0, 5) 0.6 #5.4 6.8 6.8 6.9 7.1 8.6 8.6 5.49

IEEE Trans Image Process . Author manuscript

Page20/20



