Anterior cingulate error-related activity is modulated by predicted reward.
Céline Amiez, Jean-Paul Joseph, Emmanuel Procyk

To cite this version:

HAL Id: inserm-00132130
https://www.hal.inserm.fr/inserm-00132130
Submitted on 20 Feb 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Anterior cingulate error-related activity is modulated by predicted reward

Céline Amiez 1,2, Jean-Paul Joseph 1 and Emmanuel Procyk 1

1 Inserm U371, Cerveau et Vision, Dept. of Cognitive Neurosciences, IFR19, UCB-Lyon1, 18 av. doyen Lépine, 69500 Bron, France.
2 Montreal Neurological Institute, Department of Neurology & Neurosurgery Neuropsychology Unit - Room 276, McGill University, 3801 rue University, Montreal H3A 2B4, Quebec, Canada.

Correspondence should be addressed to E.P.: Inserm U371, Cerveau et Vision, Institut Fédératif des Neurosciences de Lyon, 18 av. Doyen Lépine, 69500 Bron, France. Tel : 33 4 72 91 34 88 Fax : 33 4 72 91 34 61
email: procyk@lyon.inserm.fr

Abstract
Learning abilities depend on detection and exploitation of errors. In primates, this function involves the anterior cingulate cortex. However, whether anterior cingulate error-related activity indicates occurrence of inappropriate responses or results from other computations is debated. Here we have tested whether reward-related parameters modulate error-related activity of anterior cingulate neurons. Recordings in monkeys performing stimulus-reward associations and preliminary data obtained with a problem-solving task revealed major properties of error-related unit activity: 1) their amplitude varies with the amount of predicted reward or the proximity to reward delivery, 2) they appear both after execution and performance errors, 3) they do not indicate which error occurred nor which correction to make and, 4) importantly, the activity of these neurons also increases following an external signal indicating the necessity to shift response. Hence, we conclude that anterior cingulate ‘error’ activity might represent a negative deviation from a predicted goal, and does not only reflect error detection but signals events interrupting potentially rewarded actions.

Introduction
Adaptations of movements, actions, and complex behaviours are based on detection and calculation of errors used to minimize deviations from desired goals. Various error signals have been described in the brain (Schultz & Dickinson, 2000). One of them seems to represent a prediction error, i.e. the scalar difference between actual and predicted reward (magnitude x probability) and therefore is a potential key element of behavioural adaptation (Schultz, 2002). It reflects the unexpected presence (positive prediction error) or absence (negative prediction error) of rewards and is coded by mesencephalic dopaminergic cell activity (Schultz & Dickinson, 2000). Dopaminergic cells project directly to the frontal cortex but the specific consequence of the prediction error signal on cortical information processing is unclear.

Important insight comes from event-related potential studies in human, which describe a medial frontal error-related negativity (ERN), probably originating in the anterior cingulate cortex (ACC), subsequent to incorrect responses (also called Ne) and error feedback (medial frontal negativity, MFN) (Nieuwenhuis et al., 2004). The origin of the ERN is debated. One influential hypothesis is that it is generated when the consequences of an action are worse than expected (Holroyd & Coles, 2002). Referring to Schultz and colleague’s work, Holroyd and Coles proposed that through the direct mesocortical dopaminergic pathway a negative prediction error signal disinhibits ACC neurons, which thereby produce the cortical error signal (Holroyd & Coles, 2002). Recent data in humans have been in favour of this model (Holroyd et al., 2003), which fits with the increasing consensus about a fundamental role for ACC in relating actions to their values and consequences (Rushworth et al., 2004).

Only few experiments studied cortical error-related signals with non-human primate neurophysiology. Most have explored how ACC error-related activity is related to pure detection of missing rewards (Niki & Watanabe, 1976; Brooks, 1986; Watanabe, 1989; Ito et al., 2003). Here we investigate whether ACC error-related unit activity following feedback signalling errors contains information regarding predicted rewards, and thus supports the prediction error hypothesis. We describe monkey ACC unit activity recorded during a reward expectation task, and preliminary data obtained in one monkey during a trial and error task. These data are issued from two experiments devoted to behavioural adaptation in which error-related signals were not analysed (Procyk et al., 2000; Amiez et al., 2003).

Materials and Methods
Experiment 1. Effect of expected reward size on error-related activity
We studied ACC activity in situations devoid of difficult decision-making, using a stimulus-reward association task detailed elsewhere (Amiez et al., 2003). Rhesus monkeys were seated in a primate chair in front of a touch-screen (Microtouch System) coupled to a TV monitor. Visual presentations, Eye movements (scleral
search coil), and behavioural controls were monitored by a devoted system (CORTEX; NIMH Lab. of Neuropsychology, Bethesda, Md.). Surgical and electrophysiological procedures were carried out according to the 1986 European Communities Council Directive.

When the monkey touched a starting item (located 10 cm below the rewarded targets), a central fixation point appeared. The animal was required to fixate this point. Then, two identical visual target stimuli simultaneously appeared to the right and to the left of the centre of the screen. Two stimuli were used for control purposes in a previous experiment (Amiez et al., 2003). After a 2- to 3-s delay period, and a ‘GO’ signal (targets extinguished for 100 ms and fixation point turned off), the monkey was allowed to look at the targets, to release the starting item and to touch one of the two targets. Touching either one extinguished the stimuli. The animal was then required to maintain contact so as to obtain the reward (fruit juice). If the monkey released the lever or broke central eye fixation (break of fixation) before the GO signal, all stimuli present on the screen were switched off and the trial was aborted. These were the only possible errors. The stimuli were fixed and identical throughout training and recordings: two blue rectangles were each associated with a reward of 1.2 ml, two green ellipses with 0.4 ml and, and two red disks with no-reward (0ml). The quantity of reward delivered was thus predictable as soon as the stimuli appeared. Touching one of the two stimuli was mandatory for the experiment to proceed to other trials. The stimuli were randomly chosen trial by trial within the set of three couples.

Extra-cellular unit activity was recorded with single tungsten electrodes, and analysed (MATOFF Software, NIMH, USA). Key recording sites were marked with electrolytic lesions (20 µA, 20 sec, tip negative) and the locations of electrode penetrations were reconstructed accordingly. Recordings were from the dorsal bank of the anterior cingulate sulcus in or rostral to CMAr, at levels anterior to the genu of the arcuate sulcus.

The activity of cells was label ‘error-related’ (ER) when significant change in firing rate was observed after errors (break of fixation, or erroneous touch) compared to baseline activity (inter trial interval) and to post-reward (within 1000ms after reward delivery) activity. Error-related peak activity was measured in an epoch from 200 to 400 ms after the error event (touch or break of fixation) (Fig. 2). Starting and ending event codes defined each trial. Timings of errors were computed using the Start code as reference time 0.

Times of neuronal discharge (from the beginning of the first burst to the end of the last burst) were determined for each trial by a Poisson spike train analysis (see details in Procyk et al., 2000). Significance level was set at p < 0.01. Relation of the burst to an event (saccade or touch) was determined by comparing the variances of bursts starting times relative to these events.

To compute average normalized error response, the mean activity for each cell in each error epoch was normalized to the maximum (max = 100) and to the minimum (min = 0) means across all error trials. Statistics were carried out with significance set at 0.05 (Statistica; Statsoft).

Experiment 1. Effect of expected reward size on error-related activity.

Out of 372 task-related ACC neurons from two monkeys, forty-four (44) showed reward-related activity modulated by the amount of reward. Thirty-two (32) other cells showed strong activation after execution errors. Seventeen of these cells showed ER activities that varied according to the amount of expected reward (one-way ANOVA for each cell: factor: reward size, df=2, threshold: p<0.05). The PSTH for one of these cells illustrates the change in average ER response as a function of the amount of expected reward (Fig. 1A). Out of seventeen, twelve cells showed higher activity in trial with larger expected reward size. The effect is evident for the population activity, i.e. large ER signals were produced if large rewards were expected (Fig. 1B).

Experiment 2. Effect of distance to reward delivery on error-related activity.

Only one monkey was recorded enough to find ER activity - see discussion. Comparing activity in incorrect and correct trials revealed 15 ER cells (out of 149 task-related neurons) (see definition in methods experiment 1). This activity was not related to the absence of immediate reward since in correct trials no particular firing was observed after the first and second correct touches, although these were not rewarded (Fig. 2A). Moreover, firing rates did not change with reward delivery, or sensory event like target offset (see for instance Correct 3rd touch which as for error touch is accompanied by the offset of all targets - Fig. 2A,D). The ER population activity had an onset latency of 100ms and a peak between 200 and 300ms after an erroneous touch or a break of fixation (Fig. 2C). Remarkably, ER cells also responded after the signal to change the sequence although this signal did not indicate an error per se (Fig. 2A,D). Note that the signal to...
change sequence was never associated with reward delivery. This phenomenon is specifically discussed below.

While individual responses showed large variability, on average ER activity was lower for incorrect first than for incorrect second touches (t-test IC1 vs. IC2 average of all cells, d = 28, t = -2.26, p<0.05). The ER response was also weaker when break of fixation occurred at the beginning of trials rather than at the end of trials. One hypothesis is that the error value changes during the course of a trial. A behavioural analysis revealed that there were more breaks of fixation at the beginning of trials than at the end of trials (Fig. 3A). We concluded that the closer to the end of a trial, the more the animal avoided execution errors. A similar behavioural phenomenon has previously been described during multitrial serial schedules (Shidara & Richmond, 2002).

Looking for relationships between behaviour and error signals, we measured the overall average population activity for break of fixation occurring at different times in trials, and found that the neural responses increased when approaching the end of trial (Fig. 3A). We normalized data to reduce potential biases from high firing rate cells and found again a strong correlation between ER activity and time of occurrence in the trial (R²=0.91, p<0.02 for average data – correlation on all normalized values: p<0.001). A model with simulated random data was also used to test whether the heterogeneity of error numbers along the time scale for different cells, or the normalization procedure would artificially create the effect observed on average activity. Random data, produced with the same proportions than real cases and normalized with the same procedure, revealed a continuous increasing activity with time in only 98 out of 10000 runs of the model (p<0.01). Thus the effect observed with real data is significant. Hence, larger error activity occurred for errors committed when the animal was particularly trying to avoid errors. Finally, to appropriately compare ER activity for incorrect touches and breaks of fixation, we isolated those breaks that appeared late in trials, occurring later than 5.5s after the beginning of a trial, i.e. at times similar to those measured for incorrect touches (on average 6.27s and 8.56s for incorrect first and second touches respectively – see top of Fig. 3A for time dispersions). The average activity shows no difference between incorrect touches and late breaks of fixation (Fig. 2C). Indeed for individual cells, the activity measured for incorrect touches and for break of fixations form one single population correlated with the time from start of trial (Fig. 3B).

Higher ER activity might trigger higher control during subsequent behaviour and thus reduce the occurrence of another break of fixation immediately after. In other words the next break of fixation should occur later in time. Contrary to this hypothesis, the average normalized ER activity recorded in experiment 2 showed no relation with the time between two successive breaks of fixation (separated by less than 60 seconds).

Previous studies showed that ACC ER activity are not influenced by the direction of saccades inducing the errors (Ito et al., 2003). Latencies between the start of ER bursts of activity and the onset of saccades produced around incorrect touches revealed very weak time relationships compared to the latencies with touch times (Analysis for 10 cells with clear bursts; Fig. 2B). We also tested whether ER activity following an incorrect first touch was modulated either by the location of the incorrect target touched or by the location of the target touched in the following trial (correction): one-way ANOVAs showed that for more than 80% of cells the ER activity did not code for target location. Only two cells showed an effect of ‘target location’ and one cell with an effect of ‘next target location’ (at p<0.05).

Discussion

Our experiments show that: 1) ACC error activity depends on reward prediction (size x probability) 2) ACC ER activity is not directly tied to a particular modality of error commission since it appears after execution errors (breaking eye-fixation) and selection errors (after incorrect choice), a characteristic feature of human ERN (Holroyd & Coles, 2002), 3) ER activity does not show clear variation with spatial parameters, which have been observed by previous experiments (Ito et al., 2003), and 4) ER activity is not uniquely linked to error per se or immediate absence of reward, since it also appears after the signal to change sequence. Hence, ACC ‘error’ activity might signals various events interrupting potentially rewarded actions.

Those preliminary results were obtained in separate experiments. Further experiments will be needed to confirm that ER activity of the same neurons can be influenced by both reward size and reward probability, and whether all cells do not discriminate between error types. No error cells were found during recordings in a second animal with the problem-solving task because fewer recordings were performed. Indeed, error cells are found in little proportions: about 10% (15/149) of task related cells for the monkey in experiment 2, and 8.5% (32/372) for the two monkeys in experiment 1. Other authors have reported similar proportions (Ito et al., 2003).

Reward prediction errors should represent the difference in value between delivered and predicted rewards. Experiment 1 shows that, indeed, ACC ER activity codes for such difference in terms of magnitude. Experiment 2 shows how prediction errors evolve during time-extended and sequential goal-directed behaviour. In this experiment, ER activity is not related to the absence of immediate reward but rather to a ‘distance’ to the potential reward expected after three correct touches. These data are consistent with the fact that other ACC neurons encode the successive elements of motor sequences in terms of distance to the final reward delivery or in terms of degree of reward expectancy (Procyk et al., 2000; Procyk & Joseph, 2001; Shidara & Richmond, 2002). They are also consistent with feedback-related ERN data, although this evoked potential putatively originates from signals other than unit activity (Logothetis, 2003). The amplitude of the ERN increases when the probability of a positive outcome is high (Holroyd & Coles, 2002; Holroyd et al., 2003). Similarly, a medial frontal negativity related to positive or negative outcomes was influenced by previous trials, and therefore presumably by the probabilities of success computed from previous outcomes (Geier & Willoughby, 2002; Nieuwenhuis et al., 2004). Note that our data describe activity related to feedback signalling errors and not to internal error detection that would correspond to the ERN/Ne potential described in humans.

ERN activity is generic and does not indicate which error was made or what action to perform after the error (Holroyd & Coles, 2002). It does not distinguish between different types of error (Fig. 2C). Strikingly, these activities also increase after the signal to change sequence, a cue that indicates the necessity to shift response and to enter a new search although the correct response had been discovered and the reward was highly expected. Similar activity has been found in human (Williams et al., 2004). Thus ACC ER activity is not specific to errors and can relate to events, other than erroneous behavioural responses. Unfortunately, our protocol did not vary the value or meaning of the signal to change sequence. Moreover, activity anticipating the signal to change (Fig. 2A,D) suggests that in a different context it could be self-
triggered and that an external feedback might not be necessary. The ER signal might serve to trigger subsequent processes like the updating of motor plans, the neural correlate of which is observed in the frontal lobe (Shima et al., 1996; Shima & Tanji, 1998). However, we failed to find a link between error signal and behaviour adjustments, and data on such a relation is still unclear (Gehring et al., 1993; Rodriguez-Fornells et al., 2002; Hajcak et al., 2003).

The present data and our previous report of ACC activity specific to search periods (Procyk et al., 2000), fit closely with the recent model involving error-signals and the ACC in associating error likelihood to behavioural situations (Brown & Braver, 2005). In this regard, activity related to the signal to change sequence could indicate the beginning of a period with high error likelihood by, as we evoked before, signalling the discrepancy between the low probabilities to be rewarded in the future search and the certainty to be rewarded in repetition.

Our results also support the idea of a link between anterior cingulate activity and midbrain dopaminergic activity that encodes ‘reward prediction errors’, and are modulated during trial and error and by expected values (Fiorillo et al., 2003; Satoh et al., 2003; Tobler et al., 2005). One important extension of our study will be to investigate whether unexpected rewards (leading to positive prediction error) inversely modulate anterior cingulate ‘error’-related neurons as it does for mid-brain dopaminergic cells.

Acknowledgment. We thank H. Kennedy, H. Cooper, and J. Sallet for their insightful comments. Authors are supported by INSERM, CNRS, ACI neurosciences intégratives, and the FYSSEN foundation.

Abbreviations

ER: error-related; ACC: Anterior cingulate cortex

References

Fig. 1. Experiment 1. Error-Related activity is modulated by expected reward size. (A) PSTHs, for one cell, aligned on detection of break fixation, for each amount of expected reward. (B) Average population ER activity measured at the peak epoch (12 cells). Main effect of expected reward size: ANOVA, $F(2.290)=8.66; p<0.0002$.
Fig. 2. Experiment 2. ER activity during the problem-solving task. (A) PSTHs for one ER cell, aligned on different events: all incorrect touches, signal to change sequence, break of fixation, and correct touches. (B) Saccades and start of burst are presented for incorrect touch trials for the cell presented in A. On the right, the plot shows higher variability for latencies between saccade (triangles on rasters) and the start of burst (circle) than for latencies calculated from touch times. F-test on variances revealed 3 cells with no significant differences (at p<0.05). (C) Average normalized activity for the 15 ER cells. The graph shows error activity aligned on incorrect touches (1st and 2nd together – black) and on break of fixation occurring after 5.5s from the beginning of a trial (dashed grey). (D) Activity aligned on reward, first, second, and third correct touches in correct sequences, and on the Signal of sequence change (smoothing of average curve: Lowess method). Average activity was measured at the peak epoch (bold grey line on x axis in ‘C’).
Fig. 3. Experiment 2. Effect of distance to reward on ER activity. (A) Most break fixation errors occurred in the early phases of trials (open squares). Fewer occurred near the end of trials. The average normalized error response for the 15 cells followed the reverse evolution (grey discs). Average baseline (before the error) is represented (black rectangles). On top, the average times with standard errors are represented together with individual values (dots) for all incorrect touches (empty diamond – 7.2±1.3s) and late break fixation errors (grey disc – 6.9±1.2s). White numbered triangles represent the average time of touches during trials (on average 6.27s and 8.56s for incorrect first (1) and second (2) touches respectively). Time period effect: baseline: $F(6;513) = 1.08, p = 0.3707$; error signal: $F(6.513) = 5.45, p = 0.00002$. (B) Two cells which activity measured at the time of either break of fixation or incorrect touches, is plotted against the time of occurrence of the error in the trial. For both the correlation coefficient is statistically significant ($p<0.001$).