Characterising observed mid-topped cloud regimes associated with Southern Ocean shortwave radiation biases - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Journal of Climate Année : 2014

Characterising observed mid-topped cloud regimes associated with Southern Ocean shortwave radiation biases

Résumé

Clouds strongly affect the absorption and reflection of shortwave and longwave radiation in the atmosphere. A key bias in climate models is related to excess absorbed shortwave radiation in the high-latitude Southern Ocean. Model evaluation studies attribute these biases in part to mid-topped clouds, and observations confirm significant mid-topped clouds in the zone of interest. However, it is not yet clear what cloud properties can be attributed to the deficit in modelled cloud. Present approaches using observed cloud regimes do not sufficiently differentiate between potentially distinct types of mid-topped clouds and their meteorological contexts. This study presents a refined set of mid-topped cloud sub-regimes for the high-latitude Southern Ocean, which are distinct in their dynamical and thermodynamic background states. Active satellite observations from CloudSat and CALIPSO are used to study the macrophysical structure and microphysical properties of the new cloud regimes. The sub-grid scale variability of cloud structure and microphysics is quantified within the cloud regimes by identifying representative physical cloud profiles at high resolution from the DARDAR cloud classification mask. The mid-topped cloud sub-regimes distinguish between stratiform clouds under a high inversion and moderate subsidence; an optically-thin cold-air advection cloud regime occurring under weak subsidence and including altostratus over low cloud; optically thick cloud with frequent deep structures under weak ascent and warm mid-level anomalies; and a mid-level convective cloud regime associated with strong ascent and warm advection. The new mid-topped cloud regimes for the high-latitude Southern Ocean will provide a refined tool for model evaluation and the attribution of shortwave radiation biases to distinct cloud processes and properties.
Fichier principal
Vignette du fichier
jcli-d-14-00139_1.pdf (4.26 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01005147 , version 1 (22-11-2020)

Identifiants

Citer

Shannon Mason, Christian Jakob, Alain Protat, Julien Delanoë. Characterising observed mid-topped cloud regimes associated with Southern Ocean shortwave radiation biases. Journal of Climate, 2014, 27 (16), pp.6189-6203. ⟨10.1175/JCLI-D-14-00139.1⟩. ⟨hal-01005147⟩
131 Consultations
27 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More