Skip to Main content Skip to Navigation
Journal articles

SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system

Abstract : Most archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZ CTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.
Document type :
Journal articles
Complete list of metadata
Contributor : Hal Sorbonne Université Gestionnaire <>
Submitted on : Monday, June 7, 2021 - 11:32:38 AM
Last modification on : Tuesday, June 22, 2021 - 3:45:33 AM


Publication funded by an institution


Distributed under a Creative Commons Attribution 4.0 International License



Nika Pende, Adrià Sogues, Daniela Megrian, Anna Sartori-Rupp, Patrick England, et al.. SepF is the FtsZ anchor in archaea, with features of an ancestral cell division system. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.3214. ⟨10.1038/s41467-021-23099-8⟩. ⟨hal-03251652⟩



Record views


Files downloads