A. Abdullahi, S. Amini-nik, and M. Jeschke, Animal models in burn research, Cellular and Molecular Life Sciences, vol.34, issue.3, pp.3241-55, 2009.
DOI : 10.1097/SHK.0b013e3181d8e2a6

J. Ainscough, F. Gerberick, G. Dearman, R. Kimber, and I. , Danger, intracellular signaling, and the orchestration of dendritic cell function in skin sensitization, Journal of Immunotoxicology, vol.469, issue.3, pp.223-257, 2013.
DOI : 10.1038/nature09663

J. Ainscough, F. Gerberick, G. Zahedi-nejad, M. Lopez-castejon, G. Brough et al., Dendritic Cell IL-1?? and IL-1?? Are Polyubiquitinated and Degraded by the Proteasome, Journal of Biological Chemistry, vol.13, issue.51, 2014.
DOI : 10.1006/taap.2002.9442

D. Ansell, K. Holden, and M. Hardman, Animal models of wound repair: Are they cutting it? Exp Dermatol, pp.581-586, 2012.

C. Auxenfans, N. Builles, V. Andre, C. Lequeux, A. Fievet et al., Porous matrix and primary-cell culture: a shared concept for skin and cornea tissue engineering], Pathol Biol
URL : https://hal.archives-ouvertes.fr/hal-00315256

C. Auxenfans, J. Fradette, C. Lequeux, L. Germain, B. Kinikoglu et al., Evolution of three dimensional skin equivalent models reconstructed in vitro by tissue engineering, Eur J Dermatol, 2009.

J. Banchereau and R. Steinman, Dendritic cells and the control of immunity, Nature, vol.7, issue.6673, pp.245-52, 1998.
DOI : 10.1016/S1074-7613(00)80531-2

J. Banchereau, L. Thompson-snipes, S. Zurawski, J. Blanck, Y. Cao et al., The differential production of cytokines by human Langerhans cells and dermal CD14+ DCs controls CTL priming, Blood, vol.119, issue.24, pp.5742-5751, 2012.
DOI : 10.1182/blood-2011-08-371245

J. Banchereau, S. Zurawski, L. Thompson-snipes, J. Blanck, S. Clayton et al., Immunoglobulin-like transcript receptors on human dermal CD14+ dendritic cells act as a CD8-antagonist to control cytotoxic T cell priming, Proceedings of the National Academy of Sciences, vol.331, issue.6153, pp.18885-90, 2012.
DOI : 10.1038/331269a0

C. Bangert, P. Brunner, and G. Stingl, Immune functions of the skin, Clinics in Dermatology, vol.29, issue.4, 2011.
DOI : 10.1016/j.clindermatol.2011.01.006

A. Barbero and H. Frasch, Pig and guinea pig skin as surrogates for human in vitro penetration studies: A quantitative review, Toxicology in Vitro, vol.23, issue.1, 2008.
DOI : 10.1016/j.tiv.2008.10.008

N. Bechetoille, C. Dezutter-dambuyant, O. Damour, V. André, I. Orly et al., Effects of Solar Ultraviolet Radiation on Engineered Human Skin Equivalent Containing Both Langerhans Cells and Dermal Dendritic Cells, Tissue Engineering, vol.13, issue.11, pp.2667-79, 2007.
DOI : 10.1089/ten.2006.0405

URL : https://hal.archives-ouvertes.fr/hal-00315142

S. Bedoui, G. Davey, A. Lew, and W. Heath, Equivalent stimulation of naive and memory CD8 T cells by DNA vaccination: a dendritic cell-dependent process, Immunology and Cell Biology, vol.180, issue.3
DOI : 10.4049/jimmunol.180.9.5789

S. Bedoui, P. Whitney, J. Waithman, L. Eidsmo, L. Wakim et al., Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells, Nature Immunology, vol.173, issue.5, 2009.
DOI : 10.1038/ni1505

V. Bigley, N. Mcgovern, P. Milne, R. Dickinson, S. Pagan et al., J Leukoc Langerin-expressing dendritic cells in human tissues are related to CD1c+ dendritic cells and distinct from Langerhans cells and CD141high XCR1+ dendritic cells Biol, 2015, vol.97, issue.4, pp.627-661, 2014.

A. Black, F. Berthod, L. 'heureux, N. Germain, L. Auger et al., reconstruction of a human capillary-like network in a tissue-engineered skin equivalent, The FASEB Journal, vol.12, issue.13, 1998.
DOI : 10.1002/jcp.1041530222

A. Blauvelt, S. Katz, and M. Udey, Human Langerhans Cells Express E-Cadherin, Journal of Investigative Dermatology, vol.104, issue.2, pp.293-299, 1995.
DOI : 10.1111/1523-1747.ep12612830

URL : https://doi.org/10.1111/1523-1747.ep12612830

W. Boehncke, M. Kock, K. Hardt-weinelt, M. Wolter, and R. Kaufmann, The SCID-hu xenogeneic transplantation model allows screening of anti-psoriatic drugs):104-6. PMID: 10195398, Arch Dermatol Res, vol.291, issue.2-3, 1999.

M. Bogunovic, F. Ginhoux, A. Wagers, M. Loubeau, L. Isola et al., Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men, The Journal of Experimental Medicine, vol.31, issue.12, pp.2627-2665, 2006.
DOI : 10.1038/sj.bmt.1700735

J. Bos and M. Kapsenberg, The immune system of the skin, Ned Tijdschr Geneeskd. Aug, vol.5139, issue.31, pp.1587-91, 1995.

O. Boyman, H. Hefti, C. Conrad, B. Nickoloff, M. Suter et al., Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-??, The Journal of Experimental Medicine, vol.138, issue.5, pp.731-736, 2004.
DOI : 10.1146/annurev.iy.10.040192.002211

O. Boyman, H. Hefti, C. Conrad, B. Nickoloff, M. Suter et al., Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-??, The Journal of Experimental Medicine, vol.138, issue.5, pp.731-737, 2004.
DOI : 10.1146/annurev.iy.10.040192.002211

C. Brand, R. Hunger, N. Yawalkar, H. Gerber, T. Schaffner et al., Characterization of human skin-derived CD1a-positive lymph cells, Archives of Dermatological Research, vol.291, issue.2-3, pp.65-72, 1999.
DOI : 10.1007/s004030050385

J. Brandsma, D. Brownstein, X. W. Longley, and B. , Papilloma formation in human foreskin xenografts after inoculation of human papillomavirus type 16 DNA, J Virol, vol.69, issue.4, pp.2716-2737, 1995.

Á. Buitrago-pérez, M. Hachimi, M. Dueñas, B. Lloveras, A. Santos et al., A Humanized Mouse Model of HPV-Associated Pathology Driven by E7 Expression, PLoS ONE, vol.11, issue.7, 2012.
DOI : 10.1371/journal.pone.0041743.s011

L. Bursch, L. Wang, B. Igyarto, A. Kissenpfennig, B. Malissen et al., dendritic cells, The Journal of Experimental Medicine, vol.204, issue.13, 2007.
DOI : 10.1016/j.jim.2007.05.001

URL : https://hal.archives-ouvertes.fr/hal-00297253

S. Caserta and R. Zamoyska, Memories are made of this: synergy of T cell receptor and cytokine signals in CD4+ central memory cell survival, Trends in Immunology, vol.28, issue.6, 2007.
DOI : 10.1016/j.it.2007.04.006

C. Caux, C. Massacrier, B. Vanbervliet, B. Dubois, B. De-saint-vis et al., CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha, Journal of Experimental Medicine, vol.184, issue.2, pp.21-26, 1997.
DOI : 10.1084/jem.184.2.695

A. Cavani, F. Nasorri, C. Ottaviani, S. Sebastiani, D. Pità et al., Human CD25+ Regulatory T Cells Maintain Immune Tolerance to Nickel in Healthy, Nonallergic Individuals, The Journal of Immunology, vol.171, issue.11, pp.5760-814634084, 2003.
DOI : 10.4049/jimmunol.171.11.5760

A. Cavani, C. Ottaviani, F. Nasorri, S. Sebastiani, and G. Girolomoni, Immunoregulation of hapten and drug induced immune reactions, Current Opinion in Allergy and Clinical Immunology, vol.3, issue.4, 2003.
DOI : 10.1097/00130832-200308000-00002

A. Chang, G. Atzmon, A. Bergman, S. Brugmann, S. Atwood et al., Identification of genes promoting skin youthfulness by genome-wide association study Production of monoclonal antibodies that recognize the extracellular domain of mouse langerin/CD207, J Invest Dermatol. 2014J Immunol Methods, vol.134324, issue.312, pp.651-748, 2007.

T. Christoph, S. Müller-röver, H. Audring, D. Tobin, B. Hermes et al., The human hair follicle immune system: cellular composition and immune privilege, British Journal of Dermatology, vol.65, issue.5, pp.862-73, 2000.
DOI : 10.1002/eji.1830210921

C. Chu, D. Meglio, P. Nestle, and F. , Harnessing dendritic cells in inflammatory skin diseases. Semin Immunol, Feb, vol.23, issue.1, pp.28-4121295490, 2011.

D. Clark, D. Biron, P. Sengupta, and A. Samuel, The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans, Journal of Neuroscience, vol.26, issue.28, pp.7444-5116837592, 2006.
DOI : 10.1523/JNEUROSCI.1137-06.2006

R. Clark, B. Chong, N. Mirchandani, N. Brinster, K. Yamanaka et al., The Vast Majority of CLA+ T Cells Are Resident in Normal Skin, The Journal of Immunology, vol.176, issue.7, 2006.
DOI : 10.4049/jimmunol.176.7.4431

R. Clark, B. Chong, N. Mirchandani, K. Yamanaka, G. Murphy et al., A Novel Method for the Isolation of Skin Resident T Cells from Normal and Diseased Human Skin, Journal of Investigative Dermatology, vol.126, issue.5, pp.1059-70, 2006.
DOI : 10.1038/sj.jid.5700199

B. Combadiere and C. Liard, Transcutaneous and intradermal vaccination Hum Vaccin, Review, vol.7, issue.8, pp.811-838, 2011.
DOI : 10.4161/hv.7.8.16274

URL : http://www.tandfonline.com/doi/pdf/10.4161/hv.7.8.16274?needAccess=true

J. Czernielewski, M. Demarchez, and M. Prunieras, Human Langerhans cells in epidermal cell culture, in vitro skin explants and skin grafts onto ?nude? mice, Archives of Dermatological Research, vol.268, issue.5, pp.288-92, 1984.
DOI : 10.1007/BF00404619

J. Czernielewski, L. Juhlin, S. Shroot, and P. Brun, Langerhans' cells in patients with psoriasis: effect of treatment with PUVA, PUVA bath, etretinate and anthralin, Acta Derm Venereol, vol.65, issue.2, pp.97-101, 1985.

A. Gilliam, I. Kremer, Y. Yoshida, S. Stevens, E. Tootell et al., The Human Hair Follicle: A Reservoir of CD40+ B7-Deficient Langerhans Cells that Repopulate Epidermis After UVB Exposure, Journal of Investigative Dermatology, vol.110, issue.4, pp.422-429, 1998.
DOI : 10.1046/j.1523-1747.1998.00162.x

M. Gingras, M. Beaulieu, V. Gagnon, H. Durham, and F. Berthod, In vitro study of axonal migration and myelination of motor neurons in a three-dimensional tissue-engineered model, Glia, vol.8, issue.3, pp.354-64, 2008.
DOI : 10.1242/jcs.1991.Supplement_15.14

F. Ginhoux, M. Collin, M. Bogunovic, M. Abel, M. Leboeuf et al., dendritic cells survey the skin in the steady state, The Journal of Experimental Medicine, vol.131, issue.13, pp.3133-3179, 2007.
DOI : 10.1016/S0092-8674(00)81032-6

URL : https://hal.archives-ouvertes.fr/hal-00295094

F. Ginhoux, F. Tacke, V. Angeli, M. Bogunovic, M. Loubeau et al., Langerhans cells arise from monocytes in vivo, Nature Immunology, vol.174, issue.3, pp.265-73, 2006.
DOI : 10.1016/0022-1759(94)90012-4

B. Godin and E. Touitou, Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev, pp.1152-61, 2007.

F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-layland, Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev, pp.4-5352, 2011.

E. Gros and N. Novak, Cutaneous dendritic cells in allergic inflammation, Clinical & Experimental Allergy, vol.18, issue.8
DOI : 10.1093/intimm/dxl011

M. Guilliams, K. Crozat, S. Henri, S. Tamoutounour, P. Grenot et al., Skin-draining lymph nodes contain dermis-derived CD103- dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells, Blood, vol.115, issue.10, pp.1958-68, 2010.
DOI : 10.1182/blood-2009-09-245274

URL : https://hal.archives-ouvertes.fr/hal-00502990

S. Hammond, C. Tsonis, K. Sellins, K. Rushlow, T. Scharton-kersten et al., Transcutaneous immunization of domestic animals: opportunities and challenges, Advanced Drug Delivery Reviews, vol.43, issue.1, pp.45-55, 2000.
DOI : 10.1016/S0169-409X(00)00076-4

D. Hanau, M. Fabre, D. Schmitt, J. Stampf, J. Garaud et al., Human Epidermal Langerhans Cells Internalize by Receptor-Mediated Endocytosis T6 (CD1 ???NA1/34???) Surface Antigen. Birbeck Granules Are Involved in the Intracellular Traffic of the T6 Antigen, Journal of Investigative Dermatology, vol.89, issue.2, 1987.
DOI : 10.1111/1523-1747.ep12470555

M. Haniffa, V. Bigley, and C. M. , Human mononuclear phagocyte system reunited, Seminars in Cell & Developmental Biology, vol.41
DOI : 10.1016/j.semcdb.2015.05.004

M. Haniffa, M. Gunawan, and L. Jardine, Human skin dendritic cells in health and disease, Journal of Dermatological Science, vol.77, issue.2
DOI : 10.1016/j.jdermsci.2014.08.012

A. Hayday and R. Tigelaar, Immunoregulation in the tissues by ???? T cells, Nature Reviews Immunology, vol.119, issue.3, pp.233-4212658271, 2003.
DOI : 10.4049/jimmunol.165.5.2643

H. He, P. Wisner, G. Yang, H. Hu, D. Haley et al., Combined IL-21 and low-dose IL-2 therapy induces anti-tumor immunity and long-term curative effects in a murine melanoma tumor model, Journal of Translational Medicine, vol.4, issue.1, p.24, 2006.
DOI : 10.1186/1479-5876-4-24

J. Hemmerling, J. Wegner-kops, V. Stebut, E. Wolff, D. Wagner et al., Human Epidermal Langerhans Cells Replenish Skin Xenografts and Are Depleted by Alloreactive T Cells In Vivo, The Journal of Immunology, vol.187, issue.3, pp.1142-1149, 2011.
DOI : 10.4049/jimmunol.1001491

K. Hirahara, L. Liu, R. Clark, K. Yamanaka, R. Fuhlbrigge et al., The Majority of Human Peripheral Blood CD4+CD25highFoxp3+ Regulatory T Cells Bear Functional Skin-Homing Receptors, The Journal of Immunology, vol.177, issue.7, pp.4488-94, 2006.
DOI : 10.4049/jimmunol.177.7.4488

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac???derived macrophages, The Journal of Experimental Medicine, vol.104, issue.6, pp.1167-81, 2012.
DOI : 10.1038/345442a0

A. Iellem, L. Colantonio, D. Ambrosio, and D. , Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T???cells, European Journal of Immunology, vol.33, issue.6, pp.1488-96, 2003.
DOI : 10.1002/eji.200323658

F. Igney, K. Asadullah, and T. Zollner, Humanised mouse models in drug discovery for skin inflammation, Expert Opinion on Drug Discovery, vol.146, issue.1, pp.53-68, 2006.
DOI : 10.1046/j.1523-1747.2003.12112.x

B. Igyártó and D. Kaplan, Antigen presentation by Langerhans cells, Current Opinion in Immunology, vol.25, issue.1, pp.115-124, 2012.
DOI : 10.1016/j.coi.2012.11.007

B. Igyarto and D. Kaplan, The evolving function of Langerhans cells in adaptive skin immunity, Immunology and Cell Biology, vol.127, issue.4, pp.361-366, 2010.
DOI : 10.1038/sj.jid.5700858

N. Iram, M. Mildner, M. Prior, P. Petzelbauer, C. Fiala et al., Age-related changes in expression and function of Toll-like receptors in human skin.Elbe-Bürger ADevelopment, 2012.

F. Issa, R. Robb, and K. Wood, The where and when of T cell regulation in transplantation, Trends in Immunology, vol.34, issue.3, p.2013
DOI : 10.1016/j.it.2012.11.003

R. Ito, M. Shiina, Y. Saito, Y. Tokuda, Y. Kametani et al., Antigen-Specific Antibody Production of Human B Cells in NOG Mice Reconstituted with the Human Immune System, Curr Top Microbiol Immunol. Review, vol.324, pp.95-107, 2008.
DOI : 10.1007/978-3-540-75647-7_6

H. Iwamura, Y. Saito, M. Sato-hashimoto, H. Ohnishi, Y. Murata et al., Essential roles of SIRP?? in homeostatic regulation of skin dendritic cells, Immunology Letters, vol.135, issue.1-2, 2011.
DOI : 10.1016/j.imlet.2010.10.004

C. Jones, M. Fernandez, K. Herc, L. Bosnjak, M. Miranda-saksena et al., Herpes Simplex Virus Type 2 Induces Rapid Cell Death and Functional Impairment of Murine Dendritic Cells In Vitro, Journal of Virology, vol.77, issue.20, pp.11139-11188, 2003.
DOI : 10.1128/JVI.77.20.11139-11149.2003

Y. Jung, D. Son, S. Kwon, J. Kim, and K. Han, Experimental pig model of clinically relevant wound healing delay by intrinsic factors, International Wound Journal, vol.318, issue.suppl, pp.295-305, 2012.
DOI : 10.1056/NEJM198806093182301

D. Kaplan, M. Jenison, S. Saeland, W. Shlomchik, and M. Shlomchik, Epidermal Langerhans Cell-Deficient Mice Develop Enhanced Contact Hypersensitivity, Immunity, vol.23, issue.6, pp.611-631, 2005.
DOI : 10.1016/j.immuni.2005.10.008

URL : https://doi.org/10.1016/j.immuni.2005.10.008

. Autocrine, paracrine TGFbeta1 is required for the development of epidermal Langerhans cells, J Exp Med, vol.204, issue.11, pp.2545-52, 2007.

M. Kashihara, M. Ueda, Y. Horiguchi, F. Furukawa, M. Hanaoka et al., A Monoclonal Antibody Specifically Reactive to Human Langerhans Cells, Journal of Investigative Dermatology, vol.87, issue.5, pp.602-609, 1986.
DOI : 10.1111/1523-1747.ep12455849

S. Katz, K. Tamaki, and D. Sachs, Epidermal Langerhans cells are derived from cells originating in bone marrow, Nature, vol.1, issue.5736, pp.324-330, 1979.
DOI : 10.1038/jid.1968.18

Y. Kim, D. Woodley, K. Wynn, W. Giomi, and E. Bauer, Recessive Dystrophic Epidermolysis Bullosa Phenotype Is Preserved in Xenografts Using SCID Mice: Development of an Experimental In Vivo Model, Journal of Investigative Dermatology, vol.98, issue.2, 1992.
DOI : 10.1111/1523-1747.ep12555849

A. Kissenpfennig, S. Henri, B. Dubois, C. Laplace-builhé, P. Perrin et al., Dynamics and Function of Langerhans Cells In Vivo, Immunity, vol.22, issue.5, 2005.
DOI : 10.1016/j.immuni.2005.04.004

URL : https://hal.archives-ouvertes.fr/hal-00165695

E. Klechevsky, R. Morita, M. Liu, Y. Cao, S. Coquery et al., Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity, pp.497-510, 2008.

R. Kong and R. Bhargava, Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging. Analyst, pp.2359-66, 2011.

G. Krueger and J. Shelby, Biology of Human Skin Transplanted to the Nude Mouse: I. Response to Agent which Modify Epidermal Proliferation, Journal of Investigative Dermatology, vol.76, issue.6, 1981.
DOI : 10.1111/1523-1747.ep12521231

T. Kupper and R. Fuhlbrigge, Immune surveillance in the skin: mechanisms and clinical consequences, Nature Reviews Immunology, vol.101, issue.Suppl. 1, pp.211-233, 2004.
DOI : 10.1016/S0091-6749(98)70361-6

A. Kwant-mitchell, A. Ashkar, and K. Rosenthal, Mucosal Innate and Adaptive Immune Responses against Herpes Simplex Virus Type 2 in a Humanized Mouse Model, Journal of Virology, vol.83, issue.20, pp.10664-76, 2009.
DOI : 10.1128/JVI.02584-08

A. Kwant-mitchell, E. Pek, K. Rosenthal, and A. Ashkar, Development of Functional Human NK Cells in an Immunodeficient Mouse Model with the Ability to Provide Protection against Tumor Challenge, PLoS ONE, vol.4, issue.12, 2009.
DOI : 10.1371/journal.pone.0008379.s002

A. Lane, G. Scott, and K. Day, Development of Human Fetal Skin Transplanted to the Nude Mouse, Journal of Investigative Dermatology, vol.93, issue.6, pp.787-91, 1989.
DOI : 10.1111/1523-1747.ep12284423

N. Lebonvallet, C. Jeanmaire, L. Danoux, P. Sibille, G. Pauly et al., The evolution and use of skin explants: potential and limitations for dermatological research, Eur J Dermatol Review, vol.20, issue.6, p.20822970, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00946758

N. Legrand, K. Weijer, and H. Spits, Experimental Models to Study Development and Function of the Human Immune System In Vivo, The Journal of Immunology, vol.176, issue.4, 2006.
DOI : 10.4049/jimmunol.176.4.2053

B. León, M. López-bravo, and C. Ardavín, Monocyte-Derived Dendritic Cells Formed at the Infection Site Control the Induction of Protective T Helper 1 Responses against Leishmania, Immunity, vol.26, issue.4, pp.519-3117412618, 2007.
DOI : 10.1016/j.immuni.2007.01.017

C. Liard, S. Munier, A. Joulin-giet, O. Bonduelle, S. Hadam et al., Intradermal Immunization Triggers Epidermal Langerhans Cell Mobilization Required for CD8 T-Cell Immune Responses, Journal of Investigative Dermatology, vol.132, issue.3, 2012.
DOI : 10.1038/jid.2011.346

C. Liard, S. Munier, M. Arias, A. Joulin-giet, O. Bonduelle et al., Targeting of HIV-p24 particle-based vaccine into differential skin layers induces distinct arms of the immune responses, Vaccine, vol.29, issue.37, pp.6379-91, 2011.
DOI : 10.1016/j.vaccine.2011.04.080

E. Ling, T. Smith, X. Nguyen, C. Pridgeon, M. Dallman et al., Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease, The Lancet, vol.363, issue.9409, pp.608-623, 2004.
DOI : 10.1016/S0140-6736(04)15592-X

U. Luckey, M. Maurer, T. Schmidt, N. Lorenz, B. Seebach et al., T cell killing by tolerogenic dendritic cells protects mice from allergy, Journal of Clinical Investigation, vol.121, issue.10, 2011.
DOI : 10.1172/JCI45963DS1

C. Mackay, W. Marston, and L. Dudler, Naive and memory T cells show distinct pathways of lymphocyte recirculation, Journal of Experimental Medicine, vol.171, issue.3, pp.801-818, 1990.
DOI : 10.1084/jem.171.3.801

J. Mahl, B. Vogel, M. Court, M. Kolopp, D. Roman et al., The minipig in dermatotoxicology: Methods and challenges, Experimental and Toxicologic Pathology, vol.57, issue.5-6, 2006.
DOI : 10.1016/j.etp.2006.03.004

B. Malissen, S. Tamoutounour, and S. Henri, The origins and functions of dendritic cells and macrophages in the skin, Nature Reviews Immunology, vol.12, issue.6, pp.417-445
DOI : 10.1016/j.immuni.2013.04.004

F. Marquet, M. Bonneau, F. Pascale, C. Urien, C. Kang et al., Characterization of Dendritic Cells Subpopulations in Skin and Afferent Lymph in the Swine Model, PLoS ONE, vol.33, issue.1, 2011.
DOI : 10.1371/journal.pone.0016320.t001

D. Masopust, V. Vezys, A. Marzo, and L. Lefrançois, Preferential Localization of Effector Memory Cells in Nonlymphoid Tissue, Science, vol.291, issue.5512, pp.2413-2420, 2001.
DOI : 10.1126/science.1058867

R. Mcdermott, H. Bausinger, D. Fricker, D. Spehner, F. Proamer et al., Reproduction of Langerin/CD207 Traffic and Birbeck Granule Formation in a Human Cell Line Model, Journal of Investigative Dermatology, vol.123, issue.1, pp.72-79, 2004.
DOI : 10.1111/j.0022-202X.2004.22728.x

M. Merad, F. Ginhoux, and C. M. , Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells, Nature Reviews Immunology, vol.103, issue.12, 2008.
DOI : 10.1016/S0002-9440(10)65618-0

M. Merad, M. Manz, H. Karsunky, A. Wagers, W. Peters et al., Langerhans cells renew in the skin throughout life under steadystate conditions, Nat Immunol. Epub Nat Immunol, vol.34, issue.121, pp.1135-4192, 2002.

M. Merad, P. Sathe, J. Helft, J. Miller, and A. Mortha, The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting, Annual Review of Immunology, vol.31, issue.1, p.23516985, 2013.
DOI : 10.1146/annurev-immunol-020711-074950

S. Merluzzi, B. Frossi, G. Gri, S. Parusso, C. Tripodo et al., Mast cells enhance proliferation of B lymphocytes and drive their differentiation toward IgA-secreting plasma cells. Blood, Apr, vol.8115, issue.14, pp.2810-2817, 2009.

J. Mestas and C. Hughes, Of Mice and Not Men: Differences between Mouse and Human Immunology, The Journal of Immunology, vol.172, issue.5, pp.2731-2738, 2004.
DOI : 10.4049/jimmunol.172.5.2731

F. Meurens, A. Summerfield, H. Nauwynck, L. Saif, and V. Gerdts, The pig: a model for human infectious diseases, Trends in Microbiology, vol.20, issue.1, p.2012
DOI : 10.1016/j.tim.2011.11.002

W. Meyer, R. Schwarz, and K. Neurand, The Skin of Domestic Mammals as a Model for the Human Skin, with Special Reference to the Domestic Pig1, Curr Probl Dermatol, vol.7, pp.39-52, 1978.
DOI : 10.1159/000401274

M. Michel, L. Heureux, N. Pouliot, R. Xu, W. Auger et al., Characterization of a new tissue-engineered human skin equivalent with hair, In Vitro Cellular & Developmental Biology - Animal, vol.101, issue.6, pp.318-344, 1999.
DOI : 10.1038/jid.1967.11

W. Montagna and Y. Js, The skin of the domestic pig, J Invest Dermatol, vol.42, pp.11-21, 1964.

S. Mueller, T. Gebhardt, F. Carbone, and W. Heath, Memory T Cell Subsets, Migration Patterns, and Tissue Residence, Annual Review of Immunology, vol.31, issue.1, pp.137-61, 2012.
DOI : 10.1146/annurev-immunol-032712-095954

W. Mulholland, E. Arbuthnott, B. Bellhouse, J. Cornhill, J. Austyn et al., Multiphoton High-Resolution 3D Imaging of Langerhans Cells and Keratinocytes in the Mouse Skin Model Adopted for Epidermal Powdered Immunization, Journal of Investigative Dermatology, vol.126, issue.7, pp.1541-1549, 2006.
DOI : 10.1038/sj.jid.5700290

F. Nestle, D. Meglio, P. Qin, J. Nickoloff, and B. , Skin immune sentinels in health and disease, Nature Reviews Immunology, vol.182, issue.10, pp.679-91, 2009.
DOI : 10.4049/jimmunol.165.7.4076

F. Nestle, D. Meglio, P. Qin, J. Nickoloff, and B. , Skin immune sentinels in health and disease, Nature Reviews Immunology, vol.182, issue.10, pp.679-91, 2009.
DOI : 10.4049/jimmunol.165.7.4076

F. Nestle and B. Nickoloff, A fresh morphological and functional at dermal dendritic cells, Journal of Cutaneous Pathology, vol.19, issue.2, pp.385-93, 1995.
DOI : 10.1001/archderm.130.5.593

F. Nestle, X. Zheng, C. Thompson, L. Turka, and B. Nickoloff, Characterization of dermal dendritic cells obtained from normal human skin reveals phenotypic and functionally distinctive subsets, J Immunol. Erratum J Immunol, vol.151152, issue.111, pp.6535-45376, 1993.

A. Nishibu, B. Ward, J. Jester, H. Ploegh, M. Boes et al., Behavioral Responses of Epidermal Langerhans Cells In Situ to Local Pathological Stimuli, Journal of Investigative Dermatology, vol.126, issue.4, pp.787-96, 2006.
DOI : 10.1038/sj.jid.5700107

M. Noordegraaf, V. Flacher, P. Stoitzner, and B. Clausen, Functional Redundancy of Langerhans Cells and Langerin+ Dermal Dendritic Cells in Contact Hypersensitivity, Journal of Investigative Dermatology, vol.130, issue.12, 2010.
DOI : 10.1038/jid.2010.223

M. Ochoa, A. Loncaric, S. Krutzik, T. Becker, and R. Modlin, ???Dermal Dendritic Cells??? Comprise Two Distinct Populations: CD1+ Dendritic Cells and CD209+ Macrophages, Journal of Investigative Dermatology, vol.128, issue.9, pp.2225-2256, 2008.
DOI : 10.1038/jid.2008.56

URL : https://doi.org/10.1038/jid.2008.56

M. Ponec, E. Ghalbzouri, A. Dijkman, R. Kempenaar, J. Van-der-pluijm et al., Endothelial network formed with human dermal microvascular endothelial cells in autologous multicellular skin substitutes, Angiogenesis, vol.1182, issue.4, pp.295-305, 2004.
DOI : 10.1016/0925-4439(93)90135-N

M. Ponec, S. Gibbs, A. Weerheim, J. Kempenaar, A. Mulder et al., Epidermal growth factor and temperature regulate keratinocyte differentiation, Archives of Dermatological Research, vol.289, issue.6, pp.317-343, 1997.
DOI : 10.1007/s004030050198

H. Probst, S. Muth, and H. Schild, Regulation of the tolerogenic function of steady-state DCs, European Journal of Immunology, vol.458, issue.4, pp.927-960, 2014.
DOI : 10.1038/nature07750

M. Pruniéras, C. Delescluse, and M. Regnier, The Culture of Skin a Review of Theories and Experimental Methods, Journal of Investigative Dermatology, vol.67, issue.1, pp.58-65, 1976.
DOI : 10.1111/1523-1747.ep12512483

W. Racki, L. Covassin, M. Brehm, S. Pino, R. Ignotz et al., NOD-scid IL2rgamma(null) mouse model of human skin transplantation and allograft rejection. Trans-plantation, pp.527-536, 2010.

R. Reinhardt, A. Khoruts, R. Merica, T. Zell, and M. Jenkins, Visualizing the generation of memory CD4 T cells in the whole body, Nature, vol.164, issue.6824, p.101, 2001.
DOI : 10.4049/jimmunol.164.9.4551

B. Reizis, Regulation of plasmacytoid dendritic cell development, Current Opinion in Immunology, vol.22, issue.2, pp.206-217, 2010.
DOI : 10.1016/j.coi.2010.01.005

N. Romani, C. Tripp, and P. Stoitzner, Langerhans Cells Come in Waves, Immunity, vol.37, issue.5, p.2012
DOI : 10.1016/j.immuni.2012.10.013

W. Sakeen, D. H. Kashem, and . Kaplan, Antigen- Presenting Cells in the Skin, Muzlifah Haniffa, pp.469-99, 2017.

G. Salguero, A. Daenthanasanmak, C. Münz, A. Raykova, C. Guzmán et al., Dendritic Cell-Mediated Immune Humanization of Mice: Implications for Allogeneic and Xenogeneic Stem Cell Transplantation, The Journal of Immunology, vol.192, issue.10, pp.4636-4683, 2014.
DOI : 10.4049/jimmunol.1302887

F. Sallusto, The role of chemokines and chemokine receptors in T cell priming and Th1/Th2-mediated responses, Haematologica, vol.84, pp.28-31, 1999.

F. Sallusto, D. Lenig, R. Förster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.9, issue.6754, pp.708-712, 1999.
DOI : 10.1016/S1074-7613(00)80597-X

F. Sallusto, D. Lenig, R. Förster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.9, issue.6754, pp.708-1210537110, 1999.
DOI : 10.1016/S1074-7613(00)80597-X

H. Sandig and S. Bulfone-paus, TLR signaling in mast cells: common and unique features, Frontiers in Immunology, vol.3
DOI : 10.3389/fimmu.2012.00185

B. Sather, P. Treuting, N. Perdue, M. Miazgowicz, J. Fontenot et al., regulatory T cells results in tissue-specific inflammatory disease, The Journal of Experimental Medicine, vol.158, issue.6, pp.1335-1382, 2007.
DOI : 10.1084/jem.170.5.1569

K. Seré, J. Baek, J. Ober-blöbaum, G. Müller-newen, F. Tacke et al., Two distinct types of Langerhans cells populate the skin during steady state and inflammation. Immunity, Nov, vol.1637, issue.5, pp.905-921, 2012.

S. Sheu, W. Wang, Y. Fu, S. Lin, Y. Lei et al., The pig as an experimental model for mid-dermal burns research, Burns, vol.40, issue.8, 2014.
DOI : 10.1016/j.burns.2014.04.023

K. Shortman and S. Naik, Steady-state and inflammatory dendritic-cell development, Nature Reviews Immunology, vol.195, issue.1, pp.19-30, 2006.
DOI : 10.1084/jem.20020045

L. Shultz, M. Brehm, J. Garcia-martinez, and D. Greiner, Humanized mice for immune system investigation: progress, promise and challenges, Nature Reviews Immunology, vol.8, issue.11, pp.786-98, 2012.
DOI : 10.1016/j.chom.2010.08.001

I. Silberberg, R. Baer, and S. Rosenthal, The role of Langerhans cells in allergic contact hypersensitivity. A review of findings in man and guinea pigs, J Invest Dermatol, 1976.

G. Simon and H. Maibach, The Pig as an Experimental Animal Model of Percutaneous Permeation in Man: Qualitative and Quantitative Observations ??? An Overview, Skin Pharmacology and Physiology, vol.13, issue.5, pp.229-263, 2000.
DOI : 10.1159/000029928

P. Soballe, K. Montone, K. Satyamoorthy, M. Nesbit, and M. Herlyn, Carcinogenesis in human skin grafted to SCID mice. Cancer Res, Feb, vol.1556, issue.4, pp.757-64, 1996.

A. Soria, D. Boccara, L. Chonco, N. Yahia, M. Dufossée et al., mouse model transplanted with human skin, Experimental Dermatology, vol.90, issue.11, pp.850-852, 2014.
DOI : 10.1097/TP.0b013e3181ff8772

H. Spits and T. Cupedo, Innate Lymphoid Cells: Emerging Insights in Development, Lineage Relationships, and Function, Annual Review of Immunology, vol.30, issue.1, pp.647-75, 2012.
DOI : 10.1146/annurev-immunol-020711-075053

H. Spits, Group 2 innate lymphoid cells show up in the skin, Immunology and Cell Biology, vol.5, issue.6, 2013.
DOI : 10.1126/scitranslmed.3005374

S. Spranger, B. Frankenberger, and D. Schendel, NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo, J Transl Med Feb, vol.2510, pp.30-40, 2012.

R. Steinman and K. Inaba, Stimulation of the primary mixed leukocyte reaction, Crit Rev Immunol. Review, vol.5, issue.4, pp.331-379, 1985.

R. Steinman and M. Nussenzweig, Avoiding horror autotoxicus: The importance of dendritic cells in peripheral T cell tolerance, Proceedings of the National Academy of Sciences, vol.98, issue.16, pp.351-811773639, 2002.
DOI : 10.1073/pnas.151174198

P. Stoitzner, H. Stössel, M. Wankell, S. Hofer, C. Heufler et al., Langerhans cells are strongly reduced in the skin of transgenic mice overexpressing follistatin in the epidermis, European Journal of Cell Biology, vol.84, issue.8, pp.733-774, 2005.
DOI : 10.1016/j.ejcb.2005.04.003

P. Stoitzner, C. Tripp, P. Douillard, S. Saeland, and N. Romani, Migratory Langerhans Cells in Mouse Lymph Nodes in Steady State and Inflammation, Journal of Investigative Dermatology, vol.125, issue.1, 2005.
DOI : 10.1111/j.0022-202X.2005.23757.x

J. Streilein, L. Lonsberry, and P. Bergstresser, Depletion of epidermal langerhans cells and Ia immunogenicity from tape- stripped mouse skin, Journal of Experimental Medicine, vol.155, issue.3, pp.863-71, 1982.
DOI : 10.1084/jem.155.3.863

M. Stubbe, N. Vanderheyde, M. Goldman, and A. Marchant, Antigen-Specific Central Memory CD4+ T Lymphocytes Produce Multiple Cytokines and Proliferate In Vivo in Humans, The Journal of Immunology, vol.177, issue.11, pp.8185-9017114495, 2006.
DOI : 10.4049/jimmunol.177.11.8185

H. Sugiyama, R. Gyulai, E. Toichi, E. Garaczi, S. Shimada et al., Dysfunctional Blood and Target Tissue CD4+CD25high Regulatory T Cells in Psoriasis: Mechanism Underlying Unrestrained Pathogenic Effector T Cell Proliferation, The Journal of Immunology, vol.174, issue.1, pp.164-7315611238, 2005.
DOI : 10.4049/jimmunol.174.1.164

T. Sullivan, W. Eaglstein, S. Davis, and P. Mertz, The pig as a model for human wound healing. Wound Repair Regen, Review, vol.9, issue.2, pp.66-7611350644, 2001.

A. Summerfield, F. Meurens, and M. Ricklin, The immunology of the porcine skin and its value as a model for human skin, Molecular Immunology, vol.66, issue.1, pp.14-21, 2014.
DOI : 10.1016/j.molimm.2014.10.023

S. Suvarna and D. Cotton, Dermal dendrocytes and other factor XIIIA-positive cells, The Journal of Pathology, vol.19, issue.4, pp.251-27908965, 1993.
DOI : 10.1002/path.1711710403

R. Tammi and H. Maibach, Skin Organ Culture: Why?, International Journal of Dermatology, vol.52, issue.3, pp.150-60, 1987.
DOI : 10.1038/jid.1969.20

A. Tang, M. Amagai, L. Granger, J. Stanley, and M. Udey, Adhesion of epidermal Langerhans cells to keratinocytes mediated by E-cadherin, Nature, vol.361, issue.6407, pp.82-87, 1993.
DOI : 10.1038/361082a0

M. Taylor and K. Else, Human Trichuris-specific antibody responses in vaccinated hu-PBL-SCID mice, Parasite Immunology, vol.84, issue.1, pp.1-13, 2002.
DOI : 10.1080/00034983.1990.11812516

M. Teunissen, M. Haniffa, and M. Collin, Insight into the Immunobiology of Human Skin and Functional Specialization of Skin Dendritic Cell Subsets to Innovate Intradermal Vaccination Design, Curr Top Microbiol Immunol, vol.351, pp.25-76, 2012.
DOI : 10.1007/82_2011_169

S. Tfaili, C. Gobinet, G. Josse, J. Angiboust, M. Manfait et al., Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin, The Analyst, vol.1, issue.16, pp.3673-8222754919, 2012.
DOI : 10.1002/jbio.200710004

URL : https://hal.archives-ouvertes.fr/hal-00780646

D. Töröcsik, H. Bárdos, Z. Hatalyák, B. Dezs?, G. Losonczy et al., Detection of factor XIII-A is a valuable tool for distinguishing dendritic cells and tissue macrophages in granuloma annulare and necrobiosis lipoidica, Journal of the European Academy of Dermatology and Venereology, vol.22, issue.Suppl, pp.1087-96, 2013.
DOI : 10.1055/s-2007-999040

D. Töröcsik, H. Bárdos, L. Nagy, and R. Adány, Identification of factor XIII-A as a marker of alternative macrophage activation, Cellular and Molecular Life Sciences, vol.62, issue.18, pp.2132-2141, 2005.
DOI : 10.1007/s00018-005-5242-9

A. Toulon, L. Breton, K. Taylor, M. Tenenhaus, D. Bhavsar et al., A role for human skin???resident T cells in wound healing, The Journal of Experimental Medicine, vol.102, issue.4, 2009.
DOI : 10.1046/j.1523-1747.1998.00265.x

H. Ueno, A. Palucka, and J. Banchereau, The expanding family of dendritic cell subsets, Nature Biotechnology, vol.172, issue.8
DOI : 10.4049/jimmunol.172.5.2731

J. Gilbert, I. Goldberg, and T. Benjamin, Cell Penetration and Trafficking of Polyomavirus, Journal of Virology, vol.77, issue.4, pp.2615-2212552000, 2003.
DOI : 10.1128/JVI.77.4.2615-2622.2003

J. Valladeau and S. Saeland, Cutaneous dendritic cells, Seminars in Immunology, vol.17, issue.4, 2005.
DOI : 10.1016/j.smim.2005.05.009

. Langerin, C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules, Immunity, vol.12, issue.1, pp.71-81, 2000.

M. Vallée, J. Côté, and J. Fradette, Adipose-tissue engineering: Taking advantage of the properties of human adipose-derived stem/stromal cells, Pathologie Biologie, vol.57, issue.4, 2009.
DOI : 10.1016/j.patbio.2008.04.010

E. Van-den-bogaard, G. Tjabringa, I. Joosten, M. Vonk-bergers, E. Van-rijssen et al., Crosstalk between Keratinocytes and T Cells in a 3D Microenvironment: A Model to Study Inflammatory Skin Diseases, Journal of Investigative Dermatology, vol.134, issue.3, pp.719-746, 2013.
DOI : 10.1038/jid.2013.417

G. Vana and J. Meingassner, Morphologic and Immunohistochemical Features of Experimentally Induced Allergic Contact Dermatitis in G??ttingen Minipigs, Veterinary Pathology, vol.145, issue.6, pp.565-8011105946, 2000.
DOI : 10.1016/0165-2427(94)90152-X

M. Vermette, V. Trottier, V. Ménard, L. Saint-pierre, A. Roy et al., Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells, Biomaterials, vol.28, issue.18
DOI : 10.1016/j.biomaterials.2007.02.030

M. Vishwanath, A. Nishibu, S. Saeland, B. Ward, N. Mizumoto et al., Development of Intravital Intermittent Confocal Imaging System for Studying Langerhans Cell Turnover, Journal of Investigative Dermatology, vol.126, issue.11, pp.2452-2459, 2006.
DOI : 10.1038/sj.jid.5700448

Z. Wang, D. Macleod, D. Nardo, and A. , Commensal Bacteria Lipoteichoic Acid Increases Skin Mast Cell Antimicrobial Activity against Vaccinia Viruses, The Journal of Immunology, vol.189, issue.4, p.22772452, 2012.
DOI : 10.4049/jimmunol.1200471

B. Wu, S. Crampton, and C. Hughes, Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration.Immunity, Feb, vol.26, issue.2, pp.227-266, 2007.

H. Yan, I. Juhasz, J. Pilewski, G. Murphy, M. Herlyn et al., Human/severe combined immunodeficient mouse chimeras. An experimental in vivo model system to study the regulation of human endothelial cell-leukocyte adhesion molecules., Journal of Clinical Investigation, vol.91, issue.3, pp.986-996, 1993.
DOI : 10.1172/JCI116320

L. Zaba, J. Fuentes-duculan, R. Steinman, J. Krueger, and M. Lowes, Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages, Journal of Clinical Investigation, vol.117, issue.9, pp.2517-2542, 2007.
DOI : 10.1172/JCI32282DS1

L. Zaba, J. Krueger, and M. Lowes, Resident and ???Inflammatory??? Dendritic Cells in Human Skin, Journal of Investigative Dermatology, vol.129, issue.2, 2009.
DOI : 10.1038/jid.2008.225

K. Gocka, Changes of Langerhans cells during skin ageing, Postepy Dermatol Alergol

R. Boyman, O. Hefti, H. Conrad, C. Nickoloff, B. Suter et al., Spontaneous Development of Psoriasis in a New Animal Model Shows an Essential Role for Resident T Cells and Tumor Necrosis Factor-??, The Journal of Experimental Medicine, vol.138, issue.5, pp.731-736, 2004.
DOI : 10.1146/annurev.iy.10.040192.002211

F. Groeber, M. Holeiter, M. Hampel, S. Hinderer, and K. Schenke-layland, Skin tissue engineering--in vivo and in vitro applications. Adv Drug Deliv Rev, pp.4-5352, 2011.

J. Hemmerling, J. Wegner-kops, V. Stebut, E. Wolff, D. Wagner et al., Human Epidermal Langerhans Cells Replenish Skin Xenografts and Are Depleted by Alloreactive T Cells In Vivo, The Journal of Immunology, vol.187, issue.3, pp.1142-1149, 2011.
DOI : 10.4049/jimmunol.1001491

F. Igney, K. Asadullah, and T. Zollner, Humanised mouse models in drug discovery for skin inflammation, Expert Opinion on Drug Discovery, vol.146, issue.1, 2006.
DOI : 10.1046/j.1523-1747.2003.12112.x

J. Mestas and C. Hughes, Of Mice and Not Men: Differences between Mouse and Human Immunology, The Journal of Immunology, vol.172, issue.5, pp.2731-2738, 2004.
DOI : 10.4049/jimmunol.172.5.2731

W. Racki, L. Covassin, M. Brehm, S. Pino, R. Ignotz et al., NOD-scid IL2rgamma(null) mouse model of human skin transplantation and allograft rejection. Transplantation, pp.527-536, 2010.

A. Soria, D. Boccara, L. Chonco, N. Yahia, M. Dufossée et al., mouse model transplanted with human skin, Experimental Dermatology, vol.90, issue.11, pp.850-852, 2014.
DOI : 10.1097/TP.0b013e3181ff8772

H. Yan, I. Juhasz, J. Pilewski, G. Murphy, M. Herlyn et al., Human/severe combined immunodeficient mouse chimeras. An experimental in vivo model system to study the regulation of human endothelial cell-leukocyte adhesion molecules., Journal of Clinical Investigation, vol.91, issue.3, pp.986-996, 1993.
DOI : 10.1172/JCI116320

F. O. Nestle, D. Meglio, P. Qin, and J. , Skin immune sentinels in health and disease, Nature Reviews Immunology, vol.182, issue.10, pp.679-691, 2009.
DOI : 10.4049/jimmunol.165.7.4076

B. Combadi-ere and C. Liard, Transcutaneous and intradermal vaccination, Human Vaccines, vol.7, issue.8, pp.811-827, 2011.
DOI : 10.4161/hv.7.8.16274

W. J. Racki, L. Covassin, and M. Brehm, NOD-scid IL2r??null Mouse Model of Human Skin Transplantation and Allograft Rejection, Transplantation, vol.89, issue.5, pp.527-536, 2010.
DOI : 10.1097/TP.0b013e3181c90242

J. Hemmerling, J. Wegner-kops, V. Stebut, and E. , Human Epidermal Langerhans Cells Replenish Skin Xenografts and Are Depleted by Alloreactive T Cells In Vivo, The Journal of Immunology, vol.187, issue.3, pp.1142-1149, 2011.
DOI : 10.4049/jimmunol.1001491

A. Soria, D. Boccara, L. Chonco, N. Yahia, M. Dufossee et al., mouse model transplanted with human skin, Experimental Dermatology, vol.90, issue.11, p.850, 2014.
DOI : 10.1097/TP.0b013e3181ff8772

L. D. Shultz, M. A. Brehm, J. V. Garcia-martinez, and D. L. Greiner, Humanized mice for immune system investigation: progress, promise and challenges, Nature Reviews Immunology, vol.8, issue.11, p.786, 2012.
DOI : 10.1016/j.chom.2010.08.001

. Louis, Assistance Publique Hôpitaux de Paris (APHP), 1 avenue Claude Vellefaux

H. Service-de-dermatologie-et-d-'allergologie and . Tenon, Corresponding author: Dr Béhazine Combadière, Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital Phone: +33140779888, Fax: +33140779734, E-mail: behazine.combadiere@upmc.fr Running title: IL-32 induces Langerhans cells activation in human skin Funding sources: This project has received funding from the European Union's Seventh Program for research, technological development and demonstration under grant agreement N o 241904, CUT'HIVAC (Cutaneous and mucosal HIV vaccination) and Agence National de

. Médicale, Equipe FRM 2013 " funding award. The authors are grateful to the Dormeur Foundation, and Vaduz for providing the Cryostat HM550 apparatus

. Herein, IL-32, as a molecular link between stimulated KCs and LCs. We demonstrated that IL- 32 leads to LC activation as shown by morphological changes, detachment from the epidermal layer and the production of chemotactic CXCL10. 6 MATERIALS AND METHODS Human skin explant collection and preparation Human skin samples were obtained from healthy volunteers undergoing plastic surgery for breast, abdomen or face lift (Service de chirurgie plastique, reconstructrice et esthétique-Centre de traitement des brûlés, Saint-Louis hospital and centre de chirurgie plastique et reconstructrice, Tenon hospital, All skin samples were taken after informed consent according to the local Institutional Ethics Committee guidelines (IRB 00003835) and ethical rules stated in the Declaration of Helsinki Principle. Immediately after surgical excision, skin samples were conserved in NaCl and processed rapidly

R. Wagner, Skin administration Skin explant i.d injections were performed using the Mantoux method. For t.c immunization, cyanoacrylate skin surface stripping (CSSS) was performed as previously described (19) Wildtype MVA and recombinant strain MVA expressing GFP protein were provided by

D. Francefcs and . Dutscher, Brumath, France) was then added Cell suspensions were prepared as previously described for Keratinocytes and Langerhans cells sorting using a CD1c dendritic cell isolation Kit (Miltenyi Biotec) (85% and 99.3% purified LCs and KCs, respectively) For in vitro experiments, we used MVA For transfection, polyamines for delivering siRNA into human epidermal cell suspension were used (siPORT TM Amine Transfection Agent; Ambion) according to the manufacturer's instructions, RPMI 1640 during 10 minutes. Fetal Calf Serum TNF-? small interfering (si)RNA IL-32, and scrambled siRNA (1nM, 10 nM, p.32

F. O. Nestle, P. Di-meglio, J. Qin, and B. J. Nickoloff, Skin immune sentinels in health and disease, Nature Reviews Immunology, vol.182, issue.10, 2009.
DOI : 10.4049/jimmunol.165.7.4076

L. Maintz and N. Novak, Modifications of the Innate Immune System in Atopic Dermatitis, Journal of Innate Immunity, vol.64, issue.2, pp.131-141, 2011.
DOI : 10.1111/j.1398-9995.2008.01922.x

N. Romani, B. E. Clausen, and P. Stoitzner, Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin, Immunological Reviews, vol.128, issue.1, pp.120-141, 2010.
DOI : 10.4049/jimmunol.180.6.3647

M. Dieu-nosjean, C. Massacrier, B. Vanbervliet, W. Fridman, and C. Caux, IL-10 Induces CCR6 Expression During Langerhans Cell Development While IL-4 and IFN-?? Suppress It, The Journal of Immunology, vol.167, issue.10, pp.5594-5602, 2001.
DOI : 10.4049/jimmunol.167.10.5594

K. Yoshida, A. Kubo, H. Fujita, M. Yokouchi, K. Ishii et al., Distinct behavior of human Langerhans cells and inflammatory dendritic epidermal cells at tight junctions in patients with atopic dermatitis, Journal of Allergy and Clinical Immunology, vol.134, issue.4, pp.856-864, 2014.
DOI : 10.1016/j.jaci.2014.08.001

K. Miyano, S. Matsushita, T. Tsuchida, and K. Nakamura, Inhibitory effect of a histamine 4 receptor antagonist on CCL17 and CCL22 production by monocyte-derived Langerhans cells in patients with atopic dermatitis, The Journal of Dermatology, vol.161, issue.Suppl 2, pp.1024-1029, 2016.
DOI : 10.1159/000350363

J. M. Richmond, D. S. Bangari, K. I. Essien, S. D. Currimbhoy, J. R. Groom et al., Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease, Journal of Investigative Dermatology, vol.137, issue.2, 2016.
DOI : 10.1016/j.jid.2016.09.016

P. Indermitte, M. Schmid-grendelmeier, G. Akdis, C. A. Menz, and . Akdis, IL-32 is expressed by human primary keratinocytes and modulates keratinocyte apoptosis in atopic dermatitis, J. Allergy Clin. Immunol, vol.125, pp.858-865, 2010.

. Navarro, TNF-? enhances phenotypic and functional maturation of human epidermal Langerhans cells and induces IL-12 p40 and IP-10/CXCL-10 production, FEBS Lett, vol.579, pp.3660-3668, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00163321

M. Peiser, J. Koeck, C. J. Kirschning, B. Wittig, and R. Wanner, T cell stimulatory capacity, Journal of Leukocyte Biology, vol.33, issue.5, pp.1118-1127, 2008.
DOI : 10.1002/eji.200323954

A. Gehring, M. Bertoletti, F. Collin, and . Ginhoux, Human Tissues Contain CD141hi Cross-Presenting Dendritic Cells with Functional Homology to Mouse CD103+ Nonlymphoid Dendritic Cells, Immunity, vol.37, pp.60-73, 2012.

C. Liard, S. Munier, A. Joulin-giet, O. Bonduelle, S. Hadam et al., Intradermal Immunization Triggers Epidermal Langerhans Cell Mobilization Required for CD8 T-Cell Immune Responses, Journal of Investigative Dermatology, vol.132, issue.3, pp.615-625, 2012.
DOI : 10.1038/jid.2011.346

S. Aiba, S. Nakagawa, H. Ozawa, K. Miyake, H. Yagita et al., Upregulation of alpha 4 integrin on activated Langerhans cells-analysis of adhesion molecules on Langerhans cells relating to their migration from skin to draining lymph nodes, pdf. J. Invest, 1993.

M. C. Germain and . Udey, Cancer-associated epithelial cell adhesion molecule (EpCAM, 2012.

U. Sterry and . Blume-peytavi, 40 nm, but not 750 or 1,500 nm, Nanoparticles Enter Epidermal CD1a+ Cells after Transcutaneous Application on Human Skin, J. Invest. Dermatol, vol.126, pp.1316-1322, 2006.

B. Mahe, A. Vogt, C. Liard, D. Duffy, V. Abadie et al., Blume-Peytavi, and others. 2009. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice, J. Invest

. Combadière, Critical role for skin-derived migratory DCs and Langerhans cells in T FH and GC responses after intradermal immunization, J. Invest. Dermatol, 2017.

A. Soria, D. Boccara, L. Chonco, N. Yahia, M. Dufossée et al., mouse model transplanted with human skin, Experimental Dermatology, vol.90, issue.11, pp.850-852, 2014.
DOI : 10.1097/TP.0b013e3181ff8772

. Wittmann, Human Primary Keratinocytes Show Restricted Ability to Up-regulate Suppressor of Cytokine Signaling (SOCS)3 Protein Compared with Autologous Macrophages, J, 2012.

A. Tschachler and . Elbe-burger, Age-related changes in expression and function of Tolllike receptors in human skin, Development, vol.139, pp.4210-4219, 2012.

A. Shemer, E. Guttman-yassky, and J. G. Krueger, Biomarkers of alopecia areata disease activity and response to corticosteroid treatment, Exp. Dermatol, vol.25, pp.282-286, 2016.

M. G. Netea, T. Azam, E. C. Lewis, L. A. Joosten, M. Wang et al., Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase- 1/IL-18/Interferon-??-Dependent Mechanism, Mycobacterium tuberculosis Induces Interleukin-32 Production through a Caspase-1/IL-18/Interferon-?- Dependent Mechanism, p.277, 2006.
DOI : 10.1371/journal.pmed.0030277.t001

H. England, H. R. Summersgill, M. E. Edye, N. J. Rothwell, and D. Brough, Release of Interleukin-1?? or Interleukin-1?? Depends on Mechanism of Cell Death, Journal of Biological Chemistry, vol.266, issue.23, pp.15942-15950, 2014.
DOI : 10.1182/blood-2011-08-375303

L. S. Miller, Toll-Like Receptors in Skin, Advances in Dermatology, vol.24, pp.71-87, 2008.
DOI : 10.1016/j.yadr.2008.09.004

S. Didovic, F. V. Opitz, B. Holzmann, I. Förster, and H. Weighardt, Requirement of MyD88 signaling in keratinocytes for Langerhans cell migration and initiation of atopic dermatitis-like symptoms in mice, European Journal of Immunology, vol.37, issue.4, pp.981-992, 2016.
DOI : 10.1111/j.1365-2222.2006.02621.x

L. A. Joosten, B. Heinhuis, M. G. Netea, and C. A. Dinarello, Novel insights into the biology of interleukin-32, Cellular and Molecular Life Sciences, vol.9, issue.20, pp.3883-3892, 2013.
DOI : 10.1186/1471-2105-9-40

. Joosten, Inflammation-dependent secretion and splicing of IL-32? in rheumatoid arthritis, 2011.

Y. Qu, J. L. Taylor, A. Bose, and W. J. Storkus, Therapeutic effectiveness of intratumorally delivered dendritic cells engineered to express the pro-inflammatory cytokine, interleukin (IL)-32, Cancer Gene Therapy, vol.179, issue.9, pp.663-673, 2011.
DOI : 10.1084/jem.194.6.823

T. Haase, The Immunosuppressive Role of IL-32 in Lymphatic Tissue during HIV-1, 2011.

D. Yoon, A proinflammatory cytokine interleukin-32? promotes the production of an anti-inflammatory cytokine interleukin-10, Immunology, vol.128, pp.532-540, 2009.

. Dinarello, 20 FIGURE LEGENDS Figure 1: MVA-infected KCs producing IL-32 induces rapid activation of Langerhans cells. (a) KCs and LCs were separately sorted KCs were treated with MVA (1 pfu/cells) or medium as indicated for 3 h and washed before co-cultured with LCs for an additional 24 h. The percentages of CXCL10 pos , CD80 pos and HLA-DR pos LCs (vivid neg CD45 pos CD1c pos cells) were measured by flow cytometry (mean±SEM, n=5 donors) Paired rank test CD1a (green) and DAPI nuclear stain (blue) immunofluorescent staining of epidermal cells (scale bars=10 ?m, n=5 donors). (c) Percentage of IL-32 pos KCs (vivid neg CD45 neg ) at 4 h post-MVA infection of epidermal cells analyzed by flow cytometry (mean±SEM, n=5) Paired rank test, Endogenous IL-32 Controls Cytokine and HIV-1 Production <0.05. (b) IL-32 (red) <0.05. (d) Fold change in percentage of CXCL10 pos LCs (vivid neg CD45 pos CD1c pos cells) at 24 h post-MVA infection of epidermal cells treated with siRNA (10 nM) or scrambled control, pp.557-565, 2008.