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Résumé substantiel

1 Introduction

En 2012, l'Organisation Mondiale de la Santé a reconnu la démence comme une prio-

rité de santé publique, sensibilisant sur ses coûts sanitaires, sociaux et économiques. La

démence est une maladie chronique caractérisée par un long déclin cognitif, plus marqué

que le déclin cognitif normal, avec des conséquences dans la vie quotidienne. En 2015,

Prince et al. [2015] ont estimé le nombre de cas de démences à 46.8 millions dans le

monde, avec 9.9 millions de nouveaux cas chaque année. La prévalence augmente avec

l'âge, atteignant 4.6% en Europe Centrale et 8.7% en Afrique du nord chez les plus de

60 ans. Sous l'hypothèse que l'incidence de la démence reste constante et qu'aucune in-

tervention de santé publique n'est mise en place, Wanneveich et al. [2016] ont prédit une

augmentation de 47.2% des cas de démences entre 2015 et 2030 en France.

Plusieurs facteurs de risque de la démence ont été mis en évidence dans la littérature

tels que l'âge [Letenneur et al., 1994], un faible niveau d'étude [Fabrigoule et al., 1995],

le sexe féminin [Fratiglioni et al., 2004], ou l'allèle E4 du gène Apolipoprotéine E [Farrer

et al., 1997]. L'identi�cation de tels facteurs de risque est un enjeu majeur de la recherche

actuelle, a�n de mieux comprendre les mécanismes d'action de la démence.

Le diagnostic complet de démence comprend une évaluation des fonctions cognitives,

de l'autonomie, un entretien clinique, l'entretien d'un proche, un examen d'imagerie céré-

brale et un test sanguin. L'évaluation cognitive constitue une phase clé de cette procédure

et est e�ectuée via des tests psychométriques, tels que le test global Mini Mental State

Examination (MMSE) [Folstein et al., 1975] ou le test Isaacs qui cible la �uence verbale

[Isaacs and Kennie, 1973]. Ces tests sont rapides et peu coûteux, avantageux pour la dé-

tection de la démence. Cependant, il n'y a aucun consensus concernant le test le plus

discriminant pour le diagnostic de démence.
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RÉSUMÉ SUBSTANTIEL

Plusieurs traitements ont été proposés mais aucun ne s'est montré e�cace dans l'amé-

lioration de l'état cognitif et clinique des patients [Birks, 2006; Courtney et al., 2004],

probablement parce qu'ils sont administrés trop tard dans le processus de dégradation

cognitive. Cibler la population à risque permettrait alors de mieux prendre en charge les

personnes atteintes de démence en leur administrant un traitement ou en leur proposant

des interventions non pharmaceutiques plus tôt. Il est également intéressant de savoir si

seulement certains sous-groupes de la population sont réceptifs à un traitement [Vellas

et al., 2012].

A�n d'étudier le déclin cognitif pré-démence, des outils statistiques sont requis pour

l'analyse de données longitudinales, tels que des tests psychométriques ou marqueurs

biologiques répétés dans le temps, et des temps d'événement, tel que le temps de survenue

de la maladie. Le déclin cognitif est un facteur de risque de la démence d'une part, et la

démence interrompt le suivi longitudinal d'autre part, induisant des données manquantes

informatives du marqueur. Les modèles conjoints permettent de prendre en compte la

corrélation entre le temps d'événement et les mesures répétées, de manière à décrire le

déclin cognitif ou à prédire le risque de démence sans biais [Tsiatis and Davidian, 2004;

Proust-Lima et al., 2014].

Appliquée à l'étude de la démence, cette approche soulève plusieurs challenges mé-

thodologiques : premièrement, la prévalence de la démence est plus importante chez les

personnes âgées, qui sont aussi à plus fort risque de décès. Le décès et la démence sont

donc des événements compétitifs. Plus exactement, on parle de risques semi-compétitifs

car les individus déments peuvent mourir mais la démence ne peut pas survenir après le

décès. De plus, ces deux événements ont des facteurs de risque communs, tels que l'âge ou

le sexe. Il est donc primordial de traiter le risque compétitif de décès dans nos analyses

a�n d'obtenir des résultats non biaisés. Deuxièmement, dans les études de cohortes, le

temps de survenue de la démence est censuré par intervalle : les individus ne peuvent être

diagnostiqués déments qu'à l'occasion des visites, parfois espacées de plusieurs années.

L'âge exact en début de démence n'est donc pas connu et surtout, des individus déments

peuvent décéder avant la visite de diagnostic. En�n, l'hypothèse d'une population homo-

gène est peu probable, au vu de la forte hétérogénéité des déclins cognitifs observée dans

la population globale, chez les déments et chez les non déments [Schaie, 1988; Christensen
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et al., 1999; Dartigues et al., 1996; Wilson et al., 2002]. Les modèles conjoints développés

jusqu'ici ne prennent pas en compte à la fois l'hétérogénéité des déclins cognitifs, le risque

compétitif de décès et la censure par intervalle [Rizopoulos, 2011; Dantan et al., 2011;

Proust-Lima et al., 2016].

Les modèles conjoints o�rent de nombreuses possibilités pour mieux capturer la com-

plexité relative à l'analyse de données longitudinales corrélées à des temps d'événement.

Cependant, dans le contexte de données tronquées par le décès, l'interprétation des mo-

dèles conjoints (ainsi que des modèles mixtes) estimés par maximum de vraisemblance, est

débattue. Lorsque le décès est la seule cause d'attrition, cette méthode d'estimation est

équivalente à l'imputation des données manquantes dues au décès. Ainsi, Kurland et al.

[2009] considèrent que les estimateurs du maximum de vraisemblance ciblent l'évolution

du marqueur dans la population immortelle, irréaliste, qui aurait été observée avec un

risque de décès nul et sans sortie d'étude. L'approche partiellement conditionnelle, qui

regroupe les modèles marginaux estimés par Equations d'Estimation Généralisées (GEE),

cible quant à elle l'évolution du marqueur dans la population dynamique des survivants.

Par ailleurs, l'interprétation des estimateurs de ces deux approches est également dif-

férente sur des données complètes. Les estimateurs du maximum de vraisemblance des

modèles mixtes sont dit 'spéci�ques au sujet', car ils représentent l'évolution du mar-

queur conditionnellement aux e�ets aléatoires, qui peuvent être interprétés comme des

covariables individuelles non mesurées. Les estimateurs GEE des modèles marginaux sont

moyennés sur la population et représentent l'évolution du marqueur, moyennée sur tous

les individus. L'utilisation de l'une ou l'autre de ces deux méthodes dépend de l'objectif

de l'étude. De notre point de vue, les estimateurs spéci�ques au sujet sont plus pertinents

dans l'étude de l'histoire naturelle de la démence, où l'on cherche à caractériser le chan-

gement cognitif individuel plutôt que le changement cognitif moyen dans la population.

L'objectif de ce travail est de développer des outils statistiques pour étudier le déclin

cognitif général ou pré-démence, en prenant en compte le décès. Dans la première partie,

nous proposons un modèle conjoint à classes latentes pour données longitudinales corrélées

à un événement censuré par intervalle, en compétition avec le décès. Appliqué à la cohorte

Paquid, ce modèle permet d'identi�er des pro�ls de déclin cognitif associés à des risques
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di�érents de démence et de décès. En utilisant cette méthodologie, nous comparons dans

une deuxième partie des modèles pronostiques dynamiques pour la démence, traitant la

censure par intervalle, et basés sur des mesures répétées de marqueurs cognitifs. Dans la

troisième partie, nous conduisons une étude comparative a�n de clari�er l'interprétation

des estimateurs du maximum de vraisemblance des modèles mixtes et conjoints et des

estimateurs GEE des modèles marginaux, dans le contexte de données longitudinales

incomplètes et tronquées par le décès.

2 Modèles conjoints à classes latentes pour données

longitudinales et événement censuré par intervalle en

compétition avec le décès

Les modèles conjoints pour données longitudinales et temps d'événement se répar-

tissent en deux catégories : les modèles conjoints à e�ets aléatoires partagés [Wulfsohn

and Tsiatis, 1997], qui modélisent la relation entre les deux variables via des e�ets aléa-

toires communs, continus, et les modèles conjoints à classes latentes [Lin et al., 2002], où

la relation est capturée par des classes latentes, représentées par une variable d'apparte-

nance catégorielle. Dans le cadre de l'étude de la démence, le dernier modèle semble plus

approprié car il permet de prendre en compte l'hétérogénéité des déclins cognitifs. L'ob-

jectif de ce travail est de développer un modèle conjoint à classes latentes pour données

longitudinales corrélées à un temps d'événement censuré par intervalle, en compétition

avec le décès.

Modèle

Le modèle que nous proposons repose sur l'hypothèse d'une population hétérogène, com-

posée de G sous-groupes homogènes non connus a priori, appelés classes latentes. La

probabilité que l'individu i, i = 1, ..., N appartienne à la classe g, g = 1, ..., G, est no-

tée πig = P (ci = g) et est dé�nie par un modèle multinomial logistique. La variable

d'appartenance ci est égale à g si le sujet i appartient à la classe g.

Au temps tij, j = 1, ..., ni, la valeur observée du marqueur Yij est la somme du pro-

cessus latent Λi(tij), qui représente le vrai niveau cognitif, et d'une erreur de mesure εij.
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Conditionnellement à la classe g, la trajectoire du marqueur est modélisée par un modèle

mixte :

Yij = Λi(tij) + εij = f1(Xij; βg) + f2(Zij; βg) uig + εij, avec εij ∼ N (0, σ2
e) (1)

où Xij est un vecteur de covariables pour le sujet i au temps tij, βg est le vecteur de

paramètres de régression spéci�ques aux classes et Zij est un sous-vecteur de Xij. Sa-

chant la classe g, le vecteur des e�ets aléatoires uig suit la loi N (0, σ2
gB) avec σ2

G = 1

et B une matrice dé�nie positive. Les e�ets aléatoires sont indépendants des erreurs de

mesure et ces dernières sont indépendantes entre elles. Les fonctions f1 et f2 peuvent

inclure des fonctions non linéaires du temps, des covariables et des paramètres de ré-

gression. Une transformation non linéaire peut être utilisée pour lier les observations du

marqueur, pas forcément gaussiennes, au processus latent gaussien. En e�et, certains tests

psychométriques ont des propriétés métrologiques particulières comme des e�ets plancher

ou plafond.

Simultanément, les intensités de transition vers la démence et le décès sont modélisées

par un modèle Sain-Dément-Décédé spéci�que à la classe g. Sachant la classe g, l'intensité

de transition de l'état k à l'état l dépend de l'âge t et est modélisé par un modèle à risques

proportionnels :

αklig(t) = α0
klg(t) exp(W>

kli γklg), (2)

où α0
klg est l'intensité de transition de base, Wkli est un vecteur de covariables indépen-

dantes du temps et γklg sont des paramètres spéci�ques aux classes. Dans une version

semi-markovienne, l'intensité de transition des déments vers le décès dépend du temps

passé en démence et non pas de l'âge. L'hypothèse centrale de ce modèle porte sur l'in-

dépendance des mesures répétées du marqueur et des temps d'événement, conditionnelle-

ment à la classe latente.

La censure par intervalle du temps de démence est ensuite prise en compte dans le

calcul de la vraisemblance. Pour chaque individu vu sans démence à tij et mort à Ti > tij,

on considère deux chemins possibles : soit il est resté sans démence jusqu'au décès, soit

il est devenu dément entre tij et Ti. La probabilité de développer une démence augmente

avec la longueur de l'intervalle de censure ]tij, Ti].

La log-vraisemblance, qui a une forme analytique grâce à l'hypothèse d'indépendance,

21



RÉSUMÉ SUBSTANTIEL

est maximisée par l'algorithme de Marquardt [Marquardt, 1963] et les variances des es-

timateurs sont obtenues par inversion de la matrice Hessienne. A�n de choisir le nombre

optimal de classes latentes, G, le modèle doit être estimé avec di�érentes valeurs de G.

Un des critères de sélection le plus utilisé est le BIC [Schwarz, 1978]. En�n, il est conseillé

d'estimer le modèle à partir de valeurs initiales di�érentes pour éviter les maxima locaux

[Hipp and Bauer, 2006], caractéristiques des modèles de mélange [Redner and Walker,

1984].

Une fois le modèle estimé, les probabilités d'appartenance aux classes a posteriori π̂ig,

sachant les observations du marqueur et les temps d'événement, permettent d'attribuer

une classe à chaque individu puis de quanti�er la discrimination du modèle. Le modèle

sera d'autant plus discriminant que la probabilité moyenne π̂ig des individus alloués à la

classe g est proche de 1.

Nous proposons une méthode d'évaluation des prédictions longitudinales conditionnel-

lement ou marginalement aux classes et conditionnellement ou marginalement aux e�ets

aléatoires, à partir des prédictions du marqueur conditionnelles aux classes latentes et

de la moyenne des observations pondérée par les probabilités d'appartenance π̂ig. L'éva-

luation des prédictions du modèle Sain-Dément-Décédé peut se faire conditionnellement

aux classes, en comparant les incidences cumulées spéci�ques aux classes prédites aux

incidences cumulées estimées par le modèle Sain-Dément-Décédé proposé par Joly et al.

[2002], qui traite la censure par intervalle et où les contributions individuelles à la vrai-

semblance sont pondérées par les probabilités a posteriori d'appartenance aux classes π̂ig.

Application

Le modèle conjoint à classes latentes présenté ci-dessus est appliqué à la cohorte Paquid

[Letenneur et al., 1994], mise en place pour étudier les déclins cognitifs normal et patho-

logique à partir de tests psychométriques, chez les individus de Gironde et Dordogne âgés

de plus de 65 ans. L'objectif est de distinguer des pro�ls de déclins cognitifs associés à

des risques de démence et de décès di�érents.

L'échantillon sélectionné, comprenant 3 525 sujets, contient les individus sans démence

à leur entrée dans la cohorte, qui ont e�ectué au moins une fois le test d'Isaacs de �uence

verbale avant leur visite de diagnostic. Le suivi total est de 25 ans, au cours duquel les
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sujets ont été vus tous les 2 ou 3 ans.

Nous avons comparé plusieurs modèles conjoints avec di�érentes spéci�cations : tout

d'abord, le modèle markovien avec changement de pente spéci�que à la classe a un BIC

plus faible que le modèle markovien avec tendance quadratique, quel que soit le nombre

de classes latentes (G=1,...,5). De plus, la comparaison avec un modèle semi-markovien

avec changement de pente favorise l'hypothèse markovienne. L'intensité de transition des

déments vers le décès semble donc plus dépendre de l'âge que du temps passé en démence.

Nous avons également estimé un modèle semi-markovien, où l'intensité de transition des

déments vers le décès dépend du temps passé en démence et de l'âge courant, avec chan-

gement de pente. Le BIC de ce dernier modèle est plus élevé que le modèle markovien,

quelque soit le nombre de classes latentes.

Les estimations du modèle conjoint markovien à changement de pente, à 4 classes la-

tentes, permettent de représenter les pro�ls d'évolution cognitive dans chacune des classes

ainsi que leurs intensités de transition vers la démence et vers le décès associées. Les

courbes obtenues attestent une fois de plus la forte hétérogénéité dans la population.

Nous avons également cherché à représenter des trajectoires cognitives typiques, pour des

individus ayant développé la maladie ou étant décédé à un âge donné. Il est alors possible

de di�érencier le déclin cognitif pré-démence du déclin cognitif pré-décés (appelé déclin

terminal) sans démence. Ce déclin terminal a été décrit dans la littérature [Kleemeier,

1962; Siegler, 1975; Wilson et al., 2003], mais sans le distinguer du déclin pré-démence.

Au vu des résultats, le déclin avant la démence est plus marqué que le déclin avant le

décès sans démence.

3 Prédictions dynamiques pour la démence

Le modèle conjoint présenté a ensuite été utilisé pour prédire de manière dynamique

le risque de démence depuis l'entrée dans la cohorte, à partir de mesures répétées d'un ou

plusieurs tests cognitifs.

L'échantillon d'apprentissage, issu de la cohorte Paquid, inclut 2 490 sujets sans dé-

mence à leur entrée dans la cohorte, ayant e�ectué au moins une fois le test global MMSE,

le test de �uence verbale d'Isaacs et le test de rétention visuelle de Benton, avant leur
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visite de diagnostic. Trois modèles conjoints markoviens ont été estimés sur cet échan-

tillon : un modèle basé sur le MMSE, un modèle basé sur l'Isaacs et un dernier basé sur

les deux tests. Pour chacun des modèles, on fait l'hypothèse que l'évolution cognitive a

une tendance quadratique, avec des e�ets communs des covariables sur les classes, mais

des e�ets spéci�ques aux classes sur les intensités de transition.

Une fois estimés, ces modèles ont été validés sur un échantillon issu de la cohorte

Trois-Cités [3C Study Group, 2003], incluant 3 880 sujets de Bordeaux et Montpellier,

sans démence à leur entrée dans la cohorte, ayant e�ectué au moins une fois le MMSE

et l'Isaacs avant leur visite de diagnostic. A di�érents temps landmark, nous calculons

chez les individus sans démence la probabilité a posteriori de développer une démence

dans les 5 prochaines années, sachant les observations du marqueur. La qualité prédictive

des trois modèles est évaluée via l'extension de l'aire sous la courbe (Area Under the

Curve, AUC) et du Score de Brier proposés par Blanche et al. [2015], pour un marqueur

longitudinal et un événement dépendant du temps, censuré à droite avec risque compétitif.

Les résultats obtenus con�rment ceux de Blanche et al. [2015] : l'Isaacs a une meilleure

capacité prédictive que le MMSE, en termes de discrimination (AUC) et de calibration

(score de Brier). Cependant, combiner l'Isaacs au MMSE ne semble pas améliorer les

performances prédictives. Di�érentes pistes d'amélioration de ces résultats préliminaires

sont discutés dans le document principal.

4 Interprétation de modèles mixtes et modèles margi-

naux avec attrition due au décès et à la sortie d'étude

Dans les études épidémiologiques chez les personnes âgées, le suivi peut être inter-

rompu par le décès ou la sortie d'étude. Les deux méthodes les plus utilisées dans ce

contexte sont les modèles mixtes et les modèles marginaux. Dans cette partie, nous com-

parons les modèles mixtes (et modèles conjoints) estimés par maximum de vraisemblance

aux modèles marginaux estimés par GEE avec matrice de corrélation de travail indépen-

dante (IEE), pondérées et non pondérées, en termes d'interprétation, d'e�cacité et de

robustesse via une étude de simulations.
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Nous nous intéressons à di�érentes structures d'association entre le marqueur et le

risque de sortie d'étude, à partir des hypothèses de données manquantes complètement

aléatoires (MCAR) ou aléatoires (MAR) dé�nies par Kurland et al. [2009]. Pour caracté-

riser le lien entre le marqueur et le décès, nous dé�nissons les hypothèses de décès complè-

tement aléatoire (DCAR), aléatoire (DAR) ou non aléatoire (DNAR) selon lesquelles le

risque de décès dépend respectivement des covariables, des covariables et des observations

du marqueur ou des covariables et des caractéristiques non observées du marqueur (telle

que la vraie valeur courante ou pente courante du marqueur).

Estimateurs et interprétation

Sans attrition due au décès ou à la sortie d'étude, il y a consensus sur le fait que les

paramètres du modèle mixte représentent le changement individuel ('subject-speci�c')

tandis que les paramètres du modèle marginal décrivent la moyenne sur la population

('population-averaged '). Dans le contexte linéaire, les paramètres du modèle mixte ont les

deux interprétations.

Lorsque le suivi est interrompu par le décès et par la sortie d'étude, l'interprétation

des estimants est sujet à débat. La procédure d'estimation IEE des modèles marginaux

fournit les estimateurs population-averaged dans la population dynamique des individus

vivants et observés (non sortis de l'étude). Le décès et la sortie d'étude étant souvent

associés au marqueur, plusieurs méthodes de pondération ont été proposées pour corriger

le biais de sélection. Nous considérons deux méthodes de pondération : par l'inverse de

la probabilité d'être vivant et observé (WIEE1) et par l'inverse de la probabilité d'être

observé sachant que l'individu est vivant (WIEE2). Les estimateurs WIEE1 ciblent la

trajectoire moyennée sur la population immortelle alors que les estimateurs WIEE2 ciblent

la trajectoire moyennée sur la population des survivants à chaque âge.

Dans ce même contexte, la procédure d'estimation du maximum de vraisemblance des

modèles mixtes ne fournit pas les estimateurs population-averaged parmi la population des

survivants. Ainsi, certains auteurs [Kurland et al., 2009; Dufouil et al., 2004] considèrent

que les estimateurs obtenus ne sont interprétables que dans la population immortelle,

sans décès ni sorties d'étude. Nous démontrons qu'ils ciblent également le changement
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individuel chez les individus vivants. Les estimateurs du maximum de vraisemblance des

modèles mixtes sont robustes lorsque les processus de décès et de sortie d'étude sont

aléatoires ou complètement aléatoires, tandis que les estimateurs du maximum de vrai-

semblance des modèles conjoints bien spéci�és le sont lorsque le processus de décès est

informatif.

Application

Ces modèles sont appliqués à la cohorte Paquid pour étudier l'e�et du sexe sur le déclin

cognitif, quanti�é par le test d'Isaacs. Les estimations du modèle conjoint montrent que

l'e�et du sexe sur le changement individuel parmi les sujets vivants n'est pas signi�catif :

un homme et d'une femme, vivants, de même âge et même niveau d'études, ont des

évolutions cognitives similaires. Cependant, les estimations de WIEE2 montrent que le

sexe a un e�et signi�catif sur l'évolution moyennée sur la population des survivants. Cette

di�érence est due à une sélection par le décès plus forte chez les hommes à bas niveau

cognitif. Les hommes vivants ont ainsi un niveau cognitif plus élevé que les femmes toujours

en vie (les femmes ayant un risque de décès plus faible à niveau cognitif égal et âge égal).

5 Discussion

Dans les études de cohortes, la censure par intervalle est souvent négligée, même lorsque

les visites sont espacées de plusieurs années. Le projet initial de ce travail était d'étendre

les modèles conjoints pour prendre en compte la censure par intervalle du temps de dé-

mence. Cependant, le décès est un enjeu central dans ce type d'analyses, car il entraîne

une sélection de la population et ne peut être considéré comme n'importe quelle autre

cause de non-réponse, les données post-mortem n'existant pas. Des discussions au sein du

groupe Melodem (Methods in longitudinal dementia research) ont soulevé des questions

et des débats sur l'interprétation des modèles conjoints lorsque les mesures répétées sont

tronquées par le décès. Ces discussions nous ont amenées à nous concentrer sur un mar-

queur longitudinal corrélé au temps de décès pour clari�er l'interprétation des modèles

partiellement conditionnels (modèles marginaux) et des modèles non conditionnels (mo-

dèles mixtes et conjoints) et justi�er l'utilisation de ces derniers.
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Les analyses du déclin cognitif et de la démence nécessitent des outils sophistiqués pour

décrire l'histoire naturelle de la démence sans biais, et pour comprendre ses mécanismes.

Ces outils permettent de clari�er le rôle de facteurs de risque, en distinguant leur impact

sur le déclin cognitif, sur le risque de démence et le risque de décès. Les modèles conjoints

sont aussi utiles pour diagnostiquer de manière plus précoce, en identi�ant les sujets à

haut risque de démence. La recherche actuelle en pharmacologie s'oriente d'ailleurs vers le

développement de nouveaux traitements, donnés à des stades plus précoces de la maladie.

En�n, ces travaux méthodologiques sont applicables à toute maladie chronique où le décès

est un événement compétitif.
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1 Introduction

In 2012, the World Health Organization recognized dementia as a public health prior-

ity, rising awareness on its health, social and economic costs. The burden of dementia is

increasing as the world's population is ageing. This work aims at studying and proposing

statistical methods to better understand the natural history of dementia and cognitive

ageing and to enhance earlier diagnosis based on repeated measures of cognitive markers.

1.1 Epidemiology of dementia

1.1.1 De�nition and risk factors

Dementia is a chronic disease characterized by a signi�cant cognitive decline, steeper

than the normal cognitive decline that comes with ageing. This insidious disease induces a

deterioration of the global cognitive sphere, with alteration of memory, thinking, attention,

orientation, language and reasoning, as well as behavioral changes and consequences in

daily life, and notably undermines health. Among the degenerative forms of dementia, we

�nd Alzheimer's disease (which represents 60 to 70% of dementia cases), fronto-temporal

dementia, Lewy Body dementia and Parkinson's dementia. Nowadays, dementia is one of

the main causes of dependency and disability among the elderly [Dartigues et al., 2012]

and represents a strong burden for the diseased individuals, their family members and

caregivers.

As of 2015, the number of individuals with dementia worldwide was estimated to 46.8

million, with 9.9 million new cases each year [Prince et al., 2015]. Some studies suggested

a steady or decreasing time trend of dementia incidence [Matthews et al., 2013; Wu

et al., 2016] in the recent years but low and middle-income countries are still dramatically

a�ected, as their population growth is more important. The prevalence of dementia

increases with age and reaches up to 4.6% in Central Europe and 8.7% in North Africa,

among the population aged 60 and over. Assuming no health intervention and no change
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in dementia incidence over time, Wanneveich et al. [2016] predicted an increase of 47.18%

between 2015 and 2030 in France, based on the expected rise in life expectancy.

Global costs of dementia were estimated to $818 billion in 2015 [Prince et al., 2015],

that is 1.09% of the global gross domestic product, based on the World Bank country

classi�cation by income. These costs include direct medical costs (20%), direct social and

care costs provided by professional caregivers (40%) and costs of informal care, provided

by the family for example (40%). The latter are valued based on the mean wage of

each country. When comparing with the same estimates made in 2010, the greatest cost

increases were observed in Africa and East Asia, where dementia prevalence increased

considerably. Dementia is actually a global and major public health concern, and scienti�c

research is currently focusing on exploring the biological processes of the disease, as well as

the action mechanism of its risk factors in order to develop new treatments and prevention

strategies.

Several risk factors of dementia have been identi�ed, such as age [Letenneur et al.,

1994], a low occupational attainment [Stern et al., 1994], a poor social environment [Fab-

rigoule et al., 1995], E4 allel of genetic factor Apolipoprotein E [Farrer et al., 1997],

hypertension [Forette et al., 1998], a low educational level [Letenneur et al., 1999], fe-

male gender [Fratiglioni et al., 2004], depression [Ownby et al., 2006], a poor physical

activity and consumption of antioxydant [Berr et al., 2009], and smoking [Peters et al.,

2008]. Their impact may be accumulated throughout lifetime, possibly from midlife pe-

riods onwards [Fratiglioni et al., 2004]. Identifying such risk factors is essential �rst to

understand the natural history of dementia and then to target the susceptible population

and implement both health interventions on modi�able risk factors (such as hypertension)

and individual care.

1.1.2 Diagnosis and treatment

A complete dementia diagnosis should include cognitive testing, disability assessment,

clinical interview and informant interview, brain imaging and blood testing. In the Paquid

study presented later in this manuscript, the procedure for cognitive assessment included

the following criteria, based on the revised third version of the DSM-IIIR [American

Psychiatric Association, 1987]: impairment of short-term and long-term memory and at

least one other cognitive function (disturbance of executive functioning such as abstract
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thinking, aphasia - language impairment, apraxia - motor disorder due to brain damage,

agnosia - inability to associate an object with its meaning, to recognize objects or people)

with consequences on social or professional life. Changes in behavior, such as irritability,

anxiety, emotional lability (excessive emotional reactions and frequent mood changes) or

apathy are cited as complementary criteria for dementia, when accompanied by memory

impairment. The fourth version DSM-IV [American Psychiatric Association, 2000], used

in the Three-city Study which is also exploited in this manuscript, does not distinguish

short-term from long-term memory and does not include behavioral changes in its criteria.

At last, the di�erent categories of dementia are distinguished according to a di�erential

diagnosis, possibly based on biological and imaging biomarkers of the cerebrospinal �uid

or on cognitive tests such as the Free and Cued Selective Reminding Test [Grober and

Buschke, 1987] which distinguishes Alzheimer's disease from fronto-temporal dementia.

Recently, dementia was renamed "major neurocognitive disorder" in the DSM-V [Associ-

ation, 2013].

The neuropsychological examination for cognitive assessment is a central part of the

diagnosis process. Based on several psychometric tests, it assesses the di�erent cognitive

functions to identify the altered ones. The most common test is the Mini Mental State

Examination (MMSE) [Folstein et al., 1975], which assesses cognition globally through

di�erent items (registration, attention, calculation, recall, language, ability to follow sim-

ple commands and orientation). Other tests are more speci�c, such as the Isaacs Set Test

[Isaacs and Kennie, 1973], which evaluates verbal �uency, or the Benton Visual Retention

Test for visual perception and memory. So far, there is no consensus on the most discrim-

inatory psychometric test for dementia diagnosis. Psychometric tests are also valuable

tools for early detection of subjects at high risk of dementia, as they are cost-e�ective,

not invasive and they enable a quantitative assessment of cognition over time. Besides,

combining information from multiple longitudinal cognitive tests is likely to enhance pre-

dictive abilities of such tools. Ideally, a prediction could be obtained as soon as at least

one measure of any cognitive tests is available and could be up-dated after each cognitive

measurement.

To date, several treatments have been proposed against dementia, most of which are
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based on the enhancement of the transmission of a chimical compound, acetylcholine,

between neurons. No drug treatment has proved able to stop the progression of dementia

and only a modest e�ciency, sometimes associated with relatively important side e�ects,

was shown on cognitive and clinical states [Birks, 2006; Courtney et al., 2004]. An hypoth-

esis is that treatment administration comes too late in the disease process. Targeting the

population at risk at earlier stages may improve the e�ciency of such treatments, as well

as non-pharmacological interventions, including memory training, stimulation of social

environment, physical or psychological support to reduce the risk of daily life accidents.

1.1.3 Heterogeneity in natural history of dementia

Cognitive decline is heterogeneous among the general elderly population [Schaie, 1988;

Colsher and Wallace, 1991; Christensen et al., 1999], but also at all ages of adulthood [Wil-

son et al., 2002]. Some studies highlighted di�erent patterns between normal ageing and

ageing with dementia from neuropathological and neuroradiological data [West et al.,

1994; Jobst et al., 1994] and psychometric data [Dartigues et al., 1996; Backman et al.,

2001].

Dementia is conceptualized as a continuous pathological process, falling along a con-

tinuum with normal ageing, which also implies a cognitive decline with age [Brayne and

Calloway, 1988]. This concept is based, amongst others, on the di�culty to distinguish

normal elderly from mild dementia regarding cognitive performances. Indeed, there is a

lag period between physiological alterations, appearance of clinical symptoms and cog-

nitive impairment. In Alzheimer's Disease for example, neurodegeneration can occur

relatively late after the aggregation of a peptide called Aβ in the brain, which is the

start of the pathological cascade de�ned in Jack et al. [2010]. This concept led to the

hypothesis of a transitory period, called Mild Cognitive Impairment (MCI), during which

the cognitive functions are altered with no signi�cant consequences on daily life, so that

dementia criteria are not met.

The length of this pre-clinical phase is variable among individuals living with dementia.

This heterogeneity may be explained by the variability between diagnosis procedures but

it is mainly due to inter-individual variability. Stern [2009] formulated the hypothesis

of a 'brain reserve', linked to the structure and composition of the brain, which may
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stimulate a 'cognitive reserve'. The latter is represented by all the cerebral processes which

compensate the cognitive loss and help individuals to cope with the brain pathology during

a certain period, delaying the appearance of the �rst clinical symptoms and lengthening

this 'silent' phase.

Several studies focused on this pre-diagnosis phase to evaluate whether cognitive im-

pairment could be detected from earlier stages. Thus, an acceleration of cognitive decline

was observed long before diagnosis [Bäckman et al., 2005], from 5 [Hall et al., 2000] to 12

years earlier [Amieva et al., 2008], according to the cognitive function under consideration.

As an example, a decline of semantic memory was observed 12 years ahead of diagnosis on

average. It is also of interest to evaluate the impact of treatments given at earlier phases

on the risk of dementia [Vellas et al., 2012] or to evaluate if sub-groups are receptive to

a given treatment, based on data from prevention trials. This can lead to personalized

medicine.

1.2 Cohorts on dementia

Several cohorts in the general population were set up to provide needed information

for understanding the epidemiology of dementia, to build diagnosis and prediction tools

or to evaluate interventions and guide public health policies. Among the studies which

collected repeated measures of cognitive tests and time-to-dementia diagnosis, we can list:

the Framingham study [Farmer et al., 1987], the Paquid cohort [Dartigues et al., 1992], the

Three-city study [3C Study Group, 2003], the Rush Memory and Aging Project [Bennett

et al., 2005], the Mayo Clinic Study of Ageing [Roberts et al., 2008] or the AMI cohort

[Pérès et al., 2012]. This section details the Paquid and Three-city cohorts which took

place in France and which were used in analyses presented in this manuscript.

1.2.1 The Paquid cohort

The epidemiological Paquid Cohort ("Personnes Âgées Quid") was initiated in 1988 in

two French departments, Dordogne and Gironde, to study normal and pathological brain

ageing from repeated psychometric tests. The main objectives included the identi�cation

of risk factors and pre-clinical symptoms of Alzheimer's Disease.
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A total of 3,777 subjects, aged 65 and older, were followed during more than 25

years, as the study is still ongoing. They were chosen randomly from communal electoral

lists to ensure representativeness of the population over 65, who lived independently in

their home, in Gironde and Dordogne. The population, composed of 58.2% of women,

entered the study on average at 75.5 years old (sd=6.9 years) and included a majority of

individuals who obtained their primary school diploma or more (35.5% with no primary

school diploma, 43.4% with primary school diploma as the highest degree and 21.1% with

higher degrees).

When recruited, subjects were administered a questionnaire by a psychologist about,

inter alia, demographic, socio-professional and health information. Then, cognitive func-

tioning was assessed through a battery of psychometric tests: the MMSE on global mental

status, the Isaacs Set Test on verbal �uency, the Benton's Visual Retention Test on visual

memory, Wechsler's Paired-Associates on verbal memory, the Zazzo test on visual atten-

tion and the Digit Symbol Test on simple logical reasoning. Then, the subjects answered

a last questionnaire based on the DSM-IIIR criteria for dementia. They were suspected

for dementia if they had experienced an alteration of memory and of another cognitive

function with repercussions in daily life and if their MMSE score, at follow-up visits,

decreased by more than three points from previous visits. If so, they were assigned to a

neurologist who possibly con�rmed the diagnosis and established the etiology of dementia,

based on the NINCDS-ADRDA criteria [McKhann et al., 1984] and the Hachinski score,

to determine if the cognitive impairment had a vascular origin [Hachinski et al., 1975].

Interviews were then organized at home approximately at years 1, 3, 5, 8, 10, 13, 15,

17, 20, 22 and 25. Cognitive functioning (and possible clinical dementia diagnosis) was

assessed with the same procedure at each follow-up visit. The cause of canceled visits was

recorded: no response from the subject, refusal, relocation out of Gironde or Dordogne

or death. Age at death was informed by families, general practitioners or retrieved from

death registries.

1.2.2 The Three-City cohort

The Three-City study is another French prospective cohort study, designed to quantify

the impact of vascular factors on the risk of dementia and cognitive impairment, and to

distinguish di�erent groups of subjects at high risk of dementia to guide future potential
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prevention strategies.

This cohort recruited 9,285 individuals from electoral rolls in three French cities (Bor-

deaux, Dijon, Montpellier), who were aged 65 and older, and were not institutionalized

between March 1999 and March 2001. On average, the participants, a majority of women

(60.7%), entered the study at 74.3 years old (sd=5.6 years) and had studied longer than

the Paquid's population (8.7% with no primary school diploma, 17.5% with primary school

diploma as the highest degree and 73.9% with higher degrees).

Cognitive functioning was assessed through several tests: the MMSE, the Benton

Visual Retention Test, the Isaacs Set Test, the Trail Making Test on visual attention

and task switching, the Delayed Recall test on delayed verbal recall, and the Digit Span

Test on short-term verbal memory. Other data were collected, such as cerebral Magnetic

Resonance Imaging or biological markers. Screening for dementia diagnosis was made

by a neuropsychologist based on DSM-IV criteria, then a neurologist performed a clini-

cal examination and an independent panel of expert neurologists possibly con�rmed the

diagnosis and the etiology of dementia.

According to the center or to the wishes of the participants, visits were done at home

or in an exam center at years 2, 4, 7, 10 and 12 approximately. Age at death was informed

by practitioners or retrieved from the INSERM epidemiology center on medical causes of

death, CépiDC.

1.3 Methodological challenges in studies on cognitive

decline and dementia

To study cognitive decline before diagnosis, information must be derived from both

repeated measures of markers over time, such as biological or psychometric markers, and

from the time-to-diagnosis. Analyzing longitudinal data and time to dementia onset

raises several methodological challenges. First, the follow-up of longitudinal data may

be truncated by death, with the probability to die potentially linked to observed and

unobserved characteristics of the marker trajectory. Second, time to dementia onset may

not be known exactly since the data are collected intermittently. Moreover, death is a

competing risk of dementia, which may complicate the interval censoring problem. This

section details all these issues, which can have an important impact on analysis results.
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1.3.1 Attrition due to drop-out in longitudinal studies

In longitudinal observational studies, subjects may drop out for di�erent reasons, in-

ducing missing data. In this manuscript, we will distinguish death and drop-out. In 1987,

Little, Roderick JA and Rubin [1987] proposed a classi�cation for the drop-out mecha-

nism, de�ning missing data as:

� Completely at random (MCAR data) when the probability to drop out is indepen-

dent from the marker trajectory, conditionally on covariates. This would be the case

of an individual who missed a visit because a friend had an accident, for instance.

� At random (MAR data) when the probability to drop out depends on covariates

as well as on past observed values of the marker. A particular case states that the

probability depends on the very last observed value of the marker. As an example,

consider an individual who realizes that his/her observed cognitive scores decline

and decides on his own to drop out from the study.

� Not at random (MNAR data or informative missing data) when the probability to

drop out depends also on unobserved characteristics of the cognitive marker trajec-

tory, such as the current cognitive value or the cognitive slope at time of drop-out.

The mechanism is MNAR if subjects who deteriorated since their last visit tend to

drop out.

There is no statistical test to distinguish MAR from MNAR data. When the cohort is

prone to attrition due to drop-out only, the target estimand is most often the expectation

among the hypothetical population with no drop-out, that is the initial population, which

would have been observed until the planned end of the study if no one had dropped out.

1.3.2 Attrition due to death in longitudinal studies

When the collection of longitudinal data may also be interrupted by death, the target

expectation is controversial as the population with no death would be immortal and not

realistic. However, selection by death is likely heterogeneous over the whole population
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so the population of survivors may not be representative of the initial population. As an

example, women have a lower risk to die, so at the end of the follow-up, the proportion of

women survivors may be di�erent from the proportion of women in the initial population.

This selection issue is more critical as death is linked to the cognitive decline [Wilson et al.,

2003]: individuals with a high cognitive level have a higher risk to survive so subjects who

stay in the study tend to be healthier. Since the risk of death is higher among men than

women regardless of cognitive level, a higher mean cognitive level among men survivors

than women survivors can either re�ect an actual cognitive di�erence according to gender,

or a higher attrition due to death among cognitively impaired men.

Within this framework, the target estimand is most often the mean among the popula-

tion currently alive [Kurland and Heagerty, 2005]. However, it is necessary to identify the

dependence structure between the death process and the longitudinal marker for selecting

the appropriate model and obtain unbiased estimates.

1.3.3 Competing risk of death and interval censoring

As dementia prevalence is higher among the elderly, the population at risk of dementia

is also at a non-negligible risk of death. Moreover, death and dementia may have common

risk factors, such as sex and age. If the correlation between death and dementia is not

accounted for, the estimated e�ect of a common risk factor of interest on the risk of

dementia may be biased. Hence, we consider death as a semi-competing event as dementia

cannot occur after death while subjects living with dementia can die.

This competing risk issue gets more problematic when time-to-dementia is interval-

censored. In cohort studies, the dementia status is evaluated intermittently as subjects

can only be diagnosed at visit times. The exact time to dementia onset is then unknown

and is interval-censored. As diseased individuals are more susceptible to die, they may

die before the visit following dementia onset, without being diagnosed. Thus, interval

censoring of time to dementia onset, in a framework of competing risks with death, leads

to an under-estimation of dementia incidence.

One way to account for both the semi-competing risk of death and interval censor-

ing is to use an Illness-Death model [Joly et al., 2002], which considers three states �

Health, Dementia and Death � and estimates simultaneously the three transition intensi-

ties (Health-Dementia, Dementia-Death and Health-Death). It is then possible to account
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for a possible unobserved transition to dementia for subjects free of dementia at their last

visit who died later, with no information on dementia status at time of death. Moreover,

this model di�erentiates the e�ect of covariates on death and dementia.

1.3.4 Joint modeling of cognition and dementia

In order to investigate the pre-dementia cognitive decline, the cognitive marker and

time-to-dementia should not be analyzed separately as both are highly correlated. On the

one hand, cognitive impairment is a predictor of the risk of dementia [Visser et al., 1999;

Flicker et al., 1991]. On the other hand, the follow-up is truncated by dementia, inducing

informative missing data of the repeated marker [Wu and Carroll, 1988]. Consequently,

joint models of cognitive decline and dementia are necessary to estimate the cognitive

trajectory in the pre-diagnostic phase or the risk of dementia within the next years given

repeated measures of cognitive tests.

It is also imperative to account for the competing risk of death in the joint modeling

framework to estimate without bias the e�ect of covariates on the cognitive decline or on

the risk of dementia. Besides, joint modeling the cognitive decline, the risk of death and

the risk of dementia would enable to distinguish the impact of covariates on these three

variables. Moreover, it is of interest to di�erentiate the cognitive decline before dementia

from the cognitive decline before death without dementia. No joint models were proposed

so far to handle longitudinal data correlated to an interval-censored event, competing with

death. However, this type of data is frequent in cohort studies and new statistical tools

based on the development of such models would be applicable to other types of chronic

diseases where death is a competing risk.

1.3.5 Other methodological challenges

As stated before, there is abundant literature on heterogeneity in cognitive declines

[Schaie, 1988; Dartigues et al., 1996; Backman et al., 2001; Wilson et al., 2002], among

the general population but also among the subjects living with dementia. Mixture mod-

els [Muthén, 2008] accommodate this heterogeneity through mixture components. As an

example, latent class mixed models consider di�erent unobserved groups, called latent

classes, with speci�c mean trajectories. The distribution of the outcome and the random
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e�ects then follow a mixture of multivariate gaussian distributions. The latent classes

are not known a priori, but it is possible to label the posterior classes ('normal ageing',

'moderate decline','severe decline', regarding the estimated class-speci�c mean cognitive

trajectories for example) and to compute the individual posterior probabilities to belong

to each class.

Besides, standard models assume that the markers are gaussian but cognitive tests

may follow other distributions, possibly asymmetric, and may have speci�c metrological

properties such as �oor or ceiling e�ects. For instance, the MMSE fails at discriminating

between subjects with high cognitive scores: it has a ceiling e�ect. Conversely, a test

has a �oor e�ect when it cannot discriminate between subjects with low scores. More

generally, markers can be curvilinear, that is to say they have a varying sensitivity to

change: a one-point di�erence in low values will not represent the same cognitive loss as

a one-point-di�erence at high values. Proust-Lima et al. [2006] proposed a mixed model

with a parametric non-linear transformation, based on splines or Beta cumulative density

function, for longitudinal modeling of curvilinear markers. Proust-Lima et al. [2012] also

proposed other transformations to deal with discrete, asymmetric or bounded outcomes

such as quality of life or autonomy scale.

Finally, cognition is measured by multiple cognitive tests and it may be useful to

describe their change over time simultaneously instead of studying one arbitrary selected

test. The approaches proposed by Proust-Lima et al. [2006] modeled the unobserved

process underlying the di�erent markers by a latent process. The observed cognitive tests

are considered as correlated measures of this latent process, to which they may be linked

through a non-linear transformation.

1.4 Objective and outline

The purpose of this work is to develop statistical tools to study the general cogni-

tive ageing or the pre-diagnosis cognitive decline in dementia, accounting for selection by

death.
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In order to describe the pre-dementia phase and to propose prediction tools for the

risk of dementia, joint models for time-to-dementia and longitudinal cognitive measures

were previously developed but none of them accounted for both the competing risk of

death and interval censoring. As a �rst step, this works aims at developing a joint latent

class model for modeling the cognitive decline, the risk of dementia and the risk of death,

accommodating heterogeneity of the data, selection by death and interval censoring. In

a second part, we performed a comparative study to address the general debate on the

best method to use in analyses for longitudinal data when the follow-up is truncated by

death, clarifying the interpretation of the di�erent methods proposed in this framework.

Section 2 �rst presents the state of the art relative to joint models, which capture the

correlation between a longitudinal marker and a time-to-event through a latent structure.

This structure can be represented by random e�ects or latent classes, which are unobserved

homogeneous sub-groups of the population. Latent class models are more appropriate

when data are heterogeneous. Then, we present the models proposed to accommodate

selection by death and interval censoring.

Section 3 describes the joint latent class model that we proposed to handle longitudinal

data and interval-censored time-to-event with semi-competing risk of death. This model

captures heterogeneity in cognitive decline through latent classes. It combines a mixed

model to describe the cognitive evolution and an Illness-Death model to estimate the

risk of dementia, considering death as a semi-competing event, and interval censoring is

accounted for in the computation of the likelihood. Simulations are performed under the

markovian and semi-markovian assumptions. This model is then applied to the Paquid

cohort in order to distinguish pro�les of cognitive declines associated with risks of dementia

and death.

Section 4 describes the application of the above model to build a dynamic prediction

tool for dementia, using the Paquid cohort data. The prediction tool is then evaluated

using the Three-city cohort as validation sample.

Section 5 focuses on methods used for longitudinal data only, when the population is

prone to attrition due to drop-out and death. We clarify the interpretations of estimates

from mixed models estimated by likelihood maximization and marginal models estimated

by unweighted and weighted Generalized Estimating Equations, which are the main meth-

ods used to handle longitudinal data in epidemiological studies, when follow-up may be
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truncated by death and drop-out. Simulations are carried out to quantify the di�erences

in estimates and an application on Paquid cohort is presented to illustrate the impact of

selection by death.

At last, a general discussion summarizes the advantages and the limits of the methods

presented, as well as the possible perspectives.
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2 State of the art

This chapter exposes models proposed in the literature for handling longitudinal data

and possibly time-to-event data correlated to the longitudinal markers. We �rst describe

the methodology of mixed models, marginal models and joint models and then review the

di�erent approaches for addressing the selection issue due to death in longitudinal studies

on one hand and the competing risk of death and interval censoring in time-to-event

analyses on the other hand.

2.1 Methods for longitudinal data

2.1.1 Mixed models estimated by likelihood maximisation

Linear mixed models were introduced by Laird and Ware [1982] to analyze longitudi-

nal gaussian outcomes, accounting for the within-subject correlation.

Speci�cation of linear mixed models

Let Yij be the observation of a gaussian variable for subject i, i = 1, ..., N at time tij,

j = 1, ..., ni. The standard linear mixed model is written:

Yij = Ỹi(tij) + εij = X>ijβ + Z>ijui + εij (3)

where ui ∼ N (0, B) are the subject-speci�c random e�ects, with B the variance matrix.

The observed value Yij at time tij is the sum of the true value of the marker Ỹi(tij) and

a gaussian measurement error εij ∼ N (0, σ2
ε ), assumed independent across di�erent times

and independent from the random e�ects. The vectors Xij and Zij include the covari-

ates with �xed and random e�ects respectively, and Zij is a sub-vector of Xij. Then,

the vector of the marker observations Yi = (Yi1, ..., Yini
)> follows the normal distribution

N (Xiβ, Vi = ZiBZ
>
i + Σi) where Σi is the ni × ni variance matrix of the measurement

error vector εi = (ε1i, ..., εini
)> and Xi, Zi are the matrices with row vectors X>ij and Z

>
ij
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respectively.

Estimation

The log-likelihood of the linear mixed model is written:

L(β, φ) = −1

2

N∑
i=1

{ni log(2π) + log|Vi(φ)|+ (Yi −Xiβ)>Vi(φ)−1(Yi −Xiβ)} (4)

with φ the vector of all the variance parameters (variance matrices of the random e�ects

and measurement errors) and |Vi(φ)| the determinant of Vi(φ). The log-likelihood is

maximised in (β, φ) satisfying this score equation:

∂L(β, φ)

∂β
=

N∑
i=1

X>i Vi(φ)−1(Yi −Xiβ) = 0 (5)

In practice, estimators of regression parameters are obtained by

β̂ = (
∑N

i=1X
>
i Vi(φ)−1Xi)

−1(
∑N

i=1 X
>
i Vi(φ)−1Yi)

and then φ is estimated by maximisation of L(β̂, φ) via an iteration procedure (such as

the Newton-Raphson algorithm). Otherwise, L(β, φ) can be maximised with respect to

both β and φ simultaneously, also in an iterative procedure. Note that if the correlation

of the random e�ects is well-speci�ed, the estimators from mixed models are consistent.

Speci�cation of generalized linear mixed models

The theory of mixed models was applied to generalized linear models, as detailed in

McCullagh, Peter and Nelder [1989], to describe the evolution of non-gaussian continuous

outcomes over time. In generalized linear mixed models, a non-linear function links the

expectation of the outcome to the linear predictor. The distribution of the outcome

belongs to the exponential family:

fYij(y; θij,Ψ) = exp{Ψ−1[θijy − a(θij)] + C(y,Ψ)} (6)

where θij = X>ijβ + Z>ijui is the linear predictor, a(·) and C(·) are some functions and Ψ

is the vector of variance parameters. Then, conditionally to the random e�ects:

E(Yij|ui) = a′(θij) and var(Yij|ui) = a′′(θij)Ψ.
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The link function is then [a′]−1, the inverse of the derivative of a. The likelihood is written:

L(β, φ) =
N∏
i=1

log
( ni∏
j=1

∫
ui

fYij |ui(Yij|ui)fui(ui)dui
)

(7)

with fYij |ui the gaussian density with mean a′(θij) and variance a′′(θij)Ψ.

Interpretation

Equation (3) describes the mean trajectory of the outcome conditionally to the subject-

speci�c random e�ects, which can be considered as individual unmeasured covariates

(independent from the observed ones Xij). Thus, the parameters β quantify the change

in the outcome for a unit change in X, the other covariates and the random e�ect being

constant: β = E(Yij|Xij = 1, ui) − E(Yij|Xij = 0, ui). They have a 'subject-speci�c'

interpretation as they represent the individual change of the marker for a change in X.

From Equation (3), we also obtain the expectation of the marker marginally to the

random e�ects: E(Yij) = X>ijβ, which represents the expectation of the marker averaged

over the random e�ects, i.e the expectation among the whole population. Thus, the pa-

rameters β also quantify the mean e�ect of X on Y averaged over the random e�ects:

β = E(Yij|Xij = 1)− E(Yij|Xij = 0). They also have a 'population-averaged' interpreta-

tion as they represent the mean e�ect of X on Y over the whole population. In the linear

framework, parameters from mixed models have both interpretations.

Parameters from generalized linear mixed models have only a subject-speci�c in-

terpretation as they are interpretable conditionally to the random e�ects exclusively:

E(Yij|Xij, ui) = a′(X>ijβ + Z>ijui). The population-averaged interpretation does not hold

as E(Yij|Xij) = Eui(E(Yij|Xij, ui)) = Eui(a
′(X>ijβ + Z>ijui)) 6= a′(X>ijβ).

Mixed models and missing data

Maximum likelihood estimates of mixed models are robust to MCAR and MAR data:

indeed, by modeling the within-subject correlation, the likelihood maximisation procedure

implicitly imputes missing data, under the assumption that the conditional distributions

of future missing data and future observed data, given past observations, are identical.

Thus, the maximum likelihood estimates obtained from observed data are unbiased. Let

Y o be the vector of observed responses, Y m the vector of missing responses and R the

observation process (with Rij = 1 if the response at time tij is observed, and 0 otherwise),
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depending on parameter ψR. When missing data are MAR, f(R|Y o, Y m, X) = f(R|Y o, X)

so the joint density of the observed data and R is:

f(Y o, R|θ, ψR) =

∫
f(Y o, Y m|θ)f(R|Y o, Y m, ψR)dY m

= f(R|Y o, ψR)

∫
f(Y o, Y m|θ)dY m

= f(R|Y o, ψR)f(Y o|θ)

Thus, the log-likelihood is written:

L(θ, ψR|Y o, R) = L(θ|Y o) + L(ψR|Y o, R)

so that θ can be estimated without bias by maximisation of L(θ|Y o) on available data.

When missing data are not at random, mixed models are not robust anymore, but joint

models, which combine a mixed sub-model and a survival sub-model for the time-to-drop-

out linked by a latent structure, provide unbiased estimates when the dependence between

the two processes is well-speci�ed.

2.1.2 Marginal models estimated by GEE

Liang and Zeger [1986] focused on the marginal distribution of a non-gaussian repeated

outcome. They proposed an alternative estimation procedure to likelihood maximisation

in order to obtain estimates and variance estimates robust to the misspeci�cation of the

within-subject correlation, considered as a nuisance.

Speci�cation of marginal models

The marginal distribution of the outcome Yij is modeled by a generalized linear model

de�ned by:

fYij(y; θ∗ij, ψ
∗) = exp{ψ∗−1[θ∗ijy − a(θ∗ij)] + C(y, ψ∗)} (8)

where θ∗ij = X>ijβ
∗ is the marginal linear predictor with β∗ the marginal regression pa-

rameters associated with covariates X, and ψ∗ is the variance parameters. Then, Yij has

mean E(Yij) = a′(θ∗ij) and variance var(Yij) = a′′(θ∗ij)ψ
∗.
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Estimation

The generalized estimating equation is written:

U(β∗) =
N∑
i=1

D>i Vi(ψ
∗)−1(Yi − µi) = 0 (9)

where Yi = (Yi1, ..., Yini
)>, µi = (µi1, ..., µini

)> with µij = a′(X>ijβ
∗), Di = dµi

dβ∗
= AiXi

and Vi = ψ∗A
1/2
i R(α)A

1/2
i the working covariance matrix, with Ai = diag(a′′(X>ijβ

∗))

and α the vector which characterizes the working correlation matrix R(α). If R(α) is

the true correlation matrix of Yi, then Vi = cov(Yi). When the repeated measurements

are assumed independent, R(α) is the identity matrix and the equation reduces to the

likelihood score equation (5).

Once ψ∗ is replaced by a consistent estimate ψ̂∗, the solution of Equation (9) provides

an asymptotically multivariate gaussian estimator with mean β∗ and robust variance:

VR(β̂∗) =
{ N∑

i=1

D>i Vi(ψ̂
∗)−1Di

}−1{ N∑
i=1

D>i Vi(ψ̂
∗)−1var(Yi)Vi(ψ̂

∗)−1Di

}{ N∑
i=1

D>i Vi(ψ̂∗)−1Di

}−1

The computation of robust variances is based on the assumed independence between sub-

jects. Then, the estimators β̂∗ and V̂R are consistent if the model for E(Yij) is correct,

whatever the speci�cation of the working correlation matrix R(α), when covariates are

time-independent.

Interpretation

The GEE estimators of marginal models can only be interpreted as population-averaged,

since the within-subject correlation is not modeled explicitly: E(Yij) = a′(X>ijβ
∗). For

linear models (identity link function [a′]−1), the parameters β∗ represent the mean e�ect

of X on the marker over the whole population.

Subject-speci�c or population-averaged parameters may be preferred according to the

aim of the study. If the purpose of the analysis is to explore the individual change in cog-

nition over time, the individual change for a variation in a given risk factor, or to predict

individual decline, subject-speci�c estimands may be more appropriate. In contrast, if

the objective is to quantify the impact of a public health intervention on the population

mean, then population-averaged estimands may be more suited.
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Missing data

GEE estimates are robust to MCAR data only. Robins et al. [1995] introduced a weighted

GEE estimation procedure, with an independent working correlation matrix, to handle

MAR data. The individual contributions to the GEE score equation (9) are weighted to

correct for selection induced by the missingness mechanism:

UD(β∗) =
N∑
i=1

D>i Vi(ψ
∗)−1Wi(Yi − µi) = 0 (10)

with Wi the diagonal ni × ni-matrix with the jth diagonal element equal to Rijwij where

Rij = 1 if subject i is observed at occasion j and 0 otherwise, and wij is the occasion-

speci�c weight de�ned by the inverse probability for subject i to be observed at occasion

j. Fitzmaurice et al. [1995] de�ned individual-speci�c weights as the inverse probability to

be observed at the observed time of drop-out, but Preisser et al. [2002] showed that these

weights led to biased estimates. At last, no method provides directly marginal estimates

in the MNAR framework.

2.2 Joint models for longitudinal and time-to-event data

Joint models were developed in order to account for the relationship between the time

to an event and a longitudinal marker [Tsiatis and Davidian, 2004]. They are useful

to describe the change over time in the repeated marker in the presence of informative

drop-out, to investigate the association between the longitudinal and survival processes,

or to predict the time-to-event given repeated values of the marker. The idea of joint

models is to combine a mixed sub-model for the trajectory of the longitudinal marker and

a failure time sub-model for the risk of the event, both linked by a latent structure. Two

approaches were developed, considering either random e�ects or latent classes as latent

structures to capture the dependence between the marker and the time to an event.

2.2.1 Joint shared-random-e�ect model

Wulfsohn and Tsiatis [1997] proposed a joint model for a gaussian longitudinal marker

and the time to an event, in which their relationship is modeled by random e�ects, assumed

to be gaussian. Conditionally to the random e�ects, the two variables are independent.
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Speci�cation of joint shared-random-e�ect models

The shared-random-e�ect model incorporates two sub-models. On one hand, a linear

mixed model describes the trajectory of the marker, conditional on the random e�ects:

Yij = Ỹi(tij) + εij = X>ijβ + Z>ijui + εij (11)

where ui ∼ N (0, B) are the subject-speci�c random e�ects, with B the variance matrix.

The observed value Yij at time tij is the sum of the true value of the marker Ỹi(tij) and

a gaussian measurement error εij ∼ N (0, σ2
ε ), assumed independent from measurement

errors at di�erent times. The individual random e�ects and measurement errors are also

independent.

On the other hand, the instantaneous hazard rate of the event is modeled by a pro-

portional hazards model, conditional on the random e�ects:

αi(t|ui; β, γ, γ(a)) = α0(t)exp(W>
i γ + h(ui, β, tij, Zij, Xij)

> γ(a)) (12)

with α0(·) the baseline hazard function, γ the vector of regression parameters associated

with covariates Wi. The function h(·), speci�ed a priori, depends on the random e�ects

and possibly on time, on covariates and parameters from the mixed model. For instance,

h(·) can give the true current value Ỹ (t) or true current slope of the marker ∂Ỹ (t)
∂t

[Yu et al.,

2004]. At last, γ(a) is the vector of association parameters between the two processes.

This model was extended to handle multiple events as it will be discussed in section

2.3.3.

Estimation

In the following, we will denote by Ti the time-to-event and by δi the occurrence indicator

of the event, equal to 1 if the event was observed before the end of the follow-up and 0

otherwise. Based on the independence assumption of Yi and (Ti, δi) conditionally to the

random e�ects ui, the individual contribution to the joint distribution can be written as

follows:

fYi,Ti,δi(Yi, Ti, δi; θ) =

∫
Rnu

fYi|ui(Yi|ui; θ)fTi,δi|ui(Ti, δi|ui; θ)fui(ui; θ)dui

with nu the dimension of the random e�ects, θ including the regression and variance

parameters from model (11) and the regression, association parameters from model (12).
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The multivariate gaussian density fYi|ui has mean Xiβ + Ziui and variance σ2
ε Ini

and fui

is a multivariate gaussian density with mean 0 and variance matrix B. The likelihood is

then:

L(θ) =
N∏
i=1

∫
Rnu

fYi|ui(Yi|ui; θ)Si(Ti|ui; θ)αi(Ti|ui; θ)δifui(ui; θ)dui.

The Expectation-Maximisation algorithm [Dempster et al., 1977] was used for likeli-

hood maximisation in this longitudinal framework by De Gruttola and Tu [1994]. The idea

is to iteratively compute the expectation of the complete data log-likelihood Q(θ|θit) =∑
i

∫
log(P (Ti, δi, Yi, ui; θ))p(ui|Ti, δi, Yi; θit)dui from current estimates θit, and then to

�nd the estimates θ which maximise it. However, the Expectation step requires the com-

putation of an integral over the random e�ects since the complete data log-likelihood does

not have a closed form. Rizopoulos et al. [2009] used laplace approximations to bypass

intractable integrals when the number of random e�ects increases, but Gaussian quadra-

tures or Monte-Carlo Markov Chain methods can also be used [Wulfsohn and Tsiatis,

1997; Henderson et al., 2000]. The likelihood can also be maximised numerically through

Newton-like algorithms [Jacqmin-Gadda et al., 2006], which also involves the computa-

tion of an integral over the random e�ects. However, the convergence rate of the latter

algorithm is higher than the rate of the EM algorithm. Thus, Rizopoulos et al. [2009]

proposed an optimization procedure combining both EM and quasi-Newton algorithms,

to speed up the convergence rate.

Advantages and limits

The speci�cation of the dependence through the random e�ects allows to better under-

stand the link between the longitudinal marker and the event. However, the link has

to be speci�ed a priori. It is then possible to test di�erent assumptions regarding the

relationship between the marker and the time-to-event, either via likelihood ratio tests

when the corresponding models are embedded or via the AIC criterion.

The computation of multiple integrals over the random e�ects remains the main draw-

back of joint shared-random-e�ect models. This issue may be accentuated when consid-

ering several markers simultaneously if each marker-speci�c mixed sub-model involves

di�erent vectors of random e�ects. A solution would be to assume that all the markers
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are linked by a same underlying process, modeled by one single mixed sub-model, with

possible marker-speci�c intercepts or e�ects of covariates.

Besides, in joint shared-random e�ect models, the random e�ects account for both

the correlation between repeated measures of the marker and the correlation between the

two processes. Rizopoulos et al. [2008] proposed an alternative parameterization where

the survival model depends on an extra random e�ect u(T )
i ∼ N (0, B(T )), linked to the

random e�ects from the longitudinal model via a copula function.

Finally, the trajectory of the marker is assumed homogeneous, linked continuously

to the risk of event. However, the literature has reported that cognitive decline was

heterogeneous in the whole population, and also within the population with dementia

and among subjects free of dementia. The following approach for joint modeling may be

more appropriate to accommodate heterogeneity in cognitive decline.

2.2.2 Joint latent class models

Lin et al. [2002] proposed a joint model capturing the association between the marker

and the risk of the event through latent classes. This model assumes an heterogeneous

population, composed of G unobserved homogeneous sub-groups represented by G latent

classes, with speci�c marker trajectory and risk of the event. A conditional assumption

states that given the latent classes, the longitudinal and survival processes are indepen-

dent, such that latent classes capture completely their correlation.

Speci�cation of joint latent class models

We de�ne the probability for subject i, i = 1, ..., N , to belong to class g, for g = 1, ..., G,

by a multinomial logistic model:

πig = P (ci = g|X(P )
i ) =

exp(X
(P )>
i ζg)∑G

m=1 exp(X
(P )>
i ζm)

(13)

with ci the membership variable, equal to g if subject i belongs to class g. The vector

X
(P )
i includes time-independent variables and 1 for the intercept. For identi�ability, we

�x ζG to 0.
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Besides, the trajectory of the marker is modeled by a linear mixed sub-model, conditionally

to the latent class g:

Yij = X>ijβg + Z>ijuig + εij (14)

where βg are the class-speci�c regression parameters, uig ∼ N (0, Bg) are the random

e�ects, with Bg = σ2
gB the class-speci�c variance matrix. Here again, σ2

G = 1 for iden-

ti�ability. The vector Xij contains the covariates of subject i, at time tij, j = 1, ..., ni,

and Zij is a sub-vector of Xij. The measurement errors εij ∼ N (0, σ2
ε ) are identically

independently distributed and independent from the individual random e�ects.

Besides, the risk of the event given the latent class g is modeled by a proportional hazards

model:

αi(t|ci = g; γg) = α0g(t)exp(W
>
i γg) (15)

with a class-speci�c baseline function α0g(·) and γg the vector of class-speci�c regression

parameters associated with covariates Wi.

Estimation

Based on the conditional independence assumption, the joint distribution can be written

as follows:

fYi,Ti,δi(Yi, Ti, δi; θG) =
G∑
g=1

fYi|ci(Yi|ci = g; θG)P (Ti, δi|ci = g; θG)πig

where Yi = (Yi1, ..., Yini
)>, fYi|ci is a multivariate gaussian density function with mean

Xiβg and variance matrices Vig = σgZiBZ
>
i + σ2

ε Ini
, with Xi and Zi the matrices with

row vectors X>ij and Z>ij respectively. The vector θG includes the parameters from the

membership probability model (13), parameters from the conditional mixed sub-model

(14) and survival sub-model (15). Thus the likelihood has a closed form:

L(θG) =
N∏
i=1

G∑
g=1

fYi|ci(Yi|ci = g; θG)αi(Ti|ci = g; θG)δiSi(Ti|ci = g; θG)πig

For a given number of classes, the likelihood can be maximised by the EM algorithm.

Some authors prefer algorithms based on Newton-Raphson optimization, especially for
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their speed of convergence, and for the possibility to de�ne a convergence criterion based

on the Hessian matrix [Proust-Lima et al., 2014] in addition to criteria on log-likelihood

stability and parameter stability. Besides, the likelihood function has local maxima, since

the model is an extension of mixture models [Redner and Walker, 1984]. To counter this

problem, it is recommended to run the model from di�erent sets of initial values for a

same value of G [Hipp and Bauer, 2006].

The model should also be run with di�erent values of G. Several criteria were proposed

to select the optimal number of classes: BIC, AIC, the size of the classes, the quality of

the discrimination between classes or the result to the conditional independence test when

available. There is no consensus so far on the best criterion, even if the BIC [Schwarz,

1978] is recommended for mixture models [Hawkins et al., 2001; Zhang and Cheng, 2004].

Discrimination of the model

Once the parameters are estimated, the subjects can be allocated to the latent class

corresponding to the highest posterior probability arg maxg(π̂ig, g = 1, ..., G) with:

π̂Y,Tig = P (ci = g|Yi, Ti, δi; θ̂G) =
π̂igf(Yi|ci = g; θ̂G)P (Ti, δi|ci = g; θ̂G)∑G

m=1 π̂imf(Yi|ci = m; θ̂G)P (Ti, δi|ci = m; θ̂G)
.

Based on these posterior probabilities, we can compute the classi�cation matrix, with

elements Plm representing the mean probability, among all the subjects allocated to class

l, to belong to class m. The ideal discriminatory model would have its classi�cation ma-

trix equal to the identity matrix. The discriminatory ability of the model can also be

evaluated based on the number of individuals with their maximal posterior probability

higher than a threshold, such as 0.8.

Goodness-of-�t

The goodness-of-�t assessment concerns both the longitudinal and survival predictions.

For the longitudinal part, it can be done in di�erent ways, by comparing the marker

observations to the longitudinal predictions, either conditional or marginal on the random

e�ects, and either conditional or marginal on the latent classes.
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The goodness-of-�t assessment is made from the following comparisons:

Class-speci�c Marginal on class

Conditional on uig Ŷ
(SS)

·tg =

∑
(i,j)∈Nt

π̂igŶ
(SS)
ijg∑

(i,j)∈Nt
π̂ig

Ŷ
(SS)

·t =

∑
(i,j)∈Nt

∑G
g π̂igŶ

(SS)
ijg

Nt

(compared to) Y ·tg =

∑
(i,j)∈Nt

Yijπ̂ig∑
(i,j)∈Nt

π̂ig
Y ·t =

∑
(i,j)∈Nt

Yij
Nt

Marginal on uig Ŷ
(M)

·tg =

∑
(i,j)∈Nt

π̂igŶ
(M)
ijg∑

(i,j)∈Nt
π̂ig

Ŷ
(M)

·t =

∑
(i,j)∈Nt

∑G
g π̂igŶ

(M)
ijg

Nt

(compared to) Y ·tg =

∑
(i,j)∈Nt

Yijπ̂ig∑
(i,j)∈Nt

π̂ig
Y ·t =

∑
(i,j)∈Nt

Yij
Nt

where Ŷ (SS)
ijg = X>ij β̂g +Z>ij ûig are the class-speci�c predictions conditional on the random

e�ects, computed from ûig = E(uig|Yi, ci = g; θ̂G) the bayesian estimates of random e�ects,

and Ŷ (M)
ijg = X>ij β̂g are the class-speci�c predictions, marginal on the random e�ects. The

set Nt includes all pairs (i, j) such that the value Yij is observed at time tij = t or during

the tth interval if time is discretised.

As an example, when the assessment is made conditionally to the random e�ects and

conditionally to the latent class g, the weighted predicted mean Ŷ
(SS)

·tg at time t is com-

pared to the weighted observed mean Y ·tg.

Besides, the goodness-of-�t of survival predictions can be made by comparing the

weighted class-speci�c estimated survival functions
∑N

i=1 π̂igSi(t|ci = g; θ̂G) with the

weighted class-speci�c Kaplan Meier estimates.

Assessment of the conditional independence assumption

The joint latent class model relies on the assumption that the longitudinal and the survival

processes are independent conditionally to the latent classes. Lin et al. [2002] assessed this

assumption by using a weighted survival analysis adjusting for a function of the marker,

strati�ed on the posterior latent classes. To prescind from the posterior classi�cation,

Proust-Lima et al. [2009] proposed a test comparing the means of the standardized con-

ditional residuals of the marker given the event, Yi − E(Yi|Ti, δi), between censored and
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uncensored subjects. However, the power of this test depends on the dependence structure

between the marker and the time-to-event. Then, Jacqmin-Gadda et al. [2010] developed

a score test to detect any residual correlation between the marker and the time-to-event.

Under the alternative hypothesis H1, the survival sub-model depends on the nu-vector of

random e�ects uig from the longitudinal sub-model, conditionally to the latent class:

αi(t|ci = g; γg, γ
(a)) = α0g(t)exp(W

>
i γg + u>igγ

(a))

De�ning the score statistic by U =
∑N

i=1

∑G
g=1 π̂ig(δi−Aig(Ti))ûig, withAig(t) =

∫ t
0
αig(s)ds

the class-speci�c cumulative hazard, under the null hypothesis H0 : γ(a) = 0, the test

statistic U>Var(U)−1U follows a chi-squared distribution, with nu degrees of freedom. A

simulation study comparing the two last tests showed that the latter was more powerful.

Advantages and limits

The main advantage of the joint latent class approach is its �exibility to accommodate

heterogeneity and describe the pro�les of the outcome in the population. For instance,

in dementia applications, joint latent class models allow to distinguish di�erent homoge-

neous sub-groups and to describe the corresponding speci�c pro�les of cognitive decline

associated with speci�c pro�les of risk of dementia. Another asset is the possibility to test

class-speci�c e�ects of covariates. Nonetheless, when the model has a low discriminatory

ability, interpreting the latent classes becomes di�cult.

Secondly, through the use of a categorical latent structure, the model can approximate

any kind of association structures between the marker and the risk of the event with no a

priori, which makes it appropriate for predictions. Proust-Lima et al. [2014] highlighted

a substantial gain in predictive ability with a joint latent class model compared to a

joint shared-random-e�ect model, in the �rst years of prediction, in an application on

prostate speci�c antigene trajectory in prostate cancer. In return, the relationship between

the marker and the time-to-event cannot be described explicitly, and this might be a

shortcoming in an etiologic study.

The joint latent class approach has an additional strength: the correlation between

repeated measures of cognitive decline is di�erentiated from the correlation between the

longitudinal and the survival processes. Indeed, their relationship is entirely captured by

55



STATE OF THE ART

latent classes.

A computational advantage is the closed form of the likelihood, since both mixed

models and survival models have analytic likelihoods and the latent shared variable is

discrete. Thus, the likelihood can be maximised without approximations, bypassing the

computation of integrals over the distribution of the random e�ects. However, the likeli-

hood is multimodal so the model should be run from di�erent sets of initial values. The

model should also be run several times to select the optimal number of latent classes G.

As the sub-models are class-speci�c, the number of parameters may rise dramatically as

the number of latent classes increases. Assumptions of proportionality between classes

can be made in order to limit the number of parameters.

Finally, the conditional independence assumption is quite strong, but a similar as-

sumption is made for joint shared-random-e�ect models. The di�erence is that random

e�ects are continuous whereas latent classes are discrete. The conditional independence

assumption in joint latent class models can be assessed by the score test developed by

Jacqmin-Gadda et al. [2010].

Extensions of joint latent class models

In the joint latent class model, the longitudinal marker is assumed to be gaussian. When

this is not the case, the outcome can be pre-transformed to meet the normality assump-

tion but the standard transformations may not be suitable to any kind of continuous data.

Proust-Lima et al. [2009] extended the joint latent class model to handle non-gaussian con-

tinuous outcomes, by simultaneously estimating a parametric non-linear transformation

ψ. The transformed values of the marker are obtained by

ψ(Yij; η
(1), η(2), η(3), η(4)) =

h(Y r
ij; η

(1), η(2))− η(3)

η(4)
with h(Y r

ij; η
(1), η(2)) =

∫ Y r
ij

0 xη1−1(1− x)η2−1dx∫ 1

0
uη1−1(1− u)η2−1du

where Y r
ij is the rescaled version of Yij in [0,1]. This transformation is advantageous as

it o�ers a high �exibility of shapes with only 4 parameters [Proust-Lima et al., 2006].

Proust-Lima et al. [2014] presented other transformations to analyze discrete, asymmet-

ric or bounded data with joint latent class models.
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Besides, the joint latent class model was also extended to handle K markers, considered

as di�erent correlated measures of an underlying latent process Λi:

ψk(Yijk; ηk) = Λi(tijk) +X
(k)>
ij β(k) + αki + εijk (16)

for marker k = 1, ..., K, with αki ∼ N (0, σ2
αk

) and εijk ∼ N (0, σ2
εk

), independent from

εij′k with j′ 6= j and from αki. The model accounts for covariates X(k)
ij with possible

marker-speci�c e�ects β(k) called contrasts, and marker-speci�c inter-subject variability

via random e�ects αki. This model is detailed in section 3.2.4 in the framework of the

extension we propose, to handle competing risks and interval censoring. At last, joint

latent class models were extended to competing risks, as detailed in section 2.3.3.

In studies on the pre-diagnosis or general cognitive decline, joint latent class models

may be more appropriate than joint shared-random-e�ect models as they accommodate

heterogeneity in the population, but both would account for the correlation between the

longitudinal marker and the time-to-event. The next section presents di�erent approaches

to consider death when handling longitudinal data, possibly jointly to time-to-event data,

correlated with death.

2.3 Dealing with death

In cohort studies among the elderly, the follow-up is often interrupted by death. When

analyzing the change over time of a longitudinal marker, death must be di�erentiated

from any other causes of non-response as it is unrealistic to consider data beyond death.

However, when dealing with drop-out, the aim is to recover longitudinal response values

beyond the time-to-drop-out to describe the trajectory which would have been observed

with complete data.

Besides, when studying the risk of dementia, death may induce a dependent censoring

as it has common risk factors with dementia. Moreover, death should be considered

as a semi-competing risk as subjects living with dementia can die later while dementia

cannot occur after death. Finally, when the data are collected intermittently, death may

accentuate the interval censoring issue of time-to-dementia. As death have common risk
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factors with both the cognitive decline and dementia and as the risk of death increases

among cognitively impaired subjects and subjects with dementia, selection by death must

be carefully addressed in both longitudinal and time-to-event analyses as well as in joint

analyses of cognitive decline and dementia.

2.3.1 Death in longitudinal studies

Within the framework of longitudinal data truncated by death, di�erent models have

been suggested for regression analysis. They can be classi�ed into three categories: un-

conditional, partly conditional and fully conditional approaches. Kurland et al. [2009]

linked each of these with the corresponding research aims.

Unconditional models target the evolution of the marker among the immortal cohort,

i.e. as if subjects were not susceptible to die. The unconditional expectation can be ob-

tained by imputing missing values beyond death or by using methods that implicitly do

the same, such as likelihood-based methods (mixed models and joint models) through the

modeling of the intra-subject correlation, or weighted GEE, through the modeling of the

death process. When death is assumed to be the only cause of attrition, Kurland et al.

[2009] suggested that these models are appropriate only if death is independent from the

longitudinal marker or if death does not shorten the follow-up. Otherwise, unconditional

models estimate the averaged conditional expectation over the distribution of the time-

to-event: E(Yij) = E(Yij|Ti > tij)P (Ti > tij) + E(Yij|Ti 6 tij)P (Ti 6 tij).

Partly conditional models condition on being alive, targeting the expectation among

the dynamical cohort of survivors at each time-point [Dufouil et al., 2004]. In order not

to implicitly impute data after death, data collected for a same individual should be

considered as independent. When death is the only cause of non-response, Kurland and

Heagerty [2005] showed that estimates provided by GEE, with an independent working

covariance matrix, were appropriate for the partly conditional expectation whereas esti-

mates from likelihood-based methods or GEE, with a non-independent correlation matrix,

suited better the unconditional expectation. Several authors [Brayne et al., 1999; Dufouil

et al., 2004] concur that partly conditional estimands are the most relevant ones in anal-

yses of longitudinal data when the follow-up is interrupted by death.
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At last, fully conditional models condition on time-to-death. This category includes

pattern-mixture models [Little, 1995] and principal strati�cation models [Frangakis and

Rubin, 2002]. Pattern-mixture models estimate pro�les of evolution for di�erent strata,

de�ned by survival time. Such models are useful for example to demonstrate the terminal

decline before death, presented in the next sub-section. Principal strati�cation models

also de�ne strata, based on observed and counterfactual survival status.

In studies of longitudinal data, death must be considered as a methodological challenge

as it leads to a selection in the population, but it is obviously also of clinical importance.

This may be interesting to characterize the cognitive decline preceding death to better

highlight the cognitive decline preceding dementia.

2.3.2 Terminal decline

The terminal decline refers to an acceleration of cognitive decline before death, for

which evidence is well documented in the literature [Kleemeier, 1962; Siegler, 1975; Wil-

son et al., 2003]. The normal ageing process involves a cognitive alteration, but sharper

declines were observed in late life among deceased subjects as compared to those ob-

served among long-term survivors [Colsher and Wallace, 1991]. This pre-death decline

may not be completely related to age but also to an alteration of physical and health

states. Kleemeier [1962] formulated the hypothesis that risk factors of death could be

the cause of this pre-death cognitive decline and that the onset of this phase may be

predictable several years before.

Several studies then aimed at testing the hypothesis of an acceleration of the rate of

cognitive decline in the last years of life, as well as identifying the time of onset of this

acceleration. Wilson et al. [2003] used change-point random e�ect models and observed

a terminal decline starting 3 to 4 years prior to death, in the general population, with a

high variability in the rate of cognitive change. In contrast, survivors experienced a small

rate of cognitive decline, and an increase in some cognitive abilities was even reported.

Thorvaldsson et al. [2008] also used change-point mixed models and noticed a substantial

acceleration in cognitive decline from 6.6 to 14.8 years prior to death among individuals
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without dementia, depending on the cognitive ability involved, also with a high variability

in the rate of cognitive decline. Kurland et al. [2009] presented a terminal decline model,

with the time scale going backward from death, thus falling within the fully conditional

approach. However, this leads to a selection issue as the analysis is restricted to subjects

who died before the end of the study. At last, the joint modeling of the longitudinal

marker and the time-to-death bypasses this selection bias, but provides an indirect esti-

mation of the terminal decline through E(Y |T = t; θ̂), computed a posteriori.

It is of interest to di�erentiate the decline before death from the cognitive decline

before dementia. So far, the studies either considered the population without dementia

[Thorvaldsson et al., 2008] or quanti�ed the terminal decline among the general popula-

tion, without distinguishing the cognitive decline attributable to dementia and to death

without dementia [Wilson et al., 2003, 2007].

The sections 2.3.1 and 2.3.2 explicited the impact of death on longitudinal data anal-

yses and presented approaches for tackling this issue. However, death also censors time

to dementia onset in a likely informative way. Time-to-event analyses should thus also

account for death.

2.3.3 Death as a competing risk of dementia

Putter et al. [2007] reviewed the methods proposed for handling several correlated

causes of failure. The standard competing risk model, applied to dementia and death

without dementia, includes three states:

Figure 2.1: Competing risk Model.

The two transition intensities from the Health state to Death or Illness are de�ned by
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cause-speci�c proportional hazards models:

α0li(t) = lim∆t→0
P [t < Ti 6 t+ ∆t, δ

(l)
i = 1|Ti > t]

∆t
= α

(0)
0l (t)exp(X>0liγ0l) with l ∈ {1, 2}

with α
(0)
0l the cause-speci�c baseline hazard for the transition from the Health state to

state l (1 for Illness, 2 for Death), γ0l the cause-speci�c regression parameters associated

with covariates X0li and δ
(1)
i , δ(2)

i the dementia and death indicators respectively with

δ
(1)
i = δ

(2)
i = 0 if the subject is still alive without dementia at the end of the follow-up,

δ
(1)
i = 1 if he/she was diagnosed with dementia and δ(2)

i = 1 if he/she died. The likelihood

is written:

L(θ) =
N∏
i=1

L∏
l=1

α0li(Ti; θ)
δ
(l)
i Si(Ti; θ)

with θ the vector including the regression parameters. The overall survival function is

de�ned by Si(t) = exp(−
∫ t

0
(α01i(s) + α02i(s)ds) and stands for the probability to be free

of both events, i.e. to be alive without dementia at t. The estimators can be obtained by

maximisation of the partial likelihood when the baseline hazard function is not speci�ed.

The cumulative incidence of cause l is de�ned by:

F0li(t) = P [Ti 6 t, δ
(l)
i = 1] =

∫ t
0
Si(s)α0li(s)ds

Then, F0li(t) + F02i(t) + Si(t) = 1 at any time t. However, F0li(·) is not a proper distri-

bution function as limt→∞ F0li(t) = P (δ
(l)
i = 1) < 1, explaining the denomination of F0li

as 'sub-distribution' function. Cumulative incidences are easier to interpret than hazard

functions as they represent a probability. However, as the one-to-one relationship between

the cause-speci�c hazard α0li(·) and the cumulative incidence F0li(·) is lost with the cause-

speci�c multi-state model de�ned above, F0li(·) depends on all the cause-speci�c hazards.

Fine and Gray [1999] then proposed to model directly the e�ects of covariates on cumula-

tive incidences. However, within the framework of competing risk of death, the use of such

models may be questionable as they are based on the idea that subjects who experienced

the competing event (who died) are still at risk of the event [Andersen and Keiding, 2012].

Competing risks in joint models

In the joint shared-random-e�ect model, Elasho� et al. [2008] extended the joint shared-

random-e�ect model to Le competing causes of event, with cause-speci�c transition in-

tensities depending on the characteristics of the longitudinal trajectory:

61



STATE OF THE ART

α0li(t) = α
(0)
0l (t)exp(X>0liγ0l + h(ui, t)

>η0l) with l ∈ {1, ...,Le} (17)

with h(·) a function of the random e�ects from the mixed model and α0li(·) the baseline

transition intensity of the lth event. Conditionally to the random e�ects ui, the marker

and the Le causes of failure are assumed to be independent. The likelihood is maximised

via the EM algorithm. Proust-Lima et al. [2016] also extended joint latent class models

to multiple competing risks:

α0li,g(t) = α
(0)
0l,g(t)exp(X

>
0li,gγ0l,g) with l ∈ {1, ...,Le} and g ∈ {1, ..., G}

In this model, the marker and the events are assumed to be independent, conditionally

to the classes.

Dantan et al. [2011] proposed a joint illness-death shared-random-e�ect model with

a random change-point in the mixed sub-model to account for the non-linear cognitive

decline before dementia diagnosis. The change-point de�nes the beginning of a phase

of accelerated cognitive decline preceding dementia. In this model, the risk of death is

assumed independent from the previous state (Health, Pre-diagnosis or Illness) given the

current marker value. At last, Ferrer et al. [2016] generalized the joint shared-random-

e�ect model to multiple (i.e. more than 2) transitory or absorbing states, with all the

transition intensities modeled by proportional hazards models, as functions of the random

e�ects from the longitudinal sub-model.

These joint models handle the competing risk of death and distinguish the impact of

risk factors on dementia and death. However, they should not be used when the time-to-

event is interval-censored as the status is not known at any time until the time-to-death

or to right censoring.

2.4 Methods for interval-censored time-to-event data

In cohort studies on dementia, the time to dementia onset is interval-censored as

subjects can be diagnosed with dementia at visit times only. Thus, the time of onset

of the disease is comprised in an interval ]Ji;Ri], with Ji the last visit before the event
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occurs and Ri the �rst visit after the event [Finkelstein, 1986; Kalb�eisch and Prentice,

2002]. The methods detailed below rely on the assumption that the visit process is non-

informative [Self and Grossman, 1986; Zhang et al., 2005].

2.4.1 Single interval-censored event

The standard method consists in imputing the time to illness onset by the middle of

the censoring interval [Law and Brookmeyer, 1992; Helmer et al., 2001] or by the time to

diagnosis [Al Hazzouri et al., 2011]. However, these approximations may lead to biased

estimations [Freitag et al., 2006; Odell et al., 1992] and Kim [2003] showed that standard

errors were likely under-estimated, depending on the length (and variability of lengths

among individuals) of censoring intervals.

Sun [2007] reviewed the di�erent approaches proposed to handle interval-censored

data. Finkelstein [1986] extended the Cox proportional hazards model, considering time

as dicrete. The likelihood, written as:

L =
N∏
i=1

[P (Ti > Ji|Xi)− P (Ti > Ri|Xi)]

is maximised by the EM algorithm. Huang and Wellner [1997] showed that the maximum

likelihood estimators were asymptotically normal and e�cient. This model was extended

to left-truncated data in continuous time by Alioum and Commenges [1996], accounting

for the fact that subjects are not included in the study from birth but along life, provided

they are still free of dementia. The likelihood is computed conditionally to the entry

time, under the assumption that this entry time is independent from the time-to-disease.

Joly et al. [1998] proposed to model the hazard function either parametrically or semi-

parametrically via M-splines, for avoiding any a priori speci�cation of its form. In the

latter case, the likelihood was penalized, based on the norm of its second derivative, in

order to provide smooth transition intensities.

Other parametric models have been proposed for handling interval-censored data, such

as the proportional odds model [Huang and Rossini, 1997], the logistic model [Sun, 1997],

the accelerated failure model [Betensky, 2001] or the additive hazards model [Zeng et al.,

2006].
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2.4.2 Semi-competing risks with interval censoring

When death is a competing risk, the interval censoring issue gets more critical as

death may occur during the interval ]Ji;Ri]. Thus, the disease status of the subject at

time-to-death is unknown.

In the standard cause-speci�c approach for competing risks, the time to disease on-

set is censored at time-to-death. However, this approach may over-estimate the risk of

dementia, considering subjects at risk of dementia until their death. On the other hand,

censoring the time-to-disease at the last visit may under-estimate the risk of dementia

since the subjects with dementia have a higher risk to die.

Joly et al. [2002] considered a multi-state model with three states (Health, Illness,

Death on Figure 2.2), where the transition intensity from state k to state l is modeled by

a proportional hazards model:

αkli(t) = α
(0)
kl (t)exp(X>kliγkl) with (k, l) ∈ {(0, 1), (0, 2), (1, 2)}

Figure 2.2: Illness-death Model.

The likelihood accounts for interval censoring, by considering a possible unobserved

transition to dementia for any subject seen free of dementia at their last visit Ji, with

information on vital status collected later, at Ti > Ji. This is the case of all subjects who

died, as the dementia status is not known at their time-to-death. This would also be the

case of a subject who answered at the phone but could not be visited such that his/her

vital status is known whereas his/her dementia status is not.
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The individual contribution to the log-likelihood can be written as follows:

Li =log
[
δAi

∫ Ri

Ji

p00i(0, u)α01i(u)p11i(u, Ti)du α12i(Ti)
δDi (18)

+ (1− δAi )
(
p00i(0, Ti)α02i(Ti)

δDi +

∫ Ti

Ji

p00i(0, u)α01i(u)p11i(u, Ti)du α12i(Ti)
δDi

)]
with δAi = 1 if the subject is diagnosed with dementia and 0 otherwise, and δDi = 1 if

the subject died before the end of the follow-up and 0 otherwise. The probability plli(s, t)

represents the probability that subject i stays in state l between times s and t. Thus,

p00i(0, t) is the probability that he/she is alive without dementia at t.

The transition intensities can be modeled by Weibull or M-splines functions. The

likelihood, possibly penalized, is maximised via the Levenberg-Marquardt algorithm [Lev-

enberg, 1944; Marquardt, 1963] which combines the Newton-Raphson algorithm and the

Gradient descent algorithm. The R SmoothHazard package [Touraine et al., 2016] was

made available to �t such model.

Le�ondré et al. [2013] compared the illness-death model to the Cox model on simu-

lated interval-censored time-to-event data,within the framework of semi-competing risk of

death. They showed that the illness-death model performed better than the Cox model

when the exposure was linked to both the event of interest and death. Moreover, the

illness-death model does not require to rede�ne arbitrarily the event of interest (imputing

the time at the last visit or the middle of the censoring interval) nor the censoring event

(time at the last visit or time-to-death), contrary to the survival model [Boucquemont

et al., 2014].

Interval censoring in joint models

In the joint shared-random-e�ect framework, Gueorguieva et al. [2012] handled competing

risks where all the time-to-events were interval-censored. However, the type of failure was

known for each subject who experienced an event as they considered strict competing

events and not semi-competing ones. In Dantan's joint model, the interval-censored time

to dementia onset was imputed by the middle of the censoring interval. With this ap-

proximation, interval censoring was no more an issue because under the assumption that

the transition intensities to death do not depend on the previous state, conditionally to
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the current true value of the marker, the naïve likelihood and the likelihood accounting

for interval censoring are equivalent.

In the joint latent class framework, no developments permitted to handle interval

censoring so far. In the next section, we present a joint latent class model to handle

a longitudinal marker correlated to an event, accounting for interval censoring of the

time-to-event when death is a semi-competing event.
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SUMMARY. Joint models are used in ageing studies to investigate the association between

longitudinal markers and a time-to-event, and have been extended to multiple markers and/or

competing risks. The competing risk of death must be considered in the elderly because death and

dementia have common risk factors. Moreover, in cohort studies, time-to-dementia is interval-

censored because dementia is assessed intermittently. So subjects can develop dementia and die

between two visits without being diagnosed. To study pre-dementia cognitive decline, we propose

a joint latent class model combining a (possibly multivariate) mixed model and an illness-death

model handling both interval censoring (by accounting for a possible unobserved transition to

dementia) and semi-competing risks. Parameters are estimated by maximum likelihood han-

dling interval censoring. The correlation between the marker and the times-to-event is captured

by latent classes, homogeneous sub-groups with speci�c risks of death, dementia and pro�les

of cognitive decline. We propose markovian and semi-markovian versions. Both approaches

are compared to a joint latent-class model for competing risks through a simulation study, and

applied in a prospective cohort study of cerebral and functional ageing to distinguish di�erent

pro�les of cognitive decline associated with risks of dementia and death. The comparison high-

lights that among subjects with dementia, mortality depends more on age than on duration

of dementia. This model distinguishes the so-called terminal pre-death decline (among healthy

subjects) from the pre-dementia decline.

KEYWORDS. Illness�death; Interval censoring; Joint model; Mixed model; Semi-competing

risks.

67



JLCM FOR COMPETING INTERVAL-CENSORED EVENTS

3.1 Introduction

Joint models are becoming increasingly popular as they allow an analysis of the asso-

ciation between the risk of an event and the change over time of a longitudinal marker

[Tsiatis and Davidian, 2004; Rizopoulos, 2012]. In a cognitive ageing study, the link be-

tween cognitive decline and dementia needs to be understood to better describe the course

of the disease in the pre-diagnostic stage, and to develop prediction tools for the risk of de-

mentia. Moreover, modeling the evolution of cognitive markers without modeling jointly

the risk of dementia may lead to biased estimations of the change over time of the marker

as the collection of cognitive measures is often stopped after dementia onset (or subjects

leave the cohort), inducing non-random missing data. Joint models correct for this bias

by accounting for the association between the marker and the time-to-event.

Wulfsohn and Tsiatis [1997] proposed shared-random-e�ect models where a function

of the random e�ects from the longitudinal model is included in the survival model, thus

capturing the correlation between the time-to-event and the marker. The risk of the event

is then partly explained by the individual dynamics of the marker trajectory. An alterna-

tive is the joint latent class mixed model, developed by Lin et al. [2002] which considers

a heterogeneous population, divisible into several homogeneous latent sub-groups, with a

speci�c risk of the event and a speci�c evolution of the marker.

When studying the risk factors of dementia, it is important to account for the com-

peting risk of death as dementia and death have common risk factors. Elasho�, Li and

Li [2008] and Williamson et al. [2008] proposed shared-random-e�ect models accounting

for competing risks and Proust-Lima, Dartigues and Jacqmin-Gadda [2016] developed

a joint latent class model for competing risks to study multiple longitudinal markers of

di�erent natures. However, studies of the risk of dementia are made more di�cult by the

interval censoring of time-to-dementia. Indeed, in cohort studies, patients are observed

intermittently and the age at dementia onset is not precisely known as dementia can only

be diagnosed at clinical follow-up visits. This induces an interval of uncertainty between

the last visit where the patient has been seen to be healthy and the visit where a diagnosis

was made. More importantly, a patient can develop dementia and die between two visits
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without being diagnosed with dementia. Consequently, the risk of dementia may be un-

derestimated when interval censoring is not accounted for. This is the case, for example,

when considering only the �rst observed event in the standard competing risks model.

Joly et al. [2002] proposed an illness-death model to �x this issue but it has not yet been

implemented in a joint model. The illness-death model is well adapted for modeling semi-

competing events such as death and dementia. These events are semi-competing because

the risk of dementia is null after death but death can occur after dementia.

To our knowledge, only one joint model combining a multi-state model and a mixed

model for a longitudinal marker has previously been proposed. Within the framework

of the shared-random-e�ect approach, Dantan et al. [2011] described a joint model com-

bining a two-phase mixed model with a random change-point and a multi-state model.

The underlying clinical idea was an acceleration of the cognitive decline before dementia

onset, which was modeled by a second phase with a di�erent slope in the mixed model.

In this model, interval censoring was not a critical issue as death depended on the current

value of the marker and not on the current state.

In this work, we propose a joint latent class illness-death model for semi-competing

interval-censored events and a longitudinal marker. We developed two versions of the

model, a markovian and a semi-markovian versions, as well as an extension for the joint

analysis of multiple longitudinal markers. In the following section, we detail the model

and the estimation procedure that are then evaluated in a simulation study in section 3.

In section 4, the model is applied to study cognitive decline before dementia and death

using data from the French Paquid cohort, including 3,777 subjects followed over 20 years

with regular cognitive evaluation.

3.2 Methods

Notations

Let Yij denote the score of the psychometric test for subject i (i = 1, ..., N) at time

tij (j = 1, ..., ni). We denote by TAi the unobserved age at dementia onset and TDi

the age at death. We assume that age at dementia onset is interval-censored while age
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at death is only right-censored as exact ages of death are generally collected in cohort

studies. Thus, Di denotes the vector of collected variables for the times-to-events: Di =

(T0i, Li, Ri, δ
A
i , Ti, δ

D
i )> where T0i is the age at inclusion, Li is the age at the last visit

where the subject has been seen to be healthy, Ri is the age at the visit of diagnosis if the

subject was diagnosed with dementia (Ri = +∞ if not diagnosed), Ti is the age at death

or at the end of the follow-up, δAi is the indicator of dementia diagnosis (δAi = 1 if Ri ≤ Ti

and 0 otherwise) and δDi is the indicator of death (δDi = 1 if TDi = Ti and 0 otherwise).

3.2.1 Joint latent class illness-death model

The model relies on the hypothesis that the population is heterogeneous and can be

divided into G homogeneous latent classes. Each class has speci�c transition intensities to

dementia and death and a speci�c marker trajectory, as displayed in Figure 3.1. A central

assumption states that the marker and the times-to-events are independent conditionally

on the classes and covariates.

Figure 3.1: Joint latent class illness-death model: the latent classes correspond to homogeneous

sub-groups of subjects with a speci�c marker trajectory and speci�c transition inten-

sities to dementia and death. Ovales indicate latent quantities and squares indicate

observed quantities.

We �rst describe the probability πig, for subject i, of belonging to class g (g = 1, ..., G)
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with a multinomial logistic model:

πig = P (ci = g) =
exp(X

(P)>
i ζg)∑G

m=1 exp(X
(P)>
i ζm)

(19)

The latent class membership variable ci is ci = g if subject i belongs to class g and X(P)
i ,

where P stands for probability, is a vector including covariates at baseline and the inter-

cept. We choose class G as the reference class so that ζG = 0 to ensure identi�ability. The

vector ζg contains the log odd ratios of the explanatory variables for belonging to class g

versus class G.

We denote by Λ(·) the latent process which stands for the true cognitive level. The

conditional distribution of Λ(t) given the latent class is de�ned by a mixed model, without

residual error, with class-speci�c parameters:

Λi(tij) = f1(Xij; βg) + f2(Zij; βg) uig, (20)

where Xij is a vector of covariates for subject i at time tij, βg is the vector of class-

speci�c regression parameters and Zij is a sub-vector of Xij. Given class g, the vector

of random e�ects uig is N (0, σ2
gB) with σ2

G = 1 and B a positive de�nite matrix. We

denote by U the Cholesky transformation of matrix B, which is a lower triangular matrix

satisfying UU> = B. The functions f1 and f2 can include nonlinear functions of time,

covariates and regression parameters. This formulation especially encompasses both the

linear mixed model with polynomial time-trend and models with a class-speci�c change-

point, both linear in the random e�ects. Note that f1(Xij; βg) is a scalar while f2(Zij; βg)

is a row nu-vector with nu the number of random e�ects. The marker Yij is considered as

a measure with error of the latent process Λi(tij) at time tij:

Yij = Λi(tij) + εij with εij ∼ N (0, σ2
e). (21)

Simultaneously, the transition intensities to dementia and death are modeled using

an illness-death model with three class-speci�c transition intensities (Figure 3.1). We

propose both a markovian and a semi-markovian models.
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3.2.2 Markovian model

Given the latent class g, the transition intensity from state k to state l depends on

age t and it is modeled by a proportional hazards model with class-speci�c parameters:

αklig(t) = α0
klg(t) exp(W>

kli γklg), (22)

where α0
klg is the baseline transition intensity (modeled by Weibull or M-splines functions

with equidistant nodes or nodes at quantiles in our program), Wkli is a vector of time-

independent covariates and γklg are class-speci�c regression parameters. The cumulative

transition intensities are denoted by Aklig(t) =

∫ t

0

αklig(s)ds.

3.2.3 Semi-markovian model

Alternatively, the transition intensity to death among subjects with dementia may

depend on the time spent in the Dementia state instead of age, leading to a semi-markovian

illness-death model:

α12ig(t, T
A
i ) = α12ig(t− TAi ) = α0

12g(t− TAi ) exp(W>
12i γ12g), (23)

where TAi is the age at dementia onset so (t−TAi ) is the time spent in the Dementia state.

The other two transition intensities depend on age only.

3.2.4 Log-likelihood of the markovian model

Let θG denote the vector including the regression, variance and baseline transition

intensities parameters. The contribution Li of any subject i to the global log-likelihood

L(θG) is the weighted sum over the G classes of his/her class-speci�c contributions. Ac-

cording to the conditional independence assumption, the individual contribution to the

log-likelihood given the class is the product of the conditional contributions to the mixed

model and to the multi-state model. The model also accounts for delayed entry, the sec-

ond part of Eq.24 representing the probability of being alive and healthy at entry, which

is the condition for inclusion in the sample.
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L(θG) =
N∑
i=1

Li =
N∑
i=1

log
[ G∑
g=1

πigf(Yi|ci = g; θG)P (Di|ci = g; θG)
]

−
N∑
i=1

log
[ G∑
g=1

πig e−A01ig(T0i;θG)−A02ig(T0i;θG)
]

(24)

where Yi = (Yi1, ..., Yini
)> with ni the number of repeated measures of subject i,

f(Yi|ci = g; θG) is a multivariate gaussian density with meanEig = [f1(Xi1; βg), ..., f1(Xini
; βg)]

>

and variance matrix Vig = σ2
g F2igBF

>
2ig + σ2

eIni
with F2ig the (ni × nu)-matrix with lines

given by f2(Zij; βg). Then, P (Di|ci = g; θG) is detailed below for each possible observation

pattern for death and dementia illustrated in Figure 3.2.

Figure 3.2: Possible observation patterns for dementia and death. To obtain a more �exible

program, we also implemented the computation of the likelihood for subjects with

an exact date of dementia onset (Li = Ri) although this date was never known in

our dataset.

� Subject diagnosed with dementia (cases 1 and 2, Figure 3.2):

P
(d)
ig (T0i, Li, Ri, 1, Ti, δ

D
i ; θG) =

∫ Ri

Li

e−A01ig(u) e−A02ig(u) α01ig(u) e−(A12ig(Ti)−A12ig(u)) α12ig(Ti)
δDi du

The subject remained healthy and alive until age u between Li and Ri, developed demen-

tia at u, remained alive until Ti and possibly died at Ti (if δDi = 1).
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� Subject observed healthy at the end of the follow-up (cases 3 and 4, Figure 3.2):

P
(h)
ig (T0i, Li, Ri, 0, Ti, δ

D
i ; θG) = e−A01ig(Ti)−A02ig(Ti) α02ig(Ti)

δDi

The subject remained healthy and alive until Ti and possibly died at Ti. Case 4 corre-

sponds to subjects healthy at the last visit and with no information on vital status after

this visit. Case 3 is not observed in the Paquid study because subjects never die the very

day of the visit. Consequently, we can never be totally sure that a subject who died was

free of dementia. Nevertheless, this case may be observed for other diseases.

� Subject with unknown dementia status at the end of the follow-up (cases 5 and 6,

Fig.3.2):

P
(u)
ig (T0i, Li, Ri, 0,Ti, δ

D
i ; θG) = e−A01ig(Ti)−A02ig(Ti) α02ig(Ti)

δDi

+

∫ Ti

Li

e−A01ig(u)−A02ig(u) α01ig(u) e−(A12ig(Ti)−A12ig(u)) α12ig(Ti)
δDi du

The term P
(u)
ig accounts for the two possible trajectories: either the subject remained

healthy until the end of the follow-up Ti (and possibly died), or he/she developed dementia

between the last visit Li, where he/she was observed healthy, and Ti. If so, the subject

remained healthy and alive until age u between Li and Ti, developed dementia at u,

remained alive until Ti and was lost to follow-up or died at Ti.

The likelihood of the semi-markovian model is detailed in Web Appendix A.

Optimisation algorithm

The maximum likelihood estimators are obtained for a �xed number of classes G by a

Newton-Raphson-like algorithm [Marquardt, 1963]. If necessary, at each iteration p, the

Hessian matrix H(p) is diagonal-in�ated to obtain a positive de�nite matrix H∗(p). The

vector of parameters is then updated by θ(p+1)
G = θ

(p)
G − κ U(θ

(p)
G )>[H∗(p)]−1U(θ

(p)
G ) with

U(θ
(p)
G ) the gradient at iteration p and κ the improvement control parameter, optimized

using a line search strategy. The convergence criteria are reached when the squared eu-

clidean distance between the estimates of two consecutive iterations, the absolute change

in the log-likelihood as well as the most stringent criterion U(θ
(p)
G )>[H(p)]−1U(θ

(p)
G )

nparam
are less

than 10−3, 10−3 and 10−2 respectively, with nparam the total number of parameters. The

variances of the estimates are obtained with the inverse of H(p). For each value of G, the

estimation process is repeated with di�erent initial values to ensure convergence. Finally,
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the number of classes G is chosen by minimising the Bayesian Information Criterion (BIC)

[Schwartz, 1978].

Extension to multiple non-gaussian markers

The model can be extended to the analysis of K non-gaussian markers as in Proust-

Lima et al. [2009]. In psychometrics, cognitive tests are frequently considered as quantita-

tive variables, with asymmetric distributions and ceiling or �oor e�ects. Moreover, as all

these tests measure cognition, they may be considered as measures with error of a com-

mon latent process that stands for the true latent cognitive level underlying the various

tests. A parametric monotonic function Ψk(·, ηk), such as a Beta cumulative distribution

function or a linear combination of spline functions, with ηk a vector of marker-speci�c

parameters, can then be used to model the link between the observed markers Yijk and

the latent process Λ(tijk):

Ψk(Yijk; ηk) = Λi(tijk)+X
(k)>
ij β(k)+αki+εijk with αki ∼ N (0, σ2

αk
), εijk ∼ N (0, σ2

ek
) (25)

The random intercept αki captures the marker-speci�c inter-individual variability. Note

that for more �exibility, the model (25) may also include marker-speci�c e�ects β(k) of

some covariates X(k)
ij . Consequently, we can de�ne transformed scores Ỹijk for test k and

subject i at time tijk, for i = 1, ..., N, j = 1, ..., nik and k = 1, ..., K, on the scale of the

latent process:

Ỹijk = Ψk(Yijk; ηk) (26)

The log-likelihood is then de�ned by:

L(θG) =
N∑
i=1

log
( G∑
g=1

πigΦg(Ỹi|ci = g; θG)
[ K∏
k=1

nik∏
j=1

J(Ψk(Yijk; ηk))
]
P (Di|ci = g; θG)

)
−

N∑
i=1

log
[ G∑
g=1

πig e−A01ig(T0i;θG)−A02ig(T0i;θG)
]

=
N∑
i=1

log
[ G∑
g=1

πigΦg(Ỹi|ci = g; θG) P (Di|ci = g; θG)
]

+
N∑
i=1

K∑
k=1

nik∑
j=1

log
[
J(Ψk(Yijk; ηk))

]
−

N∑
i=1

log
[ G∑
g=1

πig e−A01ig(T0i;θG)−A02ig(T0i;θG)
]
,

where J(·) is the Jacobian, Φg(Ỹi|ci = g; θG) is the multivariate gaussian density for

the vector of transformed scores for subject i with mean Eig = (E>i1g, ..., E
>
iKg)

> and the
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elements of Eikg are Eijkg = f1(Xijk; βg) + X
(k)>
ij β(k), with Xijk the vector of covariate

values at time tijk, and variance matrix:

Vig =


F

(1)
2ig

...

F
(K)
2ig

σ2
gB

(
F

(1)>
2ig ... F (K)>

2ig

)
+


σ2
α1
Jni1

+ σ2
e1
Ini1

0 0

0
. . . 0

0 0 σ2
αK
JniK

+ σ2
eK
IniK

 ,

where F (k)
2ig is the matrix with row vectors f2(Zijk; βg), with Zijk the vector of covariates

of Eq.20 at time tijk and Jn is the square matrix of size n with all elements equal to 1.

3.2.5 Goodness-of-�t

Once the parameters are estimated, we can compute the individual posterior proba-

bility of belonging to class g,

P (ci = g|Yi, Di; θ̂G) =
π̂ig f(Yi|ci = g; θ̂G) P (Di|ci = g; θ̂G)∑G

m=1 π̂imf(Yi|ci = m; θ̂G) P (Di|ci = m; θ̂G)
, (27)

and subjects are assigned to the class with the highest probability. First, we propose

to assess the goodness-of-�t of the longitudinal predictions, conditional on the classes.

To do so, we split the timescale into �ve-year age groups [τq, τq+1]. For each class g, we

then compare the class-speci�c predicted mean evolution of the marker, weighted by the

posterior class membership probability

µ̂gq =

∑
(i,j)|τq<tij<τq+1

E(Yij|ci = g; θ̂G) P (ci = g|Yi, Di; θ̂G)∑
(i,j)|τq<tij<τq+1

P (ci = g|Yi, Di; θ̂G)
,

to the observed mean evolution weighted by the same posterior probability:

µ̂(o)
gq =

∑
(i,j)|τq<tij<τq+1

Yij P (ci = g|Yi, Di; θ̂G)∑
(i,j)|τq<tij<τq+1

P (ci = g|Yi, Di; θ̂G)

The assessment can also be done conditionally on the random e�ects, comparing µ̂(o)
gq to

µ̂(u)
gq =

∑
(i,j)|τq<tij<τq+1

E(Yij|ci = g, ûig; θ̂G) P (ci = g|Yi, Di; θ̂G)∑
(i,j)|τq<tij<τq+1

P (ci = g|Yi, Di; θ̂G)

with ûig = E(ui|Yi, ci = g; θ̂G) the Bayesian estimates of the random e�ects given class g.
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Secondly, to evaluate the goodness-of-�t of the parametric illness-death model, we

compare the predicted class-speci�c cumulative incidences of the three transitions to the

class-speci�c predictions obtained by a semi-parametric illness-death model [Touraine,

Helmer and Joly, 2013], both marginal on the covariates. Each transition intensity is

modeled by a proportional hazards model with baseline transition intensities modeled

by M-splines and estimated by penalized likelihood. The contribution to the likelihood

of any subject i is weighted by the individual posterior probability P (ci = g|Yi, Di; θ̂G)

obtained by the joint latent class illness-death model. Note that the compared cumulative

incidences for transitions 0-1 and 0-2 are computed given that the subject is alive and

healthy at age 65, and the cumulative incidence for transition 1-2 is estimated given that

the subject developed dementia at 65 and is alive at age 65, as follows:

F0lg(t) =

∫ t

65

e−A01g(u)−A02g(u) α0lg(u)du

e−A01g(65)−A02g(65)
, F12g(t) =

∫ t

65

e−A12g(u) α12g(u)du

e−A12g(65)
l = 1, 2

3.3 Simulations

Design

We carried out simulations in order to evaluate the estimation procedure and compare

the estimations with those obtained using a joint latent class model for competing events

that does not account for interval censoring.

Data were generated with a model with 2 latent classes and membership probability

π1 = 0.5 (ζ1 = 0) for the �rst class. Of note, π1 represents the probability of belonging to

the �rst class in the general population. As we only include in the cohort subjects who

were healthy and alive at the �rst visit, we introduce a selection bias. The proportion

of each class in the selected sample may then be di�erent. For each subject, age at

entry is generated from a uniform distribution on [65,85]. Age at dementia onset and age

at death (for healthy subjects and subjects with dementia) are generated from Weibull

distributions with class-speci�c parameters (shape parameter λ(1)
klg and scale parameter

λ
(2)
klg for transition intensity from state k to state l in class g). The transition intensities

account for a common e�ect of a binary covariate X, also generated from a binomial
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distribution with parameter 0.5:

αklig(t) = λ
(1)
klg λ

(2)
klg

λ
(1)
klg
t(λ

(1)
klg−1) eγklXi for k = 0, 1; l = 1, 2; g = 1, 2 (28)

The scores of the psychometric test are generated by a linear mixed model including

�xed and random e�ects on the intercept and the slope, with an adjustment for the

covariate X, common over the classes:

Yij = β0g + β1g t̃ij + u
(0)
ig + u

(1)
ig t̃ij + βX Xi + εij, uig ∼ N (0, σ2

gB), εij ∼ N (0, σ2
e) (29)

where t̃ is a scaled transformation of age t : t̃ = t−65
10

. Two designs of follow-up were

generated: the follow-up visits were scheduled either every 2 or 4 years from inclusion

to the minimum between the visit following dementia onset, death or the administra-

tive right-censoring which is 20 years after inclusion. For each design, we generated 500

samples of 500 subjects. The simulated parameters were similar to the ones obtained

by a joint markovian illness-death model with two latent classes on the Paquid dataset,

without any linear transformation Ψ. We de�ne the age at diagnosis as the age at the

�rst visit following dementia onset if the generated age at death is older. Subjects who

die before this next visit are considered as censored for dementia at the last visit before

dementia onset.

On average, over the 500 samples simulated within the two-year visit interval frame-

work, 23% of the subjects were observed with dementia, 17.7% died after dementia diag-

nosis and 62% died without dementia diagnosis. An average of 33.8% were allocated to

the �rst class, of which 33.8% were observed with dementia, 65.3% died with no dementia

diagnosis and 30.9% died after dementia diagnosis. In the second class, 17.9% were seen

with dementia, 60.5% died with no dementia diagnosis and 10.9% died after dementia

diagnosis.

We also estimated a joint latent class model for competing risks, which does not ac-

count for interval censoring, on the same simulated data. In the standard competing risks

framework, the outcome is a couple (T , δ) with T the time to the �rst event or the censor-

ing time and δ the indicator of the cause of the �rst event (δ = 1 if observed with dementia,

δ = 2 if dead and δ = 0 if censored). The estimation of this model on interval-censored
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data requires to impute this couple (T , δ) for some subjects. If the subject is observed

with dementia before death, the recorded transition is the Health-Dementia transition at

age of diagnosis. If the subject dies before the dementia diagnosis, we consider that the

Health-Death transition occurs at age of death and time-to-dementia is censored at age

of death.

Results

Table 3.1 displays the results of the simulation study for (a) visits every 2 years, (b)

visits every 4 years, for the joint latent class model for interval-censored semi-competing

events on the left and for the joint latent class model for standard competing risks on the

right.

For the model accounting for interval censoring and visits every two years, the top

left part of Table 3.1 shows small biases and good coverage rates of the 95% con�dence

interval for the 25 parameters except for the two scale parameters of the Dementia-Death

transition, λ(2)
121 and λ(2)

122, which have lower coverage rates because their standard errors

are underestimated. This may be due to the small number of observed transitions from

dementia to death, in these 500-subject samples. Indeed, the simulations made on 1000

subjects and presented in Web Table 3.3 show better coverage rates.

With visits every four years, the model accounting for interval censoring provides un-

biased estimators which have higher variances, especially for the illness-death parameters,

as the number of unobserved transitions increases when the censoring interval gets bigger.

Indeed, 12.8% of the subjects with dementia were not observed within the two-year visit

interval while 24.3% were unobserved with a censoring interval of four years.

When comparing these results with the estimators of the model with competing risks,

we observe higher biases for the shape parameters for the transition toward dementia in

both classes (λ(1)
011 and λ

(1)
012), and toward death (λ(1)

021) as well as an underestimation of the

standard errors of the four parameters for the transition toward dementia. These trends

are more pronounced for the 4-year-visit-interval data (see part (b) in Table 3.1), leading

to poor coverage rates that worsen further when the sample size increases (see part (b)

Web Table 3.3 for N=1000).
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(a) Visits every 2 years

Joint illness-death model∗

β β̂ ASE ESE Cover Rate

Class Membership ζ1 0.00 0.04 0.2949 0.3208 0.95

Baseline transition intensities of events λ
(1)
011 3.20 3.23 0.4392 0.4908 0.93

λ
(1)
012 3.50 3.58 0.3863 0.4333 0.95

λ
(2)
011 0.11 0.11 0.0017 0.0027 0.96

λ
(2)
012 0.10 0.10 0.0009 0.0009 0.92

λ
(1)
021 3.50 3.54 0.3476 0.3680 0.94

λ
(1)
022 3.40 3.44 0.2324 0.2493 0.93

λ
(2)
021 0.11 0.11 0.0008 0.0010 0.93

λ
(2)
022 0.10 0.10 0.0006 0.0006 0.94

λ
(1)
121 2.78 2.85 0.5938 0.6210 0.92

λ
(1)
122 3.14 3.30 0.6908 0.7144 0.92

λ
(2)
121 0.12 0.12 0.0138 0.0224 0.84

λ
(2)
122 0.11 0.11 0.0064 0.0091 0.85

Event covariates γ01 0.02 0.03 0.2308 0.2323 0.95

γ02 0.67 0.69 0.1514 0.1525 0.97

γ12 0.47 0.49 0.2737 0.3104 0.92

Latent process β01 30.22 30.27 0.7851 0.8325 0.93

β02 32.96 32.98 0.5162 0.5276 0.95

β11 -5.76 -5.76 0.5678 0.5921 0.93

β12 -3.53 -3.51 0.2029 0.2038 0.94

βX 0.08 0.03 0.4495 0.4660 0.94

Cholesky transformation U(1,1) 4.93 4.88 0.2924 0.2820 0.95

of the B matrix U(1,2) -1.15 -1.11 0.2069 0.1992 0.96

UU> = B U(2,2) 1.46 1.42 0.1392 0.1385 0.95

Measurement error σe 3.47 3.47 0.0515 0.0534 0.91

∗based on 492 samples with convergence criteria ful�lled

Joint competing risks model∗

β β̂ ASE ESE Cover Rate

ζ1 0.00 -0.19 0.4384 0.5344 0.91

λ
(1)
011 3.20 3.04 0.5571 0.6202 0.94

λ
(1)
012 3.50 3.09 0.3999 0.4444 0.80

λ
(2)
011 0.11 0.11 0.0099 0.0397 0.94

λ
(2)
012 0.10 0.10 0.0354 0.0572 0.97

λ
(1)
021 3.50 3.69 0.3421 0.3477 0.92

λ
(1)
022 3.40 3.42 0.2162 0.2354 0.93

λ
(2)
021 0.11 0.11 0.0008 0.0008 0.85

λ
(2)
022 0.10 0.10 0.0006 0.0006 0.92

γ01 0.02 -0.08 0.2145 0.2157 0.93

γ02 0.67 0.66 0.1456 0.1471 0.95

β01 30.22 30.05 0.9237 0.9604 0.94

β02 32.96 32.82 0.5106 0.5133 0.94

β11 -5.76 -6.04 0.6569 0.6606 0.94

β12 -3.53 -3.53 0.1988 0.1988 0.95

βX 0.08 0.06 0.4479 0.4698 0.94

U(1,1) 4.93 4.85 0.2994 0.2914 0.94

U(1,2) -1.15 -1.10 0.2081 0.1991 0.95

U(2,2) 1.46 1.43 0.1391 0.1389 0.94

σe 3.47 3.47 0.0515 0.0535 0.94

∗based on 497 samples with convergence criteria ful�lled

(b) Visits every 4 years

Joint illness-death model∗

β β̂ ASE ESE Cover Rate

Class Membership ζ1 0.00 0.05 0.3563 0.3961 0.95

Baseline transition intensities of events λ
(1)
011 3.20 3.24 0.5170 0.5556 0.93

λ
(1)
012 3.50 3.57 0.4232 0.4842 0.93

λ
(2)
011 0.11 0.11 0.0033 0.0053 0.96

λ
(2)
012 0.10 0.10 0.0030 0.0053 0.94

λ
(1)
021 3.50 3.52 0.3799 0.3944 0.94

λ
(1)
022 3.40 3.44 0.2438 0.2649 0.93

λ
(2)
021 0.11 0.11 0.0010 0.0013 0.94

λ
(2)
022 0.10 0.10 0.0007 0.0007 0.94

λ
(1)
121 2.78 2.90 0.6621 0.7284 0.89

λ
(1)
122 3.14 3.31 0.7530 0.7818 0.92

λ
(2)
121 0.12 0.12 0.0233 0.0357 0.81

λ
(2)
122 0.11 0.11 0.0102 0.0256 0.83

Event covariates γ01 0.02 0.04 0.2556 0.2680 0.94

γ02 0.67 0.69 0.1595 0.1639 0.95

γ12 0.47 0.51 0.3073 0.3658 0.91

Latent process β01 30.22 30.28 0.7995 0.8250 0.94

β02 32.96 32.99 0.5210 0.5334 0.95

Joint competing risks model∗

β β̂ ASE ESE Cover Rate

ζ1 0.00 -0.33 0.5909 0.6620 0.82

λ
(1)
011 3.20 2.85 0.8301 1.1372 0.88

λ
(1)
012 3.50 2.69 0.4083 0.4822 0.48

λ
(2)
011 0.11 0.12 0.0410 0.0839 0.83

λ
(2)
012 0.10 0.10 0.0111 0.0391 0.96

λ
(1)
021 3.50 3.74 0.3412 0.3618 0.89

λ
(1)
022 3.40 3.41 0.2106 0.2300 0.91

λ
(2)
021 0.11 0.11 0.0008 0.0008 0.63

λ
(2)
022 0.10 0.10 0.0006 0.0007 0.82

γ01 0.02 -0.18 0.2190 0.2282 0.85

γ02 0.67 0.65 0.1445 0.1486 0.94

β01 30.22 29.44 1.0022 1.0924 0.94

β02 32.96 32.68 0.5026 0.5193 0.92
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β11 -5.76 -5.77 0.5758 0.6007 0.94

β12 -3.53 -3.51 0.2046 0.2077 0.94

βX 0.08 0.02 0.4528 0.4766 0.95

Cholesky transformation U(1,1) 4.93 4.88 0.2937 0.2844 0.96

of the B matrix U(1,2) -1.15 1.11 0.2073 0.1994 0.96

UU> = B U(2,2) 1.46 1.42 0.1408 0.1418 0.94

Measurement error σe 3.47 3.47 0.0515 0.0534 0.94

∗based on 490 samples with convergence criteria ful�lled

β11 -5.76 -6.20 0.7162 0.7353 0.93

β12 -3.53 -3.53 0.1957 0.1976 0.94

βX 0.08 0.10 0.4454 0.4799 0.92

U(1,1) 4.93 4.85 0.3010 0.2963 0.94

U(1,2) -1.15 -1.09 0.2082 0.1991 0.95

U(2,2) 1.46 1.44 0.1388 0.1393 0.95

σe 3.47 3.47 0.0515 0.0534 0.94

∗based on 490 samples with convergence criteria ful�lled

Table 3.1: Results of the simulation study comparing estimates of the joint latent class markovian

illness-death model for interval-censored events and the joint latent class competing

risks model. A total of 500 samples of 500 subjects were generated with a joint

markovian illness-death model with visits every 2 or 4 years. ASE is the asymptotic

standard error, ESE is the empirical standard error and the coverage rate is calculated

from the 95% con�dence interval.

In addition, we ran a series of simulations to assess the semi-markovian model, with

visit intervals of two and four years. The estimates have small biases and good cover-

age rates in the longitudinal and the illness-death parts (see Web Table 3.4). Additional

simulations were carried out with three and six latent classes (see Web Tables 3.5 and

3.7 respectively), also showing good results. To assess the robustness of the model to the

violation of the conditional independence assumption, simulations were then performed

generating the data with a three-class joint model where the transition intensity to de-

mentia depended on both the latent classes and the individual random (a) intercept or

(b) slope. Results, displayed in Web Table 3.6, highlight the robustness of the estimators.

At last, we assessed the adequacy of the BIC to choose the optimal number of classes. We

generated data from a four-class joint model and the model was estimated successively

with 1 to 6 classes. Over 100 replicates, the models with 1, 2, 3, 4, 5 and 6 classes were

selected 0, 0, 21, 48, 27 and 4 times respectively. When generating data from a two-class

joint model, the models with 1, 2, 3 and 4 classes were selected 0, 92, 4 and 4 times

respectively, over 100 replicates. These results are in agreement with Hawkins, Allen

and Stromberg [2001] who performed extensive simulations and highlighted that the BIC

criterion was better when the number of classes was small.
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3.4 Application to the Paquid cohort

The joint latent class illness-death model was applied to a French prospective cohort,

the Paquid cohort, to distinguish di�erent pro�les of cognitive decline in the elderly as-

sociated with transition intensities to dementia and death. We compared markovian and

semi-markovian models, in order to determine whether the transition intensity to death

among subjects with dementia depended on age or on duration of dementia.

Data

The Paquid cohort [Letenneur et al., 1994] involves 3,777 subjects from two French

administrative departments, Dordogne and Gironde. The subjects were older than 65 at

entry and they were visited at years 1, 3, 5, 8, 10, 13, 15, 17, 20, 22 and 25 at home to un-

dergo a battery of psychometric tests. The diagnosis of dementia was based on a screening

phase according to DSM III R criteria for dementia [American Psychiatric Association,

1987] and a �nal clinical diagnosis assessed by a neurologist. In this work, we focused on

the Isaacs Set Test, scored from 0 to 40, assessing verbal �uency. Subjects had to produce

up to 10 words from four di�erent semantic categories within 15 seconds for each category.

We selected subjects who were healthy at inclusion and who completed at least one

Isaacs Set Test before their diagnosis for subjects diagnosed with dementia. The main

analysis was performed on 3,525 subjects, excluding 102 subjects who were prevalent cases

at the �rst visit and 150 who had completed no tests during the follow-up. The sample

under study included 42.2% of men and 34.1% of subjects with a low level of education

at the initial visit. A total of 23.8% of subjects were diagnosed with dementia, including

19.8% who died during the follow-up, and 65.1% died before the dementia diagnosis.

The mean age at entry into the study was 75 years (sd=6.7 years), the mean age at

death was 86.7 years (sd=6.9 years), the mean age at dementia diagnosis was 86.4 years

(sd=5.8 years) and the mean number of measurements before dementia diagnosis or end

of follow-up was 3.99 (sd=2.9).
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3.4.1 Comparison of models

First, we compared models assuming a class-speci�c quadratic time-trend (Eq.30) and

a linear-linear time trend with class speci�c change-point (Eq.31) estimated on the Paquid

cohort. In both models, the sub-model for the longitudinal marker assumed common

e�ects for gender (Sex = 0 for men, 1 for women) and educational level (Educ = 1 for

subjects who obtained their primary school diploma, 0 for others). The quadratic model

accounted for three class-speci�c �xed and random e�ects while the change-point model

assumed one more class-speci�c �xed e�ect relative to the change-point time. Given class

g, the �rst model was de�ned by:

Λi(t̃) =β0g + u
(0)
ig + [β1g + u

(1)
ig ] t̃+ [β2g + u

(2)
ig ]

t̃2

10
+ β3 Educi

+ β4 Educi × t̃+ β5 Educi ×
t̃2

10
+ β6 Sexi, (u

(0)
ig , u

(1)
ig , u

(2)
ig )> ∼ N (0, σ2

gB)

(30)

where t̃ is a scaled transformation of age t: t̃ = t−65
10

. The interaction between time and

gender was not accounted for because it was not signi�cant in previous analyses. The

second model was de�ned by:

Λi(t) = β0g + u
(0)
ig + [β1g +

u
(1)
ig

2
+
u

(2)
ig

2
] (t̃− τ̃g) + [β2g −

u
(1)
ig

2
+
u

(2)
ig

2
](t̃− τ̃g) trn

(
t̃− τ̃g; υ

)
+ β3 Educi + β4 Educi (t̃− τ̃g) + β5 Educi (t̃− τ̃g)trn

(
t̃− τ̃g; υ

)
+ β6 Sexi (31)

with τ̃g = τg−65

10
, uig = (u

(0)
ig , u

(1)
ig , u

(2)
ig )> ∼ N (0, σ2

gB) , u(1)
ig standing for the �rst random

slope in class g, before the change-point τg, and u
(2)
ig for the second random slope, after τg.

The function trn(t, υ) = 1
t

√
t2 + υ (Seber and Wild, 2003) ensures a smooth transition

as limυ→0 trn(t, υ) = sign(t). In this application, υ = 0.01. The parameter β0g repre-

sents the marker value at t = τg in class g, β1g and β2g stand for half the sum of the �rst

and second slopes and half their di�erence, respectively, as detailed in Dantan et al. [2011].

For both models, a Beta cumulative distribution function was used to link the observed

scores to the latent process:

Ỹij = Ψ(Yij; η
(1), η(2), η(3), η(4)) =

Beta
(
Yij; η

(1), η(2)
)
− η(3)

η(4)
= Λi(tij) + εij, (32)

83



JLCM FOR COMPETING INTERVAL-CENSORED EVENTS

BIC

Quadratic Change-point Change-point Change-point adjusted

Markovian Markovian Semi-markovian Semi-markovian

G=1 106,928 106,901 107,055 106,954

G=2 106,315 106,270 106,356 106,313

G=3 106,120 106,081 106,177 106,144

G=4 106,058 106,005 106,091 106,066

G=5 106,091 106,027 106,107 106,090

Table 3.2: Comparison of BIC of joint quadratic markovian illness-death mixed model and joint

change-point markovian/semi-markovian illness-death mixed models, with a total

number of classes varying from 1 to 5 (Paquid, N=3,525).

where εij ∼ N (0, σ2
e). The models for the transition intensities were proportional hazards

models with common e�ects of the two covariates and class-speci�c Weibull baseline

transition intensities, as functions of age t:

αklig(t) = α0
klg(t) exp

(
γskl Sexi + γekl Educi

)
, k ∈ [0, 1], l ∈ [1, 2], (33)

The two �rst columns of Table 3.2 show that the joint change-point model, which has G

more parameters (G class-speci�c change-point times) �ts the data better, with smaller

BIC values irrespective of the number of classes. Note that the four-class models have the

smallest values in both cases. In the following, we thus focus on the joint change-point

model.

Secondly, we compared the joint change-point markovian model de�ned by Eq.31

and Eq.33 and the joint change-point semi-markovian model where the Dementia-Death

transition intensity depends on the time since TA, age at dementia onset:

α12ig(t, T
A
i ) = α0

12g(t− TAi ) exp
(
γs12 Sexi + γe12 Educi

)
, (34)

According to Table 3.2, the markovian model �ts the data better, irrespective of the

number of classes. Thus, the transition intensity to death among subjects with dementia

depends more on age than on dementia duration. When adding TA as an explanatory

variable in Eq.34, we obtain a more �exible model where mortality of subjects with

84



JLCM FOR COMPETING INTERVAL-CENSORED EVENTS

dementia depends on both duration of dementia and age at dementia. Table 3.2 shows

that this adjusted model is better than the standard semi-markovian model but does not

�t the data as well as the markovian model. We �nally selected the joint change-point

markovian model with 4 classes that had the best BIC.

3.4.2 Results

Figure 3.3 displays the three transition intensities (Part A), the three cumulative

incidences (Part B) and the estimated mean Isaacs trajectories (Part C) for men with a

low level of education (with no primary school diploma), in each class.

The �rst class, including 11.12% of the population, has the highest transition intensi-

ties to dementia and death for subjects with dementia until advanced ages and the fastest

and deepest decline of Isaacs scores. As shown in Figure 3.3B, most of these subjects

developed dementia or died before age 80. The second class, corresponding to 32.91% of

the population, also has high transition intensities to dementia and death among subjects

with dementia and a steep cognitive decline, but these occur at later ages than in the

�rst class. The cumulative incidences show that 63% of this group died without demen-

tia before age 85 and 37% developed dementia before age 90. The third class includes

9.73% of the sample and has the lowest transition intensities to dementia and death until

advanced ages, as well as the slightest mean decline of the Isaacs Set Test scores (Figure

3.3C). The cumulative incidences show that most dementia and death occurrences arose

after age 85 in this class (Figure 3.3B). Finally, the fourth class includes 46.24% of the

population and is quite similar to the third one, with a more pronounced cognitive decline

and higher transition intensities to death among both healthy subjects and subjects with

dementia. About 80% died without dementia and 20% developed dementia before age 95

in this class whereas these �gures are only reached 5 to 10 years later in the third class.

Estimates of the main parameters of the selected model are presented in Web Table

3.8. High education is associated with lower transition intensities to dementia and death

among healthy subjects but not with the transition intensity to death among subjects

with dementia, after accounting for the heterogeneity of the transition intensities due to

the classes. Gender is not associated with the transition intensity to dementia but women,
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A) Class-speci�c transition intensities of the illness-death model for men with a low level

of education.

B) Class-speci�c cumulative incidences of the illness-death model for men with a low

level of education.

C) Class-speci�c Isaacs trajectories for men with a low level of education.

Figure 3.3: Class-speci�c estimated transition intensities, cumulative incidences and mean lon-

gitudinal trajectories of the joint change-point latent class illness-death mixed model

for each class (class 1: dashed line, class 2: dotted line, class 3: dotdashed line, class

4: solid line).
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with or without dementia, have a lower transition intensity to death. A secondary analysis

accounting for Apolipoprotein E4 (ApoE4), which is a known risk factor of dementia, is

presented in Web Appendix B on a sub-sample of 619 subjects with ApoE4 measurement.

We selected the two latent class model, based on the BIC criterion. ApoE4 appears

associated with a higher transition intensity to dementia but not with a steeper decline

of Isaacs score within the classes.

3.4.3 Goodness-of-�t

As loss of follow-up may be linked to a change in the cognitive test [Jacqmin-Gadda

et al., 1997], missing data are not missing completely at random; so we assessed the

goodness-of-�t of the main model estimated on 3525 subjects, conditionally on the random

e�ects. Web Figure 3.5 displays the predicted weighted mean of Isaacs scores given the

random e�ects and the classes, and the weighted mean of the observed scores for each

class. The predicted mean is close to the observed mean and is within its 95% con�dence

interval which increases over time as there is less and less data. The estimated class-

speci�c cumulative incidences, marginal on the covariates, on part B of Web Figure 3.5,

are compared to the estimations, also marginal on the covariates, obtained by a semi-

parametric illness-death model with baseline transition intensities estimated by penalized

likelihood on a basis of M-splines. Here again, the estimations are close and the graphs

show that the model �ts the data well.

3.4.4 Posterior classi�cation

Considering each posterior class, we can compute the mean probability of belonging

to each of the four classes in order to quantify the discriminatory ability of the model (see

Web Table 3.9). For each class, the mean probability of belonging to the allocated class

is between 61% and 79%, which means that the discrimination between classes is correct

but not very good. The description of the posterior classes according to the covariates is

given in Web Table 3.10.
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3.4.5 Estimated trajectories given the age at dementia and/or

death

It is of interest to estimate the typical cognitive decline of subjects who developed

dementia or were deceased at a given age, as well as the evolution of subjects who were

alive and healthy at an advanced age. Thus, we computed the mean trajectories of the

Isaacs scores for a man with a low or high level of education for 4 di�erent cases: alive

and healthy at age 95 or at 85, dead without dementia at age 80 and a man with dementia

onset at age 80. The expectation for the �rst case is given by

E(Y (t)|TAi > 95, TDi > 95; θ̂G) =
G∑
g=1

E(Y (t)|ci = g; θ̂G)P (ci = g|TAi > 95, TDi > 95; θ̂G),

and the other cases are computed in the same way. As expected, we observe in

Figure 3.4 that a man alive and healthy at 95 has the smallest cognitive decline (solid

lines of parts A and B). Nevertheless, these estimates show a slight decline of the Isaacs

scores in older ages among healthy subjects, probably due to a slowing of information

processing with age. When comparing the decline of subjects alive and free of dementia

at 85 and the decline of subjects who die at age 80 without dementia, we can highlight

the so-called terminal decline before death. In the same way, the trajectory of a man

who develops dementia at 80 (dotdashed curves) highlights the decline before dementia.

The decline before death is more marked among subjects with low education and rather

close to the decline before dementia. Moreover, pre-dementia decline is steeper for highly

educated subjects compared to subjects with lower education. This is in agreement with

the cognitive reserve hypothesis [Stern et. al, 1999]. The `terminal decline' has been

described by other authors [Wilson et al., 2003]. However, it had not been distinguished

from the decline toward dementia. As expected, the pre-dementia decline is steeper.

3.5 Discussion

We proposed a joint latent class illness-death model for semi-competing interval-

censored events and longitudinal data. Joint models have previously been developed

to capture the correlation between a longitudinal marker and competing risks but no pre-

vious model has accounted for interval censoring [Elasho�, Li and Li, 2008; Williamson
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A) Predicted Isaacs trajectories for a man with a low level of education.

B) Predicted Isaacs trajectories for a man with a high level of education.

Figure 3.4: Predicted Isaacs trajectories for a man with low (A) or high (B) educational level,

alive and healthy at age 95 (solid line) or 85 (dashed line), a man who dies at age

80 without dementia (dotted line) and a man who develops dementia at age 80

(dotdashed line). The trajectories are plotted from 65 years old until the age at

dementia diagnosis, loss of follow-up or death.

et al., 2008; Proust-Lima et al., 2016]. Our simulations highlighted biased estimates of

the joint model for standard competing risks. By dealing with interval censoring, the pro-

posed method corrects for this bias and highlights di�erent pro�les of cognitive decline

associated with di�erent transition intensities to death and dementia. Subsequently, the

mean trajectories of cognitive decline for subjects who developed dementia or were de-

ceased at a given age can be estimated. This makes it possible to distinguish the cognitive

decline of the healthy elderly from the cognitive decline before death without dementia

and the cognitive decline in the pre-dementia phase that appears to be the steepest.

89



JLCM FOR COMPETING INTERVAL-CENSORED EVENTS

By jointly modeling the transition intensities to death and dementia, this model ac-

counts for informative drop-outs due to dementia and death. Thus, estimates are robust

under the weaker assumption that missing data for other causes (especially intermittent

missing data) are missing at random, i.e. they are not linked to the missing values of the

marker, conditional on the observations.

In this model, we assumed that any subject was at risk to develop dementia. By

setting the parameters for the transition intensities to dementia and from dementia to

death to �xed values (λ(1)
01g = 1, λ(2)

01g = 0, λ(1)
12g = 1, λ(2)

12g = 0) for one latent class, we

obtained a "cure" joint model assuming that a part of the population was not susceptible

for dementia. In the Paquid application, this constraint introduced in the four-class model

lead to a worse �t.

Contrary to Dantan et al. [2011], we chose a latent class approach to account for the

heterogeneity of cognitive aging. Compared to joint models with shared-random e�ects,

joint latent class models allow a more �exible modeling of the link between dementia,

death and cognition and of the distributions of each outcome as they are mixtures of

distributions (see Proust-Lima et al. [2014] for a review of the joint latent class models).

Then, the model presented distinguishes death intensity for healthy subjects and subjects

with dementia, with either a markovian or semi-markovian assumption. This makes it

possible to disentangle cognitive decline before dementia from cognitive decline before

death without dementia but requires careful handling of interval censoring. In Dantan et

al. [2011], the death intensity was assumed to be independent of the dementia status given

the current cognitive level. With this assumption, it was shown that the likelihood for

interval-censored data was identical to the one without interval censoring, as long as we

imputed the middle of the censoring interval for subjects diagnosed with dementia. Nev-

ertheless, alternative joint models for longitudinal markers and illness-death data could be

proposed in the shared-random-e�ect framework that would require to adapt the present

methodology to account for interval censoring. Recently, Gueorguieva, Rosenheck and

Lin [2012] developed a shared-random-e�ect model for longitudinal data and competing

risks for an application where the time-to-event can be interval-censored. However, the
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type of event (di�erent types of drop-out) is assumed to be known, which is not the case

in our context.

For selecting the number of classes in mixture models, several criteria, such as BIC

[Bauer and Curran, 2003] and DIC [Celeux et al., 2006], were proposed and previously

compared. None of them is perfect. In practice, we recommend to combine clinical and

statistical criteria such as BIC, size of the classes, quality of the discrimination between

classes or test for conditional independence when available. We are currently working on

an extension of such a score test [Jacqmin-Gadda et al., 2010] to the proposed model but

interval censoring makes the computation cumbersome.
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3.7 Web Supplementary Materials: "Joint latent class

model for longitudinal data and interval-censored

semi-competing events: Application to dementia"

Anaïs Rouanet1,2, Pierre Joly1,2, Jean-François Dartigues1,2,

Cécile Proust-Lima1,2 and Hélène Jacqmin-Gadda1,2

1INSERM, Centre INSERM U1219 - Epidemiologie - Biostatistiques, F-33076 Bordeaux, France

2Université de Bordeaux, ISPED, 146 rue Léo Saignat, F-33076 Bordeaux, France

Web Appendix A: Conditional log-likelihood of a semi-markovian

model

In the case of a semi-markovian model, the individual conditional contribution to the

log-likelihood of the multi-state model is changed for the observation patterns 1, 2, 5 and

6 as follows:

� Subject diagnosed with dementia (cases 1 and 2, Figure 3.2):

P
(d)
ig (T0i, Li, Ri, 1, Ti, δ

D
i ; θG) =

∫ Ri

Li

e−A01ig(u)−A02ig(u) α01ig(u) e−A12ig(Ti−u) α12ig(Ti − u)δ
D
i du

� Subject with unknown dementia status at the end of follow-up Ti (cases 5 and 6,

Figure 3.2):

P
(u)
ig (T0i, Li, Ri, 0, Ti, δ

D
i ; θG) = e−A01ig(Ti)−A02ig(Ti) α02ig(Ti)

δDi

+

∫ Ti

Li

e−A01ig(u)−A02ig(u) α01ig(u) e−A12ig(Ti−u) α12ig(Ti − u)δ
D
i du

Web Appendix B: Application of the joint latent class illness-death

model on Paquid, adjusting on ApoE4

The model was applied on the sub-sample of subjects with ApoE4 measurement avail-

able. The sample under study involved only 619 subjects, who accepted blood testing for

ApoE4 measurement, including 42.7% of men and 22.8% of ApoE4 carriers. These sub-

jects were younger (mean age at entry: 73.9 vs 75.3, p-value < 0.001) and more educated

(72.5% vs 64.4% with a high educational level, p-value < 0.001) than the sample with no
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ApoE4 measurement. A total of 31.3% of subjects were diagnosed with dementia, includ-

ing 27.3% who died during the follow-up, and 58.8% died before the dementia diagnosis.

The three transition intensities of the illness-death sub-model were adjusted on ApoE4,

as well as the change-point mixed sub-model (intercept and slope), with all these regres-

sion parameters being common to the classes. The BIC of the models from 1 to 5 classes

were respectively 25252, 25161, 25164, 25168 and 25216. Web Table 3.11 presents the esti-

mated parameters for the model with 2 latent classes that had the lowest BIC. Education

is associated with a lower transition intensity to dementia but not to death among healthy

subjects. Gender is associated with lower transition intensities to death and ApoE4 car-

riers have a higher intensity transition to dementia.

These results are in line with previous analyses on Paquid data which found that

ApoE4 was not associated with cognitive level after adjustment on educational level and

found no association with cognitive decline [Winnock et al., 2002] or a non signi�cant

trend to faster decline Proust-Lima et al. [2016] depending on the cognitive tests under

study.

Since the BIC of the models with two, three and four latent classes estimated on this

ApoE sub-sample are very close, we also present the classi�cation coming from the four

latent class model for comparison with the analysis of the whole Paquid dataset. The

proportions of subjects classi�ed in the four posterior latent classes are similar in the two

samples (see captions of Web Tables 3.9 and 3.12), as well as the estimated class-speci�c

mean Isaacs trajectories (part C of Web Figure 3.6). The main di�erences are a delayed

intensity transition to Death in class 2 that leads to a much higher proportion of subjects

that develop dementia before death and a lower transition intensity to Dementia in class

3 (the healthiest class). Besides, this model has a higher discriminatory ability, as shown

in Web Table 3.12.
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(a) Visits every 2 years

Joint illness-death model∗

β β̂ ASE ESE Cover Rate
Class Membership ζ1 0.00 0.44 0.1983 0.2044 0.95

Baseline Risks of events λ
(1)
011 3.20 3.19 0.3068 0.3305 0.94
λ

(1)
012 3.50 3.52 0.2701 0.2720 0.94
λ

(2)
011 0.11 0.11 0.0010 0.0010 0.96
λ

(2)
012 0.10 0.10 0.0006 0.0006 0.94
λ

(1)
021 3.50 3.54 0.2365 0.2700 0.92
λ

(1)
022 3.40 3.42 0.1594 0.1582 0.95
λ

(2)
021 0.11 0.11 0.0005 0.0006 0.94
λ

(2)
022 0.10 0.10 0.0004 0.0004 0.94
λ

(1)
121 2.78 2.79 0.4198 0.4514 0.94
λ

(1)
122 3.14 3.19 0.4782 0.4945 0.95
λ

(2)
121 0.12 0.12 0.0067 0.0102 0.88
λ

(2)
122 0.11 0.11 0.0035 0.0049 0.89

Event covariates γ01 0.02 0.03 0.1589 0.1609 0.95
γ02 0.67 0.68 0.1056 0.1061 0.95
γ12 0.47 0.48 0.1893 0.1980 0.93

Latent process β01 30.22 30.19 0.5534 0.5884 0.93
β02 32.96 33.00 0.3617 0.3678 0.95
β11 -5.76 -5.77 0.4028 0.4134 0.94
β12 -3.53 -3.54 0.1420 0.1443 0.95
βX 0.08 0.08 0.3108 0.3242 0.93

Cholesky transformation U(1,1) 4.93 4.88 0.2070 0.2072 0.95
of the B matrix U(1,2) -1.15 -1.13 0.1454 0.1454 0.94

U(2,2) 1.46 1.42 0.0964 0.1002 0.93
Measurement error σe 3.47 3.45 0.0364 0.0365 0.96
∗Models converged based on 500 samples with convergence criteria ful�lled

Joint competing risks model∗

β β̂ ASE ESE Cover Rate
ζ1 0.00 -0.22 0.2442 0.2785 0.85

λ
(1)
011 3.20 3.00 0.3739 0.4144 0.92
λ

(1)
012 3.50 3.08 0.2756 0.2735 0.68
λ

(2)
011 0.11 0.11 0.0018 0.0035 0.90
λ

(2)
012 0.10 0.10 0.0007 0.0007 0.94
λ

(1)
021 3.50 3.67 0.2312 0.2636 0.88
λ

(1)
022 3.40 3.40 0.1487 0.1479 0.96
λ

(2)
021 0.11 0.11 0.0005 0.0006 0.68
λ

(2)
022 0.10 0.10 0.0004 0.0004 0.88

γ01 0.02 -0.08 0.1500 0.1539 0.89
γ02 0.67 0.66 0.1011 0.1024 0.94

β01 30.22 29.98 0.6363 0.6844 0.93
β02 32.96 32.85 0.3573 0.3693 0.92
β11 -5.76 -6.04 0.4539 0.4560 0.90
β12 -3.53 -3.55 0.1395 0.1395 0.95
βX 0.08 0.11 0.3103 0.3279 0.93

U(1,1) 4.93 4.85 0.2112 0.2119 0.94
U(1,2) -1.15 -1.12 0.1458 0.1465 0.94
U(2,2) 1.46 1.43 0.0965 0.1000 0.94
σe 3.47 3.47 0.0364 0.0364 0.95
∗ 500 estimations had convergence criteria ful�lled

(b) Visits every 4 years

Joint illness-death model∗

β β̂ ASE ESE Cover Rate
Class Membership ζ1 0.00 0.01 0.2035 0.2133 0.96

Baseline Risks of events λ
(1)
011 3.20 3.20 0.3524 0.3770 0.95
λ

(1)
012 3.50 3.52 0.2940 0.2953 0.94
λ

(2)
011 0.11 0.11 0.0011 0.0010 0.95
λ

(2)
012 0.10 0.10 0.0007 0.0007 0.94
λ

(1)
021 3.50 3.54 0.2520 0.2848 0.93
λ

(1)
022 3.40 3.42 0.1666 0.1656 0.96
λ

(2)
021 0.11 0.11 0.0006 0.0006 0.95
λ

(2)
022 0.10 0.10 0.0005 0.0005 0.95
λ

(1)
121 2.78 2.80 0.4750 0.4935 0.94
λ

(1)
122 3.14 3.20 0.5242 0.5592 0.94
λ

(2)
121 0.12 0.12 0.0082 0.0112 0.88
λ

(2)
122 0.11 0.11 0.0047 0.0104 0.89

Event covariates γ01 0.02 0.02 0.1729 0.1708 0.94
γ02 0.67 0.68 0.1099 0.1117 0.94
γ12 0.47 0.48 0.2111 0.2301 0.92

Latent process β01 30.22 30.18 0.5603 0.5967 0.92
β02 32.96 33.00 0.3635 0.3710 0.94
β11 -5.76 -5.77 0.4063 0.4170 0.94
β12 -3.53 -3.54 0.1426 0.1436 0.95
βX 0.08 0.08 0.3121 0.3248 0.95

Cholesky transformation U(1,1) 4.93 4.88 0.2080 0.2077 0.95
of the B matrix U(1,2) -1.15 -1.13 0.1455 0.1457 0.94

U(2,2) 1.46 1.42 0.0968 0.0999 0.93
Measurement error σe 3.47 3.47 0.0364 0.0365 0.96

∗Models converged based on 500 samples with convergence criteria ful�lled

Joint competing risks model∗

β β̂ ASE ESE Cover Rate
ζ1 0.00 -0.37 0.3988 0.3910 0.70

λ
(1)
011 3.20 2.76 0.5509 0.6043 0.88
λ

(1)
012 3.50 2.71 0.2863 0.2953 0.17
λ

(2)
011 0.11 0.11 0.0161 0.0116 0.72
λ

(2)
012 0.10 0.10 0.0010 0.0009 0.84
λ

(1)
021 3.50 3.72 0.2345 0.2574 0.84
λ

(1)
022 3.40 3.39 0.1453 0.1445 0.96
λ

(2)
021 0.11 0.11 0.0005 0.0006 0.34
λ

(2)
022 0.10 0.10 0.0004 0.0004 0.72

γ01 0.02 -0.17 0.1525 0.1563 0.77
γ02 0.67 0.64 0.1002 0.1013 0.93

β01 30.22 29.85 0.6935 0.7516 0.91
β02 32.96 32.71 0.3561 0.3747 0.87
β11 -5.76 -6.19 0.4963 0.4955 0.88
β12 -3.53 -3.55 0.1379 0.1379 0.95
βX 0.08 0.14 0.3123 0.3289 0.92

U(1,1) 4.93 4.85 0.2130 0.2165 0.94
U(1,2) -1.15 -1.11 0.1462 0.1464 0.93
U(2,2) 1.46 1.45 0.0970 0.1010 0.94
σe 3.47 3.47 0.0364 0.0365 0.95
∗ 495 estimations had convergence criteria ful�lled

Web Table 3.3: Results of the simulation study comparing estimates of the two-latent-class joint

linear markovian illness-death model for interval-censored data and the joint

competing risks model based on 500 samples of 1000 subjects generated with a

joint markovian illness-death model with visits every 2 years or every 4 years.

ASE is the asymptotic standard error, ESE is the empirical standard error and

the coverage rate is calculated from the 95% con�dence interval.
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(a) Visits every 2 years
β β̂ ASE ESE Cover Rate

Class Membership ζ1 0.00 0.03 0.3061 0.3389 0.93

Baseline Risks of events λ
(1)
011 3.20 3.20 0.4250 0.4838 0.93
λ

(1)
012 3.50 3.55 0.4335 0.4743 0.92
λ

(2)
011 0.11 0.11 0.0020 0.0026 0.93
λ

(2)
012 0.10 0.10 0.0010 0.0010 0.95
λ

(1)
021 3.50 3.52 0.3312 0.3532 0.93
λ

(1)
022 3.40 3.43 0.2293 0.2433 0.94
λ

(2)
021 0.11 0.11 0.0008 0.0009 0.94
λ

(2)
022 0.10 0.10 0.0006 0.0007 0.94
λ

(1)
121 1.32 1.35 0.1122 0.1317 0.93
λ

(1)
122 1.13 1.18 0.1466 0.1717 0.93
λ

(2)
121 0.37 0.37 0.0211 0.0209 0.95
λ

(2)
122 0.48 0.49 0.0479 0.0520 0.91

Event covariates γ01 0.02 0.02 0.2310 0.2562 0.94
γ02 0.67 0.69 0.1499 0.1550 0.95
γ12 0.47 0.50 0.2248 0.2214 0.96

Latent process β01 30.22 30.20 0.7926 0.8398 0.94
β02 32.96 32.96 0.5208 0.4931 0.97
β11 -5.76 -5.80 0.5676 0.6036 0.93
β12 -3.53 -3.51 0.2029 0.2048 0.95
βX 0.08 0.08 0.4549 0.4251 0.96

Cholesky transformation U(1,1) 4.93 4.88 0.2935 0.2874 0.95
of the B matrix U(1,2) -1.15 -1.12 0.2065 0.2008 0.95
UU> = B U(2,2) 1.46 1.41 0.1391 0.1489 0.94

Measurement error σe 3.47 3.47 0.0514 0.0538 0.94
∗Models converged based on 500 samples with convergence criteria ful�lled

(b) Visits every 4 years
β β̂ ASE ESE Cover Rate

Class Membership ζ1 0.00 0.02 0.3307 0.4023 0.94

Baseline Risks of events λ
(1)
011 3.20 3.19 0.4815 0.5332 0.94
λ

(1)
012 3.50 3.52 0.5103 0.5920 0.92
λ

(2)
011 0.11 0.11 0.0056 0.0296 0.95
λ

(2)
012 0.10 0.10 0.0014 0.0014 0.93
λ

(1)
021 3.50 3.53 0.3499 0.3844 0.93
λ

(1)
022 3.40 3.43 0.2491 0.2548 0.95
λ

(2)
021 0.11 0.11 0.0009 0.0011 0.93
λ

(2)
022 0.10 0.10 0.0008 0.0008 0.95
λ

(1)
121 1.32 1.37 0.1540 0.1736 0.93
λ

(1)
122 1.13 1.30 0.2479 0.6555 0.93
λ

(2)
121 0.37 0.37 0.0260 0.0282 0.94
λ

(2)
122 0.48 0.49 0.0637 0.0762 0.88

Event covariates γ01 0.02 0.01 0.2616 0.2976 0.93
γ02 0.67 0.69 0.1602 0.1700 0.95
γ12 0.47 0.52 0.2635 0.2577 0.96

Latent process β01 30.22 30.15 0.8042 0.8603 0.94
β02 32.96 32.95 0.5227 0.4987 0.97
β11 -5.76 -5.78 0.5739 0.6086 0.93
β12 -3.53 -3.51 0.2038 0.2065 0.95
βX 0.08 0.09 0.4571 0.4277 0.96

Cholesky transformation U(1,1) 4.93 4.87 0.2949 0.2873 0.95
of the B matrix U(1,2) -1.15 -1.12 0.2066 0.2006 0.94
UU> = B U(2,2) 1.46 1.41 0.1403 0.1500 0.95

Measurement error σe 3.47 3.47 0.0514 0.0535 0.94
∗Models converged based on 498 samples with convergence criteria ful�lled

Web Table 3.4: Results of the simulation study for the two-latent-class joint linear semi-

markovian illness-death model for interval-censored data based on 500 samples

of 500 subjects generated with visits every 2 years or every 4 years. ASE is the

asymptotic standard error, ESE is the empirical standard error and the coverage

rate is calculated from the 95% con�dence interval.
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(a) Visits every 2 years (b) Visits every 4 years
β β̂ ASE ESE Cover Rate

Class Membership ζ1 0.00 -0.00 0.1409 0.1353 0.96
ζ2 0.00 0.00 0.1607 0.1637 0.95

Baseline Risks of events λ
(1)
011 4.95 4.98 0.3064 0.3325 0.93
λ

(1)
012 4.70 4.74 0.2684 0.2737 0.95
λ

(1)
013 4.84 4.88 0.2514 0.2439 0.96
λ

(2)
011 0.10 0.10 0.0004 0.0004 0.96
λ

(2)
012 0.11 0.11 0.0004 0.0003 0.96
λ

(2)
013 0.10 0.10 0.0003 0.0003 0.94
λ

(1)
021 3.31 3.30 0.2814 0.2813 0.95
λ

(1)
022 3.28 3.26 0.3490 0.3738 0.94
λ

(1)
023 3.10 3.09 0.3528 0.3540 0.95
λ

(2)
021 0.10 0.10 0.0007 0.0007 0.94
λ

(2)
022 0.10 0.11 0.0009 0.0009 0.98
λ

(2)
023 0.10 0.10 0.0009 0.0009 0.96
λ

(1)
121 4.80 4.95 0.5603 0.5594 0.95
λ

(1)
122 4.55 4.63 0.4481 0.4698 0.94
λ

(1)
123 4.70 4.83 0.4506 0.4577 0.95
λ

(2)
121 0.10 0.10 0.0007 0.0007 0.94
λ

(2)
122 0.10 0.10 0.0007 0.0007 0.94
λ

(2)
123 0.10 0.10 0.0006 0.0006 0.95

Event covariates γ01 -1.07 -1.08 0.1647 0.1630 0.95
γ02 -0.12 -0.12 0.1433 0.1475 0.94
γ12 -0.03 -0.04 0.2019 0.2116 0.93

Latent process β01 32.05 32.04 0.2216 0.2283 0.94
β02 30.99 31.00 0.2345 0.2221 0.97
β03 28.97 28.97 0.2208 0.2192 0.97
β11 -3.08 -3.07 0.1051 0.1111 0.93
β12 -5.60 -5.61 0.1136 0.1113 0.96
β13 -7.69 -7.69 0.1043 0.1026 0.96
βX 4.83 4.83 0.1109 0.1150 0.94

Cholesky transformation U(1,1) 2.24 2.23 0.1027 0.1042 0.95
of the B matrix U(1,2) -0.89 -0.89 0.0580 0.0599 0.94
UU> = B U(2,2) 0.45 0.44 0.0230 0.0228 0.95

Measurement error σe 1.00 1.00 0.0137 0.0133 0.96
∗Models converged based on 500 samples with convergence criteria ful�lled

β β̂ ASE ESE Cover Rate
ζ1 0.00 -0.00 0.1439 0.1379 0.97
ζ2 0.00 0.00 0.1683 0.1709 0.95

λ
(1)
011 4.95 4.98 0.3308 0.3537 0.94
λ

(1)
012 4.70 4.74 0.2909 0.3054 0.94
λ

(1)
013 4.84 4.89 0.2693 0.2611 0.95
λ

(2)
011 0.10 0.10 0.0004 0.0004 0.96
λ

(2)
012 0.11 0.11 0.0004 0.0004 0.96
λ

(2)
013 0.10 0.10 0.0003 0.0003 0.95
λ

(1)
021 3.31 3.30 0.2929 0.2936 0.95
λ

(1)
022 3.28 3.26 0.3684 0.3925 0.95
λ

(1)
023 3.10 3.09 0.3719 0.3701 0.96
λ

(2)
021 0.10 0.10 0.0007 0.0007 0.95
λ

(2)
022 0.10 0.10 0.0010 0.0010 0.97
λ

(2)
023 0.10 0.10 0.0010 0.0010 0.95
λ

(1)
121 4.80 4.96 0.6132 0.6171 0.95
λ

(1)
122 4.55 4.64 0.4855 0.5283 0.94
λ

(1)
123 4.70 4.83 0.4868 0.4928 0.94
λ

(2)
121 0.10 0.10 0.0008 0.0008 0.93
λ

(2)
122 0.10 0.10 0.0007 0.0009 0.92
λ

(2)
123 0.10 0.10 0.0006 0.0006 0.94
γ01 -1.07 -1.09 0.1758 0.1782 0.94
γ02 -0.12 -0.12 0.1451 0.1495 0.94
γ12 -0.03 -0.05 0.2108 0.2212 0.94
β01 32.05 32.04 0.2216 0.2289 0.94
β02 30.99 31.00 0.2345 0.2213 0.97
β03 28.97 28.97 0.2208 0.2190 0.96
β11 -3.08 -3.07 0.1051 0.1112 0.93
β12 -5.60 -5.61 0.1136 0.1111 0.96
β13 -7.69 -7.69 0.1043 0.1025 0.96
βX 4.83 4.83 0.1109 0.1151 0.94

U(1,1) 2.24 2.23 0.1027 0.1042 0.95
U(1,2) -0.89 -0.89 0.0580 0.0599 0.94
U(2,2) 0.45 0.44 0.0230 0.0228 0.95
σe 1.00 1.00 0.0137 0.0133 0.96

∗Models converged based on 499 samples

Web Table 3.5: Results of the simulation study of the three-latent-class joint linear markovian

illness-death model for interval-censored data based on 500 samples of 500 sub-

jects generated with visits every 2 years or every 4 years. ASE is the asymptotic

standard error, ESE is the empirical standard error and the coverage rate is

calculated from the 95% con�dence interval.
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(a) λ01(t) = λ0
01(t)exp(βXi + ui0) (b) λ01(t) = λ0

01(t)exp(βXi + 0.2 ui1)

β β̂ ASE ESE Cover Rate
Class Membership ζ1 0.00 -0.01 0.1370 0.1429 0.95

ζ2 0.00 0.00 0.1565 0.1497 0.97

Baseline Risks of events λ
(1)
011 4.95 4.80 0.2798 0.2833 0.91
λ

(1)
012 4.70 4.54 0.2473 0.2494 0.89
λ

(1)
013 4.84 4.70 0.2326 0.2228 0.90
λ

(2)
011 0.10 0.10 0.0004 0.0004 0.95
λ

(2)
012 0.11 0.11 0.0004 0.0004 0.93
λ

(2)
013 0.11 0.10 0.0003 0.0003 0.94
λ

(1)
021 3.31 3.33 0.2634 0.2584 0.94
λ

(1)
022 3.28 3.31 0.3203 0.3334 0.94
λ

(1)
023 3.10 3.10 0.3185 0.3225 0.96
λ

(2)
021 0.10 0.10 0.0007 0.0007 0.94
λ

(2)
022 0.11 0.11 0.0008 0.0009 0.97
λ

(2)
023 0.10 0.10 0.0009 0.0008 0.95
λ

(1)
121 4.80 4.93 0.5037 0.5083 0.94
λ

(1)
122 4.55 4.63 0.4059 0.4078 0.94
λ

(1)
123 4.70 4.79 0.4122 0.4089 0.95
λ

(2)
121 0.10 0.10 0.0006 0.0007 0.95
λ

(2)
122 0.10 0.10 0.0006 0.0006 0.94
λ

(2)
123 0.10 0.10 0.0005 0.0005 0.95

Event covariates γ01 -1.07 -1.00 0.1545 0.1591 0.92
γ02 -0.12 -0.13 0.1383 0.1493 0.93
γ12 -0.03 -0.05 0.1886 0.2032 0.93

Latent process β01 32.05 32.00 0.2205 0.2179 0.96
β02 30.99 30.91 0.2331 0.2230 0.95
β03 28.97 28.91 0.2197 0.2253 0.94
β11 -3.08 -3.06 0.1047 0.1044 0.95
β12 -5.60 -5.56 0.1133 0.1080 0.96
β13 -7.69 -7.66 0.1038 0.1071 0.94
βX 4.83 4.83 0.1114 0.1072 0.96

Cholesky transformation U(1,1) 2.24 2.21 0.1023 0.1048 0.93
of the B matrix U(1,2) -0.89 -0.88 0.0581 0.0591 0.93
UU> = B U(2,2) 0.45 0.44 0.0233 0.0243 0.93

Measurement error σe 1.00 1.00 0.0137 0.0124 0.97
∗Models converged based on 500 samples with convergence criteria ful�lled

β β̂ ASE ESE Cover Rate
ζ1 0.00 -0.01 0.1357 0.1374 0.97
ζ2 0.00 -0.00 0.1545 0.1565 0.96

λ
(1)
011 4.95 4.94 0.2855 0.2758 0.95
λ

(1)
012 4.70 4.67 0.2490 0.2486 0.94
λ

(1)
013 4.84 4.82 0.2356 0.2352 0.95
λ

(2)
011 0.10 0.10 0.0003 0.0003 0.93
λ

(2)
012 0.11 0.11 0.0003 0.0004 0.93
λ

(2)
013 0.11 0.11 0.0003 0.0003 0.94
λ

(1)
021 3.31 3.32 0.2617 0.2600 0.95
λ

(1)
022 3.28 3.28 0.3222 0.3112 0.96
λ

(1)
023 3.10 3.11 0.3212 0.3254 0.95
λ

(2)
021 0.10 0.10 0.0007 0.0007 0.96
λ

(2)
022 0.11 0.11 0.0008 0.0009 0.96
λ

(2)
023 0.10 0.10 0.0009 0.0010 0.96
λ

(1)
121 4.80 4.93 0.5162 0.5405 0.94
λ

(1)
122 4.55 4.63 0.4130 0.3841 0.97
λ

(1)
123 4.70 4.78 0.4137 0.3941 0.96
λ

(2)
121 0.10 0.10 0.0006 0.0007 0.93
λ

(2)
122 0.10 0.10 0.0006 0.0005 0.94
λ

(2)
123 0.10 0.10 0.0005 0.0005 0.96
γ01 -1.07 -1.06 0.1558 0.1617 0.92
γ02 -0.12 -0.12 0.1386 0.1423 0.94
γ12 -0.03 -0.04 0.1903 0.2007 0.94
β01 32.05 32.08 0.2221 0.2149 0.95
β02 30.99 31.03 0.2344 0.2320 0.96
β03 28.97 29.02 0.2197 0.2268 0.94
β11 -3.08 -3.10 0.1054 0.1019 0.95
β12 -5.60 -5.63 0.1136 0.1163 0.93
β13 -7.69 -7.72 0.1038 0.1067 0.93
βX 4.83 4.83 0.1115 0.1191 0.94

U(1,1) 2.24 2.22 0.1027 0.1027 0.93
U(1,2) -0.89 -0.89 0.0581 0.0576 0.94
U(2,2) 0.45 0.45 0.0232 0.0222 0.97
σe 1.00 1.00 0.0137 0.0139 0.94

∗Models converged based on 500 samples

Web Table 3.6: Results of the simulation study of the misspeci�ed three-latent-class joint linear

markovian illness-death model for interval-censored data based on 500 samples

of 500 subjects generated with visits every 2 years. The simulated transition

intensity to dementia depends on (a) the individual random intercept or (b) the

individual random slope.
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β β̂ ASE ESE Cover Rate
ζ1 0.00 -0.00 0.1158 0.1171 0.94
ζ2 0.00 0.00 0.1385 0.1375 0.95
ζ3 0.00 0.00 0.1488 0.1545 0.92
ζ4 0.00 0.00 0.1962 0.1955 0.96
ζ5 0.00 0.01 0.2021 0.2244 0.93

λ
(1)
011 4.95 5.00 0.2285 0.2347 0.95
λ

(1)
012 4.70 4.73 0.2172 0.2225 0.94
λ

(1)
013 4.84 4.88 0.2244 0.2441 0.94
λ

(1)
014 4.30 4.34 0.2404 0.2670 0.94
λ

(1)
015 4.81 4.95 0.5355 0.6618 0.92
λ

(1)
016 4.50 4.53 0.1814 0.1935 0.93
λ

(2)
011 0.10 0.10 0.0002 0.0003 0.93
λ

(2)
012 0.11 0.11 0.0003 0.0003 0.96
λ

(2)
013 0.11 0.11 0.0003 0.0003 0.94
λ

(2)
014 0.11 0.11 0.0004 0.0004 0.93
λ

(2)
015 0.10 0.10 0.0006 0.0006 0.91
λ

(2)
016 0.10 0.10 0.0003 0.0003 0.94
λ

(1)
021 3.31 3.33 0.2160 0.2099 0.95
λ

(1)
022 3.28 3.32 0.3123 0.3078 0.94
λ

(1)
023 3.10 3.15 0.3814 0.3776 0.94
λ

(1)
024 3.12 3.16 0.3986 0.4080 0.94
λ

(1)
025 3.15 3.18 0.2953 0.3105 0.93
λ

(1)
026 3.17 3.19 0.2981 0.2962 0.95
λ

(2)
021 0.10 0.10 0.0005 0.0005 0.96
λ

(2)
022 0.11 0.11 0.0007 0.0007 0.95
λ

(2)
023 0.10 0.10 0.0008 0.0008 0.96
λ

(2)
024 0.10 0.10 0.0010 0.0011 0.94
λ

(2)
025 0.11 0.11 0.0009 0.0010 0.92
λ

(2)
026 0.10 0.10 0.0007 0.0006 0.95
λ

(1)
121 4.90 4.97 0.4082 0.4019 0.95
λ

(1)
122 4.55 4.58 0.3525 0.3590 0.95
λ

(1)
123 4.70 4.78 0.3822 0.3866 0.96
λ

(1)
124 4.50 4.58 0.4211 0.4378 0.96
λ

(1)
125 4.80 5.04 1.0264 1.3517 0.94
λ

(1)
126 4.10 4.15 0.3777 0.3629 0.95
λ

(2)
121 0.10 0.10 0.0005 0.0005 0.96
λ

(2)
122 0.10 0.10 0.0005 0.0006 0.93
λ

(2)
123 0.10 0.10 0.0005 0.0005 0.94
λ

(2)
124 0.10 0.10 0.0005 0.0005 0.96
λ

(2)
125 0.10 0.10 0.0036 0.0087 0.90
λ

(2)
126 0.10 0.10 0.0005 0.0006 0.95

β β̂ ASE ESE Cover Rate
γ01 -1.07 -1.08 0.0868 0.0878 0.93
γ02 -0.12 -0.13 0.0705 0.0731 0.93
γ12 -0.03 -0.03 0.1106 0.1127 0.94
β01 32.05 32.06 0.1643 0.1591 0.95
β02 30.99 31.00 0.1901 0.1878 0.96
β03 29.97 29.97 0.1904 0.2016 0.94
β04 28.05 28.08 0.2321 0.2495 0.93
β05 27.20 27.21 0.2290 0.2387 0.95
β06 26.00 25.99 0.1721 0.1772 0.95
β11 -3.08 -3.08 0.0774 0.0754 0.95
β12 -4.60 -4.60 0.0948 0.0957 0.95
β13 -5.69 -5.68 0.0882 0.0914 0.94
β14 -6.45 -6.45 0.1139 0.1154 0.94
β15 -7.10 -7.10 0.1127 0.1182 0.93
β16 -8.00 -8.00 0.0805 0.0860 0.93
βX 4.83 4.83 0.0861 0.0870 0.95

U(1,1) 2.24 2.22 0.0556 0.0568 0.93
U(1,2) -0.89 -0.89 0.0320 0.0320 0.95
U(2,2) 0.45 0.44 0.0187 0.0198 0.91
σe 1.00 1.00 0.0068 0.0068 0.95

∗Models converged based on 456 samples

Web Table 3.7: Results of the simulation study of the six-latent-class joint linear markovian

illness-death model for interval-censored data based on 500 samples of 2000 sub-

jects generated with visits every 2 years. ASE is the asymptotic standard error,

ESE is the empirical standard error and the coverage rate is calculated from the

95% con�dence interval.
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β̂ SE CI inf CI sup
Class Membership

π1 -0.40 0.23 -0.86 0.05
π2 0.05 0.23 -0.40 0.50
π3 -1.32 0.23 -1.76 -0.87

Illness-death model
Education γe01 -1.18 0.12 -1.43 -0.94
Gender γs01 -0.07 0.11 -0.29 0.15

Education γe02 -0.29 0.07 -0.43 -0.16
Gender γs02 -0.70 0.06 -0.83 -0.58

Education γe12 -0.00 0.05 -0.09 0.08
Gender γs12 -0.54 0.08 -0.70 -0.37

Latent process
Class-speci�c τ1 84.22 0.86 82.52 85.91

Change-point times τ2 82.62 0.44 81.75 83.48
τ3 89.42 1.12 87.23 91.61
τ4 86.30 0.62 85.08 87.52

Education β3 1.280 0.09 1.11 1.45
Education× t if t < τg β4 -0.002 0.03 -0.07 0.07
Education× t if t > τg β5 -0.004 0.04 -0.09 0.08

Gender β6 0.090 0.05 0.00 0.18

Web Table 3.8: Estimation of the parameters of the four-latent-class joint change-point marko-

vian illness-death model for semi-competing interval-censored events and longi-

tudinal data (Paquid data, N=3,525).

Class 1 2 3 4
1 71.36 21.92 0.18 6.54
2 12.83 61.54 1.24 24.39
3 0.01 0.47 79.11 20.40
4 0.96 19.11 12.96 66.97

Web Table 3.9: Mean probabilities (in percentages) to belong to each class according to the

posterior classi�cation, allocating 392 (11.12%) subjects in class 1, 1160 (32.91%)

to class 2, 343 (9.73%) to class 3 and 1630 (46.24%) to class 4 (Paquid data,

N=3,525).
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A) Predicted means of Isaacs scores given the random e�ects and the classes by age range (x) and

weighted means of the observed scores (solid lines) with their 95% con�dence intervals (dashed

lines) for each class.

B) Class-speci�c predicted cumulative incidences estimated by the joint latent class illness-death

model (thick lines) and by the weighted semi-parametric illness-death model (thin lines), for each

class (class 1: dashed line, class 2: dotted line, class 3: dotdashed line, class 4: solid line).

Web Figure 3.5: Goodness-of-�t assessment of the four-latent-class joint change-point illness-

death model estimated on Paquid data (N= 3,525).
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A) Class-speci�c transition intensities of the illness-death model for men, ApoE4 non-carrier,

with a low level of education.

B) Class-speci�c cumulative incidences of the illness-death model for men, ApoE4 non-carrier,

with a low level of education.

C) Class-speci�c Isaacs trajectories for men, ApoE4 non-carrier, with a low level of education.

Web Figure 3.6: Class-speci�c estimated transition intensities, cumulative incidences and mean

longitudinal trajectories of the joint change-point latent class illness-death

mixed model for each class (class 1: dashed line, class 2: dotted line, class 3:

dotdashed line, class 4: solid line, sub-sample from Paquid cohort with ApoE4

measurement, N= 619).
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Class CEP=0 CEP=1 men women
1 23.2 76.8 40.1 59.9
2 29.7 70.3 40.7 59.3
3 42.9 57.1 42.0 58.0
4 38.0 62.0 43.8 56.2

Web Table 3.10: Class-speci�c description of the posterior classes of the four-latent-class joint

change-point markovian illness-death model, for gender and educational level,

in percentages (Paquid data, N=3,525).

β̂ SE CI inf CI sup
Class Membership

π1 -0.11 0.2607 -0.62 0.40
Illness-death model

Education γe01 -0.41 0.1906 -0.79 -0.04
Gender γs01 0.24 0.1877 -0.12 0.61
ApoE4 γa01 0.43 0.2176 0.00 0.85

Education γe02 0.01 0.1578 -0.30 0.31
Gender γs02 -0.72 0.1535 -1.02 -0.42
ApoE4 γa02 0.20 0.1845 -0.16 0.56

Education γe12 0.16 0.1665 -0.17 0.48
Gender γs12 -0.41 0.1697 -0.74 -0.07
ApoE4 γa12 -0.24 0.1724 -0.58 0.09

Latent process
Class-speci�c τ1 86.07 0.7235 84.65 87.49

Change-point times τ2 83.12 0.6076 81.93 84.31
Education β3 0.91 0.1387 0.64 1.18

Education× t if t < τg β4 -0.11 0.1288 -0.37 0.14
Education× t if t > τg β5 -0.04 0.1651 -0.36 0.28

Gender β6 0.12 0.0796 -0.03 0.28
ApoE4 β7 -0.14 0.1331 -0.41 0.11

ApoE4× t if t < τg β8 -0.23 0.1652 -0.55 0.09
ApoE4× t if t > τg β9 -0.03 0.1969 -0.42 0.36

Web Table 3.11: Estimation of the parameters of the two-latent-class joint change-point marko-

vian illness-death model, adjusted on gender, educational level and ApoE4 (sub-

sample of Paquid cohort with ApoE4 measurement, N=619).
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Class 1 2 3 4
1 76.21 9.30 0.35 14.14
2 4.63 77.36 1.99 16.02
3 0.00 0.00 87.70 12.29
4 6.42 8.88 10.37 74.33

Web Table 3.12: Mean probabilities (in percentages) to belong to each class according to the

posterior classi�cation, allocating 103 (16.64%) subjects in class 1, 145 (23.42%)

to class 2, 64 (10.34%) to class 3 and 307 (49.60%) to class 4 (sub-sample of

PAQUID cohort with ApoE4 measurement, N=619).
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4 Dynamic predictions for dementia

Joint models are useful tools to predict the risk to have dementia within the next

few years, based on repeated cognitive markers. In this part, the model developed in

the previous chapter is applied to propose dynamic prediction tools for dementia. Using

the Paquid cohort as learning data set and the Three-city cohort as validation set, we

compare the predictive abilities of joint models based on a single or multiple cognitive

tests accounting for interval censoring of dementia and the competing risk of death.

4.1 Introduction

The usual tools to assess predictive accuracy are the time-dependent receiver operating

characteristic (ROC) curve and the corresponding area under the curve (AUC) as well as

the Brier Score. The AUC is a measure of discrimination that quanti�es the probability

that the marker value of a case is higher than the marker value of a control, provided that

the higher the marker value, the higher the risk of having the disease. Thus, the AUC

can be used to assess the ability of a model to predict the time-to-onset of the disease.

On the other hand, the Brier Score is a mean squared error which quanti�es both the

discrimination and the calibration of the model. The second component depends on the

distribution of the risk predictions and quanti�es how close these predictions are from the

true underlying risk of disease.

Within the framework of competing risks, Blanche et al. [2013] proposed fully non-

parametric estimators of the AUC based on the inverse probability of censoring weighting

(IPCW) method, as well as a test to compare the AUCs of two markers, measured at

baseline. Handling competing risks requires to rede�ne the set of controls, especially by

precising if the set includes subjects free of the disease who experienced the competing

event. This can lead to two di�erent de�nitions of the sets of controls and two di�erent

corresponding AUC estimators. Jacqmin-Gadda et al. [2014] proposed an approximation
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to apply the IPCW estimators within the setting of semi-competing risks with interval

censoring. A comparison between the IPCW estimators with this approximation and

parametric illness-death estimators showed that the misspeci�cation of the illness-death

models could lead to substantial biases while IPCW estimators remained relatively e�-

cient.

In the joint modeling context, predictions of the risk of dementia can be computed

from repeated measures of the marker, and updated at each new measure. Blanche et al.

[2015] extended the IPCW estimators of the AUC to assess and compare the dynamic

predictive accuracy of such prognostic models.

This chapter presents a dynamic predictive model based on repeated measures of

cognitive markers, accounting for interval censoring of dementia and the competing risk

of death. The methodology for this model was described in Chapter 3 and the inference

for AUC relied on the method proposed by Blanche et al. [2015].

4.2 Methods

4.2.1 Data

The prognostic models were constructed from the two French prospective cohorts pre-

sented in the section 1.2, �tted on the Paquid cohort and validated on the Three-city

Study.

The Paquid training sample

To build the training sample, we selected subjects from the Paquid cohort, located in

Gironde, who were not prevalent at entry and who completed at least once the Isaacs Set

Test (IST), the MMSE and the Benton Visual Retention Test (BVRT) before the visit of

dementia diagnosis, death or right censoring. This sample included 2,490 subjects, who

entered the study on average at 74.5 years old (sd=6.5 years), with a majority of women

(58.47%) and a majority of subjects with a high educational level (30.36%). During 25

years of follow-up, the subjects were seen every 2 or 3 years and 600 subjects (24.10%)

were diagnosed with dementia, of which 519 died later (20.84% of the total sample), while

2212 (88.84%) died with no dementia diagnosis. The mean number of collected responses
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was 4.58 (sd=3.02) for the MMSE and 4.31 (sd=3.04) for the IST.

The Three-city validation sample

The validation set was built from the Bordeaux and Montpellier samples of the Three-city

Study, including initially 4,363 subjects. We excluded subjects who were deaf, blind or

con�ned to bed at entry and we selected subjects who were free of dementia and who

performed at least once the IST or the MMSE before their dementia diagnosis. Finally,

the validation sample was composed of 3,880 subjects, including 59.9% of women and

91.4% of subjects with a high level of education, who entered the study at 73.7 years old

on average (sd= 5.3 years). Subjects were seen every 2 or 3 years during a 10-year follow-

up. To apply the IPCW estimators of AUC, we used the imputation rule proposed by

Jacqmin-Gadda et al. [2014] to de�ne the cases and controls despite interval censoring of

the time-to-dementia: the time-to-dementia was imputed by the middle of the censoring

interval for subjects diagnosed with dementia and subjects who died with no dementia

diagnosis more than 2 years after their last visit were considered as right-censored at their

last visit, otherwise they were considered as non-demented at their time-to-death. Thus,

a total of 397 (10.2%) subjects were diagnosed with dementia, 403 (10.4%) individuals

died before the dementia diagnosis and 3,080 (79.4%) were right-censored.

4.2.2 Cognitive tests

We focused on the Isaacs Set Test and the MMSE. The �rst one evaluates verbal �u-

ency and consists in asking subjects to give as many names of cities, fruits, animals and

colors as possible, within 1 minute for each category. The maximum number of names was

truncated at 10. The test scores range from 0 to 40 points. Due to the ceiling e�ect of the

1-minute score, we used the score at 15 seconds which does not have any �oor or ceiling

e�ects. This test was shown to be sensitive to small changes in high levels of cognition,

due to its speed component, but also in other ranges of cognition [Proust-Lima et al.,

2007]. At last, it is a short test with simple instructions which can be easily proposed to

large samples, including cognitively impaired individuals.

The MMSE assesses the global cognitive functioning through di�erent items on mem-

ory, calculation, time and space orientation, language, and word recognition. The scores
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range from 0 to 30 points. The MMSE is widely used in clinical practice as a screening

test for dementia but also in population-based studies to quantify the cognitive change.

However, it has a strong ceiling e�ect: it is not sensitive to changes in high levels of cogni-

tion and may not be appropriate to study the cognitive decline among subjects with high

educational level. This test also has a poor sensitivity in low levels of cognition, which

makes the discrimination of severely impaired subjects di�cult. Nevertheless, the MMSE

has a good discriminatory ability in the medium range of cognition and remains an in-

teresting tool for dementia diagnosis. Thus, the MMSE is curvilinear: it shows a varying

sensitivity to cognitive changes, that is to say that 1-point decrease in MMSE does not

represent the same clinical deterioration according to the initial score. In order to avoid

this curvilinearity issue, Philipps et al. [2014] proposed a normalizing transformation of

the MMSE.

4.2.3 Prognostic models for dementia

We estimated three joint latent class models accounting for interval censoring of the

time-to-dementia and the competing risk of death, on the Paquid cohort. The �rst model

was based on IST data, the second on MMSE data and the third combined both IST and

MMSE data.

The mixed sub-models of the three joint latent class models were speci�ed in the same

way. Given the latent class g, the latent cognitive process was modeled as follows:

Λi(tij) =β0g + u
(0)
ig + β0,age Agei0 + β0,CEP CEPi + β0,learn 1(tij=0)

+ (β1g + u
(1)
ig + β1,age Agei0)× tij

+ (β2g + u
(2)
ig + β2,age Agei0)× t2ij

with uig = (u
(0)
ig , u

(1)
ig , u

(2)
ig )> ∼ N (0, σgB) the class-speci�c random e�ects. The time

scale was the delay from the entry in the cohort, in decades: tij =
Ageij−Ageentry,i

10
. The

trajectory of the marker was adjusted on the scaled age at entry Agei0 =
Ageentry,i−65

10
,

as well as on educational level (CEPi = 1 if the subject obtained the primary school

diploma and 0 otherwise). The time-dependent covariate 1(tij=0) allowed to account for

the improvement in cognitive scores observed after the �rst interview, possibly due to

the stress of the testing procedure at the �rst visit or the learning e�ect at the second
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visit [Jacqmin-Gadda et al., 1997]. We assumed that each of the three above mentioned

covariates has a common e�ect on the latent classes.

Marker-speci�c beta cumulative distribution functions ψk(·; ηk) depending on param-

eters ηk, were used to link the observed score Yijk of subject i at time tij of the repeated

marker k to the latent cognitive process: ψk(Yijk; ηk) = Λi(tij) + εijk with εijk ∼ N (0, σ2
εk

)

and σεk accounting for the marker-speci�c within-subject variability. Thus, the model

based on the IST involved one transformation ψM1
IST , the model based on the MMSE in-

volved ψM2
MMSE and the combined model involved both ψM3

IST and ψM3
MMSE.

Conditionally to the latent classes, the transition intensities of the illness-death sub-

models were modeled by proportional hazards models:

α01ig(t) = α0
01g(t) exp(γ01g,age Agei0 + γ01g,CEP CEPi)

α`2ig(t) = α0
`2g(t) exp(γ`2g,age Agei0 + γ`2g,Sex Sexi + γ`2g,CEP CEPi), with ` = 0, 1

with class-speci�c e�ects of the scaled age at entry and educational level for the transition

toward dementia, and an additional class-speci�c e�ect of gender (Sexi = 1 for women

and 0 for men) for the two transitions toward Death. The class-speci�c baseline transition

intensities were parameterized by Weibull functions.

4.2.4 Assessment criteria

In the joint modeling setting with competing risks and interval censoring, the dynamic

area under the curve is de�ned at landmark time s for a prediction horizon t, as follows:

AUC(s, t) = P (πi(s, t) > πj(s, t)|Di(s, t) = 1, Dj(s, t) = 0, TAi > s, TDi > s, TAj > s, TDj > s)

with TAi and TDi the time-to-dementia and the time-to-death for subject i respectively

and

πi(s, t) = P (s < TAi 6 s+ t, TDi > TAi |TAi > s, TDi > s,HY
i (s), Xi) (35)

the probability for subject i to become demented before dying during the interval ]s, s+t],

given the subject is alive and not su�ering from dementia at time s and given his/her

responses to the marker(s) under consideration collected up to s, denoted by HY
i (s). The

dementia indicatorDi(s, t) = 1(s<TA
i 6s+t,TD

i >TA
i ) is equal to 1 for cases and to 0 for controls,

at each landmark s. Thus, the set of cases includes subjects alive and free of dementia at
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s, who became demented before s+ t and before dying while the set of controls includes

subjects alive and free of dementia at s, who were still alive and free of dementia at s+ t

or who died without dementia within the interval ]s, s+ t].

Besides, the de�nition of the expected Brier Score can also be extended to dynamic

predictions:

BS(s, t) = E
[(
D(s, t)− π(s, t)

)2|TA > s, TD > s
]

= E
[(
E(D(s, t)|HY (s)]− π(s, t)

)2|TA > s, TD > s
]

+ E
[(
D(s, t)− E[D(s, t)|HY (s)]

)2|TA > s, TD > s
]

The �rst part of the sum above quanti�es the calibration of the model, and the second

part assesses the inherent discrimination ability of the information of the marker collected

up to s.

Blanche et al. [2015] proposed IPCW estimators of the AUC and the Brier Score

to handle right-censored time-to-event data. The dementia indicator is not known for

subjects who were lost to follow-up during the interval ]s, s + t]. The weights are then

equal to the inverse probability to be alive and free of dementia at s for cases and equal

to the inverse probability to be alive and free of dementia at s+ t for controls, computed

by the non-parametric Kaplan-Meier estimator. The main advantage of these IPCW

estimators of AUC and Brier Score is that they are model-free and do not assume that

the prognostic joint models are well-speci�ed.

At last, Blanche et al. [2015] also proposed point-wise tests to compare the AUC and

the Brier Score of two di�erent prognostic models at each landmark time.

4.3 Results

We estimated the three joint models with G=1, 2, 3 latent classes and retained 3 latent

classes for each model. We set up the landmark times to s=0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4

years with a prediction horizon of t =5 years. The corresponding probabilities of Eq.(35)

were computed for the subjects in the Three-city validation sample, from the estimations

obtained on the Paquid cohort, for each model.
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Figure 4.1: Comparison of predictive accuracy of the predicted risks of dementia, based on the

IST and on the MMSE, within time window (s, s+t) when s =0, 0.5, 1, 1.5,..., 4 and

t = 5 years. 95% point-wise con�dence intervals are displayed as dashed lines, 95%

simultaneous con�dence bands as dotted lines. Three-city data, n = 3,880 subjects.

Figure 4.1 presents a graphical comparison of predictive abilities between the model

based on the IST and the model based on the MMSE. The estimated AUCs represented

in the top left part show that the IST marker has a better discrimination ability than

the MMSE, particularly after a delay of one year. Note that the AUCs do not increase

with time, despite the accumulation of collected data. This may be due to the stronger

selection of the population with time: the subjects who remain in the study may be more

di�cult to discriminate, as subjects with high probabilities to become demented already

became demented or died. The bottom left part displays the estimated di�erence between

the two AUCs, at each landmark time. The point-wise con�dence intervals con�rm that

the model based on the IST has a signi�cantly better discriminatory ability after a delay

of one year. The right part of the �gure presents the expected Brier Score (top right

part) and the estimated di�erence of expected Brier Score between the two models (bot-
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tom right part). The Brier Score curves show that the model based on the IST is better

calibrated from a delay of one year. The increase observed at s = 4 years may be due

to the selection of the population or to the fact that all the information of the prediction

window (from 4 to 9 years) is not collected yet, as the follow-up is considered up to 10

years.

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

es
tim

at
es

 o
f A

U
C

(s
,t)

0.5 1 1.5 2 2.5 3 3.5 4

IST
Combined

0 4

0.
02

0.
10

es
tim

at
es

 o
f B

S
(s

,t)

0.5 1 1.5 2 2.5 3 3.5

0.
05

IST
Combined

0 4

0.
00

0.
15

es
tim

at
es

 o
f d

iff
er

en
ce

s 
in

 A
U

C
(s

,t)

0.5 1 1.5 2 2.5 3 3.5

0.
05

0.
1

0 4

0.
00

0

es
tim

at
es

 o
f d

iff
er

en
ce

s 
in

 B
S

(s
,t)

0.5 1 1.5 2 2.5 3 3.5

−
0.

00
5

0.
00

5

Landmark time s (years)

AUC Expected Brier Score

Figure 4.2: Comparison of predictive accuracy of the predicted risks of dementia, based on the

IST and on both the IST and the MMSE, within time window (s, s+t) when s =0,

0.5, 1, 1.5,..., 4 and t = 5 years. 95% point-wise con�dence intervals are displayed as

dashed lines, 95% simultaneous con�dence bands as dotted lines. Three-city data, n

= 3,880 subjects.

Figure 4.2 presents the comparison between the model based on the IST and the

combined model. The AUCs and Brier Scores of the two models are very similar, with a

non signi�cant advantage for the model based on the IST. Combining the IST with the

MMSE does not improve the predictive ability in terms of discrimination and calibration,

compared to the model based on the IST alone.

As expected, the combined model has a better discrimination and calibration ability
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Figure 4.3: Comparison of predictive accuracy of the predicted risks of dementia, based on the

MMSE and on both the IST and the MMSE, within time window (s, s+t) when s =0,

0.5, 1, 1.5,..., 4 and t = 5 years. 95% point-wise con�dence intervals are displayed as

dashed lines, 95% simultaneous con�dence bands as dotted lines. Three-city data, n

= 3,880 subjects.

than the model based on the MMSE, as shown in Figure 4.3.
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4.4 Discussion

We compared the predictive abilities of joint latent class models, accounting for interval

censoring and semi-competing risks, based on repeated measures of di�erent cognitive

tests. The initial objective was to compare the models based on the IST, the MMSE and

the BVRT with the model combining the three tests, that is why we selected subjects who

completed the BVRT at least once. We �rst focused on the two tests retained by Blanche

et al. [2015] in order to compare our results. This work is in progress but the current

results con�rm that the IST is more suitable than the MMSE to predict dementia and

also suggest that combining the MMSE and the IST is not better in terms of predictive

ability than the IST alone.

However, we made some assumptions in the combined model which could be made

more �exible. First, the e�ects of the covariates on the latent process are assumed com-

mon to the two markers. This assumption is likely too restrictive, given the di�erences

in estimations between the three models. Also, we assumed that the variability of the

random intercept was common to the two markers. Nevertheless, in a supplementary

analysis, we accounted for a marker-speci�c inter-subject variability and this yielded sim-

ilar results. At last, the comparisons of the three models were made with three latent

classes for each model as in Blanche et al. [2015], but analyses will be continued to choose

the optimal number of classes for each marker. We also intend to combine other tests

such as the BVRT.

We considered the delay from entry as time scale in order to gather a su�cient number

of cases in a 5-year prediction window at each landmark time. When dealing with age

as time scale, the predictive assessment can get di�cult as the range of ages at entry is

relatively wide. Thus, we may not have enough subjects who became demented within

the same 5-year age interval and we may obtain large con�dence intervals of IPCW esti-

mators, also resulting in a lower power of the point-wise test.

We obtained worse AUC and Brier Scores than the ones obtained by Blanche et al.

[2015] with a joint three-latent-class model for competing risks, not accounting for interval

censoring. We did not expect to have better predictive abilities but such a di�erence is not
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negligible (mean AUC=0.8 in our analysis for IST versus 0.9 in Blanche et al. [2015]). The

�rst di�erence between the two analyses is the training sample: in our analysis, we did not

exclude deaf subjects, blind or con�ned to bed as in Blanche et al., and we included only

subjects who completed at least the BVRT once before the dementia diagnosis, death or

right-censoring. In total, our training set contains 400 fewer subjects and the follow-up

was 5-year longer. Note also that the selection procedure is di�erent in our training and

in our validation samples.

Second, Blanche et al. analyzed directly the repeated measurements values of IST

and the normalized MMSE while we estimated non-linear transformations. These trans-

formations may be close to the identity function as the IST and the normalized version

of the MMSE are gaussian. However, if the distributions of these tests are di�erent in

the Paquid and in the Three-city cohorts, the estimated transformations on the Paquid

cohort may not be transferable to the Three-city cohort and this may alter the preditive

abilities of the model.

Third, the number of classes is not optimized in our study and it would be useful to

run the three models with more latent classes to check that the heterogeneity in cognitive

decline and risk of dementia is correctly accounted for.

Fourth, interval censoring is not treated in the same way in the training sample and in

the validation sample. In the latter set, we imputed the middle of the censoring interval

for subjects diagnosed with dementia and we used an imputation rule for subjects who

died before the dementia diagnosis. Jacqmin-Gadda et al. [2014] compared the properties

of the IPCW estimators of AUC based on this imputation rule with an estimator based on

an illness-death model accounting for interval censoring and showed that there was little

di�erence, provided the illness-death model was well-speci�ed. However, imputation may

arti�cially increase information in both the training and the validation sets in Blanche et

al.'s analysis.

As the objective of this work was to compare the predictive abilities of the di�erent

markers, we estimated the three joint latent class models on the same training sample

from the Paquid cohort, which included only subjects who had at least performed one

IST, one MMSE and one BVRT before the dementia diagnosis, death or right-censoring.

However, when the purpose is to build the best predictive model, it is more relevant to
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estimate the joint latent class model on the biggest training set available. Thus, the com-

bined model could be estimated on a larger sample, including subjects who performed at

least one of the di�erent tests before the dementia diagnosis.

As a conclusion, accounting for interval censoring in predictive ability assessment is

di�cult: either we use arbitrary imputations, or we estimate the AUC with the same

joint multi-state model than the one used in the estimation phase, which accounts for

interval censoring. The comparison between the two methods, within the framework of

a �xed marker, showed little di�erence [Jacqmin-Gadda et al., 2014]. However, as the

model may be misspeci�ed within the joint modeling framework, we preferred the non-

parametric approach.
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Background: The most frequently used models for the analysis of longitudinal data with

attrition due to death and drop-out are mixed models, joint models (for repeated measures of

the marker and time-to-death) and marginal models estimated either by weighted or unweighted

Generalized Estimating Equations (GEE). Our objective is to explain the interpretation and

compare estimates from these methods under di�erent assumptions regarding the death process

and the drop-out process.

Methods: We compared through simulations maximum likelihood estimates (MLE) of mixed

models and joint models and GEE with independent working correlation structure (IEE) and

weighted IEE for marginal models. We considered two weighting methods: by the inverse proba-

bility to be observed (WIEE1) and by the inverse probability to be observed given the subject is

alive (WIEE2). These models were then applied to the Paquid cohort to estimate the cognitive

decline in the elderly.

Results: Estimates from mixed models and joint models may be interpreted as subject-speci�c

estimates among the population alive while their population-averaged interpretation is possi-

ble only in an immortal cohort. IEE provides population-averaged estimates in the currently

observed population, while WIEE2 provides population-averaged estimates in the population

currently alive and WIEE1 provides population-averaged estimates in the immortal population.

Conclusions: When the follow-up may be truncated by death and the interest is in the impact

of covariates on the individual change, we recommend mixed model or joint model analyses.

When the interest is in the impact of covariates on the change in the population mean of survivors,

we recommend WIEE2.

Keywords: Death, Immortal cohort, GEE, Mixed models, Partly conditional, Population-

averaged, Subject-speci�c.
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5.1 Introduction

Mixed models estimated by Maximum Likelihood [1] and marginal models estimated

by Generalized Estimating Equations (GEE) [2] are the two main methods for the analysis

of longitudinal data in epidemiology. Their di�erences regarding parameter interpretation

led to an abundant literature [3; 4; 5]. Subject-speci�c parameters from mixed models

represent e�ects of covariates on the individual change while population-averaged param-

eters from marginal models represent e�ects of covariates on the change in the population

mean. The former is useful to measure the etiologic e�ect of the exposure while the lat-

ter measures the change in the population mean if the exposure disappeared from the

population. In this paper, we focus on the linear case as this is the unique case where

parameters of mixed models have both interpretations.

To analyze cohort studies prone to attrition due to drop-out, mixed models estimated

on available data are the recommended approach because these estimators are robust to

missing at random data (MAR) while GEE estimators from marginal models are unbi-

ased only if the missing data are completely at random (MCAR). The MCAR and MAR

assumptions state that the probability to drop out depends on covariates only, or on

both covariates and observed past value of the outcome, respectively. However, weighted

GEE approaches have been proposed [6; 7; 8] to provide unbiased population-averaged

estimates under the MAR assumption. When missing data are at random, mixed models

and weighted GEE provide estimates that would have been obtained without drop-out.

Missing data are not at random (MNAR or informative) when the drop-out probability

may depend on unobserved characteristics of the marker trajectory (for instance current

true value or current slope) given past observed marker values and covariates. In this

case, joint models of the longitudinal marker and time-to-drop-out, which combines a

mixed model and a time-to-event model, may lead to unbiased estimates if the depen-

dence structure between the two outcomes is well-speci�ed.

When attrition is due to death, as in cohort of elderly subjects, the use of mixed mod-

els is debated because they estimate the unconditional expectation of the marker, which

would have been observed in an immortal cohort, if nobody had died (i.e. initial cohort)

120



INTERPRETATION OF MODELS WITH COHORT ATTRITION

[9; 10]. Indeed, by modeling intra-subject correlation, maximum likelihood estimation

(MLE) implicitly imputes data after death [9]. The same argument may be applied for

the estimates from the mixed sub-model in a joint model suggesting that they provide

an unbiased estimation of the trend in an immortal cohort, when the risk of death de-

pends on unobserved characteristics of the longitudinal trajectory of the marker. Most

authors consider that the target estimand should be the expectation of the marker given

the subject is currently alive, also called partly conditional expectation (or mortal cohort

inference), which can be estimated by GEE with an independence working correlation,

denoted IEE [9; 10; 11; 12]. When attrition is due to death and drop-out, Dufouil et al.

[11] target the same estimand by weighting IEE by the inverse probability to be observed

given the subject is alive. Nevertheless, in the literature, other weights de�ned as the

inverse probability to be observed (i.e. to be alive and observed) are used [13].

The objective of this paper is to clarify the interpretation of parameters from lin-

ear mixed models and joint models estimated by MLE, in longitudinal studies prone to

attrition due to death and possibly drop-out. Our main point is that MLE parame-

ters may be interpreted as subject-speci�c e�ects in the population alive whereas their

population-averaged interpretation is possible in an immortal cohort only. We compare

these estimates with unweighted and weighted IEE estimates. We show in a simulation

study and by applying the di�erent methods to the Paquid cohort of elderly that un-

weighted IEE provides the population-averaged estimates among the currently observed

population, IEE weighted by the inverse probability to be observed given that the sub-

ject is alive provides the population-averaged estimates in the currently alive population

whereas IEE weighted by the inverse probability to be observed (and alive) provides the

population-averaged estimates in an immortal population.

5.2 Notations

For each subject i, i = 1, . . . , N we denote by Ỹi(t) the true marker value de�ned at

any time t and by Yij the measure of the marker at visit times tij, j = 1, . . . , ni. Then

Xij is the set of covariates at visit j, T1i the time-to-death and T2i the time-to-drop-out.
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We describe the marker trajectory by a linear mixed model:

Yij = Ỹi(tij) + εij = XT
ijβ + ZT

ijui + εij (1)

with ui ∼ N(0, B) random e�ects and εij the measurement error at occasion j with

εij ∼ N(0, σ2).

We assume that the longitudinal follow-up may be stopped by death or drop-out only,

excluding intermittent missing data, and that covariate values Xij are known at any visit

times among subjects alive (irrespective of the observation of Yij). Following Kurland

and Heagerty [9], the drop-out mechanism is de�ned as MCAR when the probability to

be observed given the subject is alive is independent from the future time of death s and

the marker values:

S2i(t) = P
(
T2i > t|T1i = s,HX

i (s), HY
i (s), H Ỹ

i (s)
)

= P
(
T2i > t|T1i > t,HX

i (t)
)

with t < s

with HX
i (s) = {Xij, tij < s} and HY

i (s) = {Yij, tij < s} the sets of covariates and marker

measures, respectively, collected for subject i at all visits before time t, and H Ỹ
i (s) ={

Ỹi(u), u ≤ s
}

the history of the true marker values up to and including time t. The

drop-out process is MAR when the probability to be observed given the subject is alive

is independent from the future time of death and the unobserved values of the marker:

S2i(t) = P
(
T2i > t|T1i = s,HX

i (s), HY
i (s), H Ỹ

i (s)
)

= P
(
T2i > t|T1i > t,HX

i (t), HY
i (t)

)
Similarly, we de�ne the death process as completely at random (DCAR) or at random

(DAR) if the survival probability S1i(t) = P (T1i > t) is a function of, respectively� the

history of covariate values until t, or a function of the histories of both the covariate and

marker values until t. The death process is not at random (DNAR) when S1i is a function

of the histories of the covariate values and observed marker values until t and the history

of true marker values up to and including t.
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5.3 Target estimands with death and drop-out

One of the estimands of interest is E (Yij|Xij), the population-averaged mean of the

marker in the immortal cohort, which would have been observed if subjects were not prone

to death. Parameters in model (1) have this population-averaged interpretation since:

β = E (Yij|Xij = 1)− E (Yij|Xij = 0)

Thus, β represents the change in the population mean of Y associated with a unit change

in X.

When considering the individual change, one can be interested in E (Yij|Xij, ui) which

represents the subject-speci�c mean in the immortal population. Regression parameters

in model (1) also have the subject-speci�c interpretation as:

β = E (Yij|Xij = 1, ui)− E (Yij|Xij = 0, ui)

Thus, β also represents the individual change in the immortal population associated with

a unit change in X, adjusting for ui that stands for the subject-speci�c unmeasured co-

variates considered independent from the observed covariates [14].

As the immortal population, with no risk of dying, is not realistic, it is of interest to

focus on the same expectations among the population currently alive, said 'partly con-

ditional' expectations [9]. The subject-speci�c expectation given the subject is currently

alive is:

E (Yij|Xij, ui, T1i > tij) = XT
ijβ + ZT

ijui + E (εij|Xij, ui, T1i > tij)

We demonstrate in Web Appendix 1 that E(εij|Xij, ui, T1i > tij) = 0 whatever the death

mechanism (DCAR, DAR and DNAR when the risk of death depends on the histories of

covariate and true marker values only). Hence the subject-speci�c expectation of Y in the

immortal cohort equals the partly conditional subject-speci�c expectation and β can also

be interpreted as the individual change in Y associated with a unit change in X among

subjects currently alive.
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Besides, the population-averaged expectation given the subject is currently alive can be

derived from Eq. (1):

E (Yij|Xij, T1i > tij) = XT
ijβ + ZT

ijE (ui|Xij, T1i > tij) + E (εij|Xij, T1i > tij)

In both DAR and DNAR frameworks, the risk of death depends on ui, either through

the past values of Y (DAR), through the expected true current value Ỹ or directly on ui

(DNAR). Thus, E(ui|Xij, T1i > tij) 6= 0 and E(Yij|Xij, T1i > tij) 6= E(Yij|Xij) = XT
ijβ.

Thus, the unconditional and the partly conditional population-averaged expectations are

di�erent and the parameter β from a linear mixed model has a population-averaged in-

terpretation only in an immortal cohort. It represents the impact of a change in X on

the population mean of Y whether subjects were not permitted to die.

Based on McCulloch et al. [15], we propose in Web Appendix 2 an analytical ap-

proximation of the population-averaged partly conditional expectation of the marker

E(Yij|Xij, T1i > tij) assuming a proportional hazards model for death depending on X

and the random e�ects ui (DNAR assumption). When the unconditional population-

averaged trajectory is linear on time and does not depend on X, the population-averaged

expectation among subjects currently alive turns to have a quadratic time-trend and to

be a�ected by a change in X, due to selection by death.

We concur with most authors that the objective of longitudinal data analyses is to

estimate the mean trajectory, or the impact of covariates, among subjects alive. Thus,

when interested in the population-averaged e�ect of predictors, mixed models or joint

models are not appropriate. However, for most real data analyses, the target estimand is

E(Yij|Xij, ui, T1i > tij) rather than E(Yij|Xij, T1i > tij) as the analyses aim at estimating

the association between a change in X and the individual change in Y among subjects

alive rather than the change in the population mean.

Two other possible estimands E(Yij|Xij, ui, T1i > tij, T2i > tij) and E(Yij|Xij, T1i >

tij, T2i > tij), represent respectively the subject-speci�c and population-averaged expec-

tations among the subjects currently alive and observed, but usually they are not the

target of analyses.
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5.4 Standard estimators with death and drop-out

When the follow-up may be terminated by death and drop-out in the DAR/MAR

framework, the MLE of linear mixed models are unbiased and represent the population-

averaged and subject-speci�c e�ects of covariates in the immortal cohort, as likelihood

maximisation procedure is equivalent to imputing data after drop-out and death [9]. Since

unconditional and partly conditional subject-speci�c expectations are equal as demon-

strated above, these estimates can also be interpreted as subject-speci�c e�ects among

subjects alive. When the risk of death may depend on unobserved characteristics of the

marker trajectory (DNAR), these estimates may be biased as mixed models are not robust

in this framework. However, the MLE of joint models are unbiased when the correlation

between the marker and the time-to-event is modeled correctly. Thus, they estimate both

unconditional population-averaged and subject-speci�c e�ects, as well as partly condi-

tional subject-speci�c e�ects.

When attrition is due to death and drop-out, marginal models estimated by unweighted

IEE estimate the expectation E(Yij|Xij, T1i > tij, T2i > tij) among subjects currently alive

and observed [9; 10]. In the MAR/DAR case, Weuve et al. [13] used a weighted GEE

approach, with time-dependent weights equal to the inverse probability to be currently

alive and observed:

w
(1)
ij =

1

P (T2i > tij, T1i > tij|HX
i (tij), HY

i (tij))

With the independence working correlation structure, this weighted IEE (WIEE1) esti-

mates the population mean in an immortal cohort without drop-out [9], E(Yij|Xij) which

is rarely the target estimand.

To correct for drop-out only, Dufouil et al. [11] proposed another weighted IEE with

time-dependent weights equal to the inverse probability to be currently observed given

the subject is alive:

w
(2)
ij =

1

P (T2i > tij|T1i > tij, HX
i (tij), HY

i (tij))

This weighted IEE (WIEE2) provides estimates of the population mean among subjects

alive that would have been observed without drop-out: E (Yij|Xij, T1i > tij) [9; 11].
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5.5 Simulations

In order to check empirically the above interpretations and to quantify the di�erences

between the unconditional and partly conditional estimates, we carried out several sets

of simulations according to di�erent mechanisms for drop-out and death.

For each scenario, 500 datasets were generated. Longitudinal data were generated by a lin-

ear mixed model: Yij = 20−0.3tij+ui0 +ui1tij+εij with ui ∼ N

0

0

 ,
 0.3 −0.1

−0.1 0.1

,

εij ∼ N (0, 0.92) for i = 1, . . . , 500 subjects and tij = 0, 4, 12, 16, 20 year.

Within non-informative frameworks, times to death and drop-out were successively gen-

erated by logistic models:

logit (P (T1i > tij|T1i > tij−1)) = η0 + η1Xi + η2Yij−1

logit (P (T2i > tij|T1i > tij, T2i > tij−1)) = γ0 + γ1Xi + γ2Yij−1

The binary covariate X had a Bernoulli distribution with probability 50%. When death

and drop-out were DCAR/MCAR or DAR/MAR, parameter values were equal to (η0, η1,

η2, γ0, γ1, γ2) = (2.5, 0.5, 0, 2.5, 0.5, 0) or (η0, η1, η2, γ0, γ1, γ2) = (-0.5, 0.5, 0.15, 0.5,

0.5, 0.1) respectively. Within the DNAR framework, time-to-death was generated by a

proportional hazards model with a constant baseline hazard depending on X and on the

random slope from the mixed model:

λ(t) = 0.05 ∗ exp (−Xi − u1i)

At last, the marker values were truncated at the �rst time-to-event met by each subject.

We compared maximum likelihood estimates of the mixed model, with marginal mod-

els estimated by unweighted IEE, WIEE1 or WIEE2 as well as maximum likelihood es-

timates of joint models in the DNAR case. While marker values were generated with

a linear time-trend without exposure e�ect, all estimated models accounted for a possi-

ble quadratic time-trend and an e�ect of X, with interactions with t and t2. Weights

were estimated by pooled logistic regressions using the product from k = 2 to j of

P (T2i > tik|T1i > tik, T2i > tik−1, Xi, Yik−1) P (T1i > tik|T1i > tik−1, T2i > tik−1, Xi, Yik−1) for
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w
(1)
ij and of P (T2i > tik|T1i > tik, T2i > tik−1, Xi, Yik−1) for w(2)

ij [9; 11]. Mixed models,

IEE and joint models were estimated with R packages NLME, geeM and JM respectively.

The main results are presented below and complementary simulations are displayed in

Web Appendix 3.

When the risks of death and drop-out depend only on covariates (DCAR/MCAR),

as expected, estimated parameters and estimated mean trajectories of all the methods

are almost equal con�rming that subject-speci�c and population-averaged estimates are

identical in this case (Web Figure 5.5 and Web Table 5.4).

When the risks of death and drop-out depend on past marker values (DAR/MAR),

Figure 5.1 displays the empirical means at each time among subjects currently observed,

subjects currently alive and in the immortal cohort. These curves are di�erent, the �rst

two exhibiting a non-linear time-trend as death and drop-out led to a selection of the

sample, subjects with lower marker values leaving the cohort and dying earlier. These

three empirical means are well �tted by the marginal models estimated respectively by

unweighted IEE, WIEE2 and WIEE1. The mixed model also �ts well the empirical pop-

ulation mean among the immortal population.

Table 5.1 displays the estimates in the DAR/MAR framework. As expected, the

mixed model and WIEE1 both lead to unbiased estimates of the parameters of the gen-

erated model but estimates from WIEE1 have larger variances due to the use of the

independence working correlation. On the other hand, unweighted IEE, that estimates

the population mean among subjects observed, �nds a quadratic time-trend (signi�cant

in 96% of the samples) and a signi�cant interaction between X and t2 in 14% of the sam-

ples. WIEE2 that estimates the population mean among subjects alive also highlights

a quadratic time-trend (power=63%) but the interaction between X and t2 is generally

not signi�cant. Indeed, WIEE2 estimates are impacted by selection by death only while

unweighted IEE highlights the selection e�ect of both death and drop-out. When the

risk of death depends on an interaction between the exposure X and the previous marker

value Yij−1, the estimated interaction terms Xt and Xt2 are larger for both unweighted

IEE and WIEE2 (Web Figure 5.6 and Web Table 5.5).
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Figure 5.1: Empirical means and estimated expectations, for X = 0 and X = 1, of the mixed

model and marginal models using IEE, WIEE1 WIEE2, when death and drop-out

mechanisms are at random (DAR/MAR): logit (P (T1i > tij |T1i > tij−1)) = −0.5 +

0.5Xi+0.15Yij−1 and logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = 0.5+0.5Xi+0.1Yij−1

(N = 500).
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When the risk of death depends on the unobserved random slope of the marker (DNAR)

while the risk of drop-out depends only on the last observed marker value (MAR), un-

weighted IEE and WIEE2 �nd a signi�cant interaction term Xt2 in 32% and 12% of the

samples respectively. Besides, the mixed model and WIEE1 are biased (Table 5.2 and

Figure 5.2). However, these biases are relatively small because the time-trend is linear

and the number of observed values is large enough to estimate individual random slopes

of subjects who died, without large bias. These biases are corrected by the well-speci�ed

joint model. At last, mixed model and WIEE1 estimates from the marginal model di�er

as the weights are misspeci�ed.

Figure 5.2 shows that the approximation, presented in Web Appendix 2, �ts well the

population mean among subjects currently alive. Two joint models were estimated, ac-

counting for a dependence of the death process on either the true current value or the
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Table 5.1: Estimates of the mixed model and marginal models using IEE,

WIEE1 WIEE2, when death and drop-out mechanisms are at random

(DAR/MAR): logit (P (T1i > tij |T1i > tij−1)) = −0.5 + 0.5Xi + 0.15Yij−1 and

logit (P (T2i => tij |T1i > tij , T2i > tij−1)) = 0.5 + 0.5Xi + 0.1Yij−1. The last column

corresponds to the probability of rejection of the null hypothesis: β = βG, with βG
the parameter values for data generation in the mixed model. ASE and ESE are

respectively the asymptotical and empirical standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

Mixed Model

intercept 20 20.005 0.0638 0.0598 0.04
X 0 -0.005 0.0898 0.0878 0.04
t -0.3 -0.302 0.0263 0.0251 0.05
t2 0 0.000 0.0009 0.0008 0.04
Xt 0 0.001 0.0364 0.0369 0.06
Xt2 0 0.000 0.0012 0.0011 0.05

IEE

intercept 20 20.056 0.0690 0.0658 0.12
X 0 -0.013 0.0961 0.0953 0.06
t -0.3 -0.369 0.0357 0.0355 0.49
t2 0 0.008 0.0022 0.0022 0.96
Xt 0 0.018 0.0478 0.0488 0.06
Xt2 0 -0.002 0.0027 0.0027 0.14

WIEE1

intercept 20 20.007 0.0744 0.0696 0.04
X 0 -0.004 0.1021 0.0986 0.05
t -0.3 -0.303 0.0430 0.0389 0.02
t2 0 0.000 0.0030 0.0022 0.01
Xt 0 0.001 0.0559 0.0519 0.03
Xt2 0 0.000 0.0037 0.0028 0.00

WIEE2

intercept 20 20.042 0.0698 0.0665 0.09
X 0 -0.010 0.0970 0.0958 0.06
t -0.3 -0.349 0.0368 0.0355 0.25
t2 0 0.005 0.0023 0.0020 0.63
Xt 0 0.012 0.0490 0.0488 0.06
Xt2 0 -0.002 0.0029 0.0026 0.06
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Figure 5.2: Empirical means, approximated population-averaged expectation among subjects

alive and estimated expectations, for X = 0 and X = 1, of the mixed model

and marginal models using IEE, WIEE1 WIEE2, when the drop-out mechanism

is at random (MAR) and death risk depends on the random slope (DNAR):

logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = −1 + Xi + 0.2Yij−1 and λ(T1i) = 0.05 ∗
exp(−Xi − u1i) (N = 500).
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slope of the marker. The �rst joint model, which is misspeci�ed, under-estimates the de-

cline like the mixed model, but this is corrected by the well-speci�ed joint model. When

the risk of death depends on an interaction between the exposure X and the random slope

u1i, the estimated interaction term Xt2 is larger for both unweighted IEE and WIEE2

(Web Figure 5.7 and Web Table 5.7). Web Figure 5.8 and Web Table 5.7 display the

results when the risk of death depends on the true current value of the marker (DNAR),

and drop-out leads to MAR data. The di�erences between βG and estimates from GEE

models are higher, mainly due to a stronger selection by death.

5.6 Application to the Paquid cohort

To illustrate the impact of selection by death, we applied the models to the Paquid co-

hort [16] set up to characterize the pathological brain ageing. Paquid is a population-based
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Table 5.2: Estimates of the mixed model, joint model and marginal models using IEE, WIEE1

WIEE2, when the drop-out mechanism is at random (MAR) and death risk depends

on the random slope (DNAR): logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = −1 +Xi +

0.2Yij−1 and λ(T1i) = 0.05 ∗ exp(−Xi − u1i). The last column corresponds to the

probability of rejection of the null hypothesis: β = βG, with βG the parameter values

for data generation in the mixed model. ASE and ESE are respectively the asymp-

totical and empirical standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

Mixed Model

intercept 20 19.991 0.0646 0.0645 0.05
X 0 0.005 0.0903 0.0880 0.04
t -0.3 -0.273 0.0286 0.0295 0.16
t2 0 0.001 0.0011 0.0011 0.09
Xt 0 -0.017 0.0381 0.0380 0.08
Xt2 0 0.000 0.0014 0.0014 0.07

IEE

intercept 20 20.015 0.0693 0.0715 0.06
X 0 0.006 0.0962 0.0966 0.04
t -0.3 -0.329 0.0412 0.0430 0.11
t2 0 0.010 0.0029 0.0030 0.91
Xt 0 0.004 0.0516 0.0526 0.06
Xt2 0 -0.005 0.0033 0.0034 0.32

WIEE1

intercept 20 19.980 0.0747 0.0744 0.06
X 0 0.006 0.1015 0.0999 0.04
t -0.3 -0.268 0.0501 0.0470 0.08
t2 0 0.002 0.0039 0.0029 0.06
Xt 0 -0.016 0.0606 0.0561 0.03
Xt2 0 -0.001 0.0044 0.0033 0.02

WIEE2

intercept 20 19.994 0.0718 0.0719 0.06
X 0 0.005 0.0986 0.0977 0.05
t -0.3 -0.294 0.0454 0.0443 0.04
t2 0 0.005 0.0034 0.0030 0.36
Xt 0 -0.007 0.0557 0.0533 0.05
Xt2 0 -0.003 0.0039 0.0034 0.12

Joint Model

intercept 20 20.001 0.0646 0.0645 0.05
X 0 0.000 0.0903 0.0883 0.04
t -0.3 -0.298 0.0301 0.0308 0.06
t2 0 0.000 0.0012 0.0011 0.05
Xt 0 -0.003 0.0395 0.0390 0.05
Xt2 0 0.000 0.0014 0.0014 0.05
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cohort study including 3777 subjects aged 65 years and older at baseline and represen-

tative of two departments of South-Western France. Subjects were followed every 2 or 3

years with repeated cognitive assessments over 25 years.

We focused on the e�ect of gender on the change over time of verbal �uency, assessed

by the Isaacs Set Test (IST). This test consists in giving up to 10 names of cities, fruits,

colors and animals, within 15 seconds for each category, for a total of 40 points. As

weighted IEE approaches require only monotone missing data, we reduced the sample to

1,379 subjects (55.1% of women) without intermittent missing data. Along the 25 years

of follow-up, 615 subjects dropped out (including 564 who died later), 677 subjects died

before dropping out, and 87 were followed until 25 years. The average number of visits

was 4.18.

The estimated models included a quadratic time-trend and were adjusted on gender

(1 for women and 0 for men), age at baseline Age0 (in decades and centered on 65 years),

educational level (CEP for `Certi�cat d'Etudes Primaires' =1 if primary school diploma

obtained, 0 otherwise), with interactions of gender with time and time square. Time was

de�ned as the delay since the �rst visit, in decades. The logistic models for death and

drop-out used to compute the weights and the survival sub-model of joint models were

adjusted on educational level and age at baseline. The mixed model and joint model in-

cluded random intercept and slope. Using likelihood ratio tests, we compared several joint

models with di�erent dependence structures between the risk of death and the marker

trajectory and we retained a dependence on the current true value without interaction

with gender.

Figure 5.3 displays the estimated mean curves. The large di�erences between curves

estimated by the mixed model, the joint model and WIEE1 suggest that the death process

is informative. The mean curves estimated by IEE and WIEE2 clearly highlight a growing

selection in the cohort over time, which is more pronounced among men. Indeed, the risks

of death and drop-out are higher among subjects with low cognitive score and among men.

The trajectory estimated by the joint model has the steepest decline. Estimates from the

joint model show that the hazard ratio for death associated with a one-point-increase of
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IST is 0.92 (p< 0.01%).

Figure 5.3: Isaacs estimated expectations of the mixed model and marginal models using IEE,

WIEE1 WIEE2, and the joint model, for men (X = 0) and women (X = 1) with a

low level of education (CEP=0) and entered in the study at 65 years old (N = 1, 379).

Table 5.3 displays the MLE and IEE estimates. The mixed model, joint model and

WIEE1 model show no signi�cant e�ect of gender on IST evolution. By contrast, the

IEE and WIEE2 methods �nd a signi�cant association of gender with IST change over

time. Considering a man and a woman alive, with the same characteristics (same random

e�ects), the joint model results show that both have similar cognitive evolutions. However,

WIEE2 suggests that the di�erence between population means of IST among men and

women alive increases over time. Indeed, the risk of death is higher among men, so men

survivors tend to be healthier than women survivors even if the rate of cognitive decline

is the same among men and women. Note however that WIEE2 estimates are probably

biased as the death process appears to be informative.

5.7 Discussion

To summarize these results, we propose the following recommendations. For etiologic

studies where the aim is to quantify the impact of an exposure on the individual change,
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Table 5.3: Estimates of the mixed model and marginal models using IEE, WIEE1 WIEE2, and

the joint model, Paquid (N = 1, 379).

MLE
Mixed model Joint Model

β̂ SE(β̂) p-value β̂ SE(β̂) p-value
intercept 28.88 0.40 0.0000 28.87 0.41 0.0000
Sex 0.15 0.29 0.6208 0.19 0.29 0.5165
Delay -4.74 0.42 0.0000 -4.81 0.42 0.0000
Delay2 -0.34 0.23 0.1444 -0.68 0.24 0.0040
Age0 -3.86 0.21 0.0000 -3.91 0.21 0.0000
CEP 4.38 0.31 0.0000 4.42 0.31 0.0000
Sex.delay 1.04 0.55 0.0600 0.85 0.55 0.1230
Sex.delay2 -0.45 0.29 0.1147 -0.29 0.28 0.3093

GEE
IEE WIEE1 WIEE2

β̂ SE(β̂) p-value β̂ SE(β̂) p-value β̂ SE(β̂) p-value
intercept 29.19 0.45 0.0000 29.63 0.51 0.0000 29.43 0.47 0.0000
Sex 0.15 0.30 0.6266 0.08 0.32 0.7958 0.04 0.31 0.8841
Delay -5.00 0.62 0.0000 -5.86 0.74 0.0000 -5.58 0.67 0.0000
Delay2 1.13 0.33 0.0006 0.85 0.46 0.0671 1.12 0.38 0.0031
Age0 -3.79 0.24 0.0000 -4.21 0.28 0.0000 -3.99 0.25 0.0000
CEP 4.05 0.35 0.0000 3.97 0.39 0.0000 3.99 0.36 0.0000
Sex.delay 1.88 0.81 0.0197 1.92 1.10 0.0792 1.95 0.92 0.0339
Sex.delay2 -1.06 0.43 0.0126 -1.29 0.72 0.0741 -1.29 0.55 0.0186
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subject-speci�c e�ects can be estimated by mixed models when the risk of attrition, what-

ever the cause (death or drop-out) may be considered as independent from unobserved

characteristics of the marker after adjusting on the past observed values (DAR/MAR

assumption). If the DAR assumption is unlikely, a joint model can be used, with careful

speci�cation of the dependence structure between death and the marker. For pragmatic

studies, where the aim is to evaluate the impact of a health intervention on the population

mean, the marginal model estimated by WIEE2 weighted by the inverse probability to

be observed given that the subject is alive is more appropriate. However, this method is

robust under the DAR assumption only.

When the follow-up may be terminated by death or drop-out, we assumed that the

drop-out mechanism was MAR. If the drop-out probability depends on unobserved charac-

teristics, for instance the current true value of the marker (MNAR case), to our knowledge,

it is not possible to estimate without bias the population-averaged parameters in the pop-

ulation alive. The subject-speci�c parameters could be estimated by modeling jointly the

risks of death and drop-out [17].

Joint models and mixed models may be used with intermittent missing data if they

can be considered as MAR. However, computing the weights for WIEE2 requires mono-

tone missing data and should be extended for intermittent missing data. Another limit

of weighted IEE is that the package geeM used in this work slightly over-estimates the

variance of the estimations as weights are considered as known [18]. However, Dufouil et

al. [11] showed that this loss in e�ciency was relatively small.

In this work, we focused on linear models because parameters of linear mixed mod-

els have both the subject-speci�c and population-averaged interpretations with complete

data. Parameters from non-linear mixed models can only be interpreted as subject-

speci�c. It is easy to demonstrate that the unconditional and partly conditional subject-

speci�c expectations are still identical in the non-linear framework, contrary to the population-

averaged expectations. Thus the same recommendations apply. However, WIEE1 esti-

mates will di�er from mixed models estimates in the DAR context.
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Key Messages

• To quantify the impact of an exposure on the individual change, mixed models es-

timated by MLE provide unbiased subject-speci�c e�ects among subjects currently

alive, when the risk of attrition whatever the cause (death or drop-out) may be con-

sidered as independent from unobserved characteristics of the marker after adjusting

on the past observed values (DAR/MAR assumption).

• When the risk of death may depend on unobserved characteristics of the marker

trajectory (DNAR), subject-speci�c e�ects may be estimated by joint models.

• To evaluate the impact of an exposure on the population mean among subjects cur-

rently alive, marginal models estimated by IEE weighted by the inverse probability to

be observed given the subject is alive WIEE2, is appropriate under the DAR/MAR

assumption.

• The same recommendations apply with non-linear models.
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5.9 Web Supplementary Materials: "Interpretation of

mixed models and marginal models with cohort at-

trition due to death and drop-out"
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Catherine Helmer1,2, Hélène Jacqmin-Gadda1,2

1INSERM, Centre INSERM U1219 - Epidemiologie - Biostatistiques, F-33076 Bordeaux, France

2Université de Bordeaux, ISPED, 146 rue Léo Saignat, F-33076 Bordeaux, France

Web Appendix 1: Subject-speci�c interpretation among subjects

alive

In order to demonstrate that unconditional and partly conditional subject-speci�c

expectations are equal, we show that, whatever the death mechanism, E(εij|Xij, ui, T1i >

tij) = 0 so that:

E(Yij|Xij, ui, Ti > tij) = XT
ijβ + ZT

ijui + E(εij|Xij, ui, T1i > tij) = E(Yij|X(ij), ui) (1.1)

By de�nition of the mixed model, E(εij|Xij, ui) = E(εij) = 0 as εij ⊥ Xij and εij ⊥ ui.

When the risk of death depends on covariates only (DCAR case), whatever i and j,

T1i ⊥ Yij given Xij thus T1i ⊥ εij given Xij and E(εij|Xij, ui, T1i > tij) = 0. When the

survival probability S1(tij) = P (T1i > tij) depends on past covariate values HX
i (tij) and

past values of the outcome HY
i (tij) (DAR assumption), it depends on the past residual

errors {εik, tik < tij}, but not on εij at the current time if the residual errors at di�erent

times are independent. Thus, E(εij|Xij, ui, T1i > tij) = 0.

Often, εij represents only the measurement error which is typically independent from time

to time. In some cases, εij is the sum of an auto-correlated process and the measurement

error so that εij and εij−1 are not independent. In this case, Equation (1.1) does not

strictly hold but E(εij|Xij, ui, T1i > tij) is expected to be close to 0 as shown in the sim-

ulation study presented below.
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At last, when S1i(tij) depends on past covariate values and unobserved characteristics of

the marker trajectoryH Ỹ
i (tij) but not on observed values of the markerHY

i (tij) (restricted

DNAR assumption), it depends on the random e�ects ui, either directly or through the

dependence on the unobserved true value Ỹi(tij) and possibly on covariates but it does

not depend on εij. Consequently, E(εij|Xij, ui, T1i > tij) = E(εij) = 0 and the equality

(1.1) holds.

Web Figure 5.4: Empirical means of the marker Y , on the simulated sample (N = 500), among

the population currently alive (dashed pink line), currently observed (dashed

light blue line), and the immortal population (dash-dotted black line), given Xi

and ui: A) ui = (−
√
0.3;−

√
0.1) B) ui = (−

√
0.3;
√
0.1) C) ui = (

√
0.3;−

√
0.1)

D) ui = (
√
0.3;
√
0.1).

Web Appendix 2 : Partly conditional population-averaged expec-

tation approximation

We can approximate E(Yij|Xij, T1i > tij) by applying the results of McCulloch et al.

(2016) [15] for informative visiting process. Assuming a log-linear model for the prob-

ability of observation, these authors derive the distribution of the random e�ects given

the subject is observed. In the framework of truncation by death, the probability to be
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observed at tij is the survival probability at tij. We consider the following DNAR case:

P (T1i > tij) = exp
(
µij + γTijui

)
(2.1)

with µij and γij time-dependent functions possibly dependent on covariates. Then McCul-

loch et al. (2016) [15] show that E(ui|Xij, T1i > tij) = Bγij. Therefore, with independent

residual errors,

E (Yij|Xij, T1i > tij) = XT
ijβ + ZT

ijBγij (2.2)

Note also that the conditional distribution of Yij given T1i > tij is still gaussian with

unchanged variance.

Assuming an additive risk model for death,

λ(t) = η0(t) + ηT1 (t)Xi(t) + ηT2 (t)ui

the survival function takes the log-linear form of Eq.(2.1) with µij =
∫ tij

0
η0(t)+ ηT1 (t)Xi(t)dt

and γij =
∫ tij

0
ηT2 (t)dt and the partly conditional expectation has the form of Eq.(2.2).

Therefore, the e�ect ofX on the population mean of the hypothetical immortal cohort will

be di�erent from its e�ect on the partly conditional population mean when X is included

in Zij (random e�ect on X) or in γij (interaction between X and the random e�ects ui

in the death model).

Using a more standard proportional hazards model for the death risk with time-�xed

covariates,

λ(t) = λ0(t) exp
(
ηT1 Xi + ηT2 ui

)
the cumulative hazard is

Λ(t) = Λ0(t) exp
(
ηT1 Xi + ηT2 ui

)
= µit exp

(
ηT2 ui

)
with Λ0(t) the cumulative baseline hazard. By �rst-order Taylor development around

ui = 0, we have: Λ(t) ≈ µit + µitη
T
2 ui. Then the survival function has approximately the

log-linear form of Eq.(2.1) and the partly conditional expectation may be approximated

by formula Eq.(2.2) with γij = Λ0(tij) exp (ηT1 Xi)η
T
2 . This suggests that the e�ect of X

on the population mean of the hypothetical immortal cohort will be di�erent from its ef-

fect on the partly conditional population mean as soon asX and ui are predictors of death.
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As an example, let consider a standard mixed model with linear time-trend, and random

intercept and slope and assuming that the risk of death depends on the current slope and

one �xed covariate which is not associated with the marker Y :

Yij = β0 + β1tij + ui0 + ui1tij + εij

λ(t) = λ0 exp (η1Xi + η2ui1)

Applying the results above, we found that:

E (Yij|Xi, T1i > s) ≈ β0 + β1tij + η2Λ0 exp (η1Xi)
(
B01tij +B11t

2
ij

)
The population mean among subjects currently alive has thus a quadratic time-trend and

depends on X while the time-trend for the population mean in the immortal cohort is

linear and independent on X.

Web Appendix 3 : Additional simulations

Web Figure 5.5: Empirical means and estimated expectations of the mixed model and marginal

models using IEE, WIEE1 WIEE2, when death and drop-out mechanisms are

completely at random1 (DCAR/MCAR), for X = 0 and X = 1 (N = 500).
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1. Generation models: logit (P (T1i > tij |T1i > tij−1)) = 2.5 + 0.5Xi

logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = 2.5 + 0.5Xi
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Web Table 5.4: Estimates of the mixed model and marginal models using IEE, WIEE1 WIEE2

when death and drop-out mechanisms are completely at random (DCAR/M-

CAR)1. The last column corresponds to the probability of rejection of the null

hypothesis: β = βG, with βG the parameter values for data generation in the

mixed model. ASE and ESE are respectively the asymptotical and empirical

standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

Mixed Model

intercept 20 20.004 0.0636 0.0591 0.04
X 0 -0.007 0.0896 0.0866 0.04
t -0.3 -0.300 0.0259 0.0250 0.04
t2 0 0.000 0.0008 0.0008 0.05
Xt 0 -0.002 0.0360 0.0342 0.03
Xt2 0 0.000 0.0011 0.0011 0.05

IEE

intercept 20 20.004 0.0661 0.0630 0.04
X 0 -0.006 0.0927 0.0897 0.03
t -0.3 -0.299 0.0308 0.0308 0.07
t2 0 0.000 0.0017 0.0017 0.05
Xt 0 -0.002 0.0416 0.0399 0.03
Xt2 0 0.000 0.0021 0.0020 0.05

WIEE1

intercept 20 20.004 0.0662 0.0621 0.04
X 0 -0.007 0.0927 0.0888 0.03
t -0.3 -0.299 0.0308 0.0283 0.04
t2 0 0.000 0.0017 0.0010 0.00
Xt 0 -0.002 0.0416 0.0376 0.03
Xt2 0 0.000 0.0021 0.0015 0.00

WIEE2

intercept 20 20.004 0.0661 0.0623 0.04
X 0 -0.006 0.0927 0.0894 0.03
t -0.3 -0.299 0.0308 0.0294 0.04
t2 0 0.000 0.0017 0.0014 0.02
Xt 0 -0.002 0.0416 0.0389 0.02
Xt2 0 0.000 0.0021 0.0018 0.03
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INTERPRETATION OF MODELS WITH COHORT ATTRITION

Web Figure 5.6: Empirical means and estimated expectations of the mixed model and marginal

models using IEE, WIEE1 WIEE2, when death and drop-out mechanisms are at

random (DAR/MAR) and the death risk depends on an interaction between the

exposure and the last observed marker value2 for X = 0 and X = 1 (N = 500).
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2. Generation models: logit (P (T1i > tij |T1i > tij−1)) = −0.5 + 0.5Xi + 0.1Yij−1 + 0.1XiYij−1

logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = 0.5 + 0.5Xi + 0.1Yij−1
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Web Table 5.5: Estimates of the mixed model and marginal models using IEE, WIEE1 WIEE2,

when death and drop-out mechanisms are at random (DAR/MAR) and the death

risk depends on an interaction between the exposure and the last observed marker

value2. The last column corresponds to the probability of rejection of the null

hypothesis: β = βG, with βG the parameter values for data generation in the

mixed model. ASE and ESE are respectively the asymptotical and empirical

standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

Mixed Model

intercept 20 20.006 0.0646 0.0665 0.06
X 0 -0.007 0.0902 0.0883 0.03
t -0.3 -0.302 0.0285 0.0268 0.03
t2 0 0.000 0.0011 0.0011 0.05
Xt 0 0.002 0.0376 0.0373 0.05
Xt2 0 0.000 0.0013 0.0014 0.06

IEE

intercept 20 20.048 0.0706 0.0752 0.12
X 0 -0.009 0.0967 0.0980 0.05
t -0.3 -0.370 0.0423 0.0420 0.39
t2 0 0.008 0.0031 0.0032 0.77
Xt 0 0.027 0.0519 0.0530 0.09
Xt2 0 -0.004 0.0034 0.0035 0.21

WIEE1

intercept 20 20.010 0.0754 0.0771 0.06
X 0 -0.010 0.1016 0.0989 0.04
t -0.3 -0.306 0.0500 0.0435 0.02
t2 0 0.000 0.0039 0.0027 0.01
Xt 0 0.006 0.0597 0.0536 0.02
Xt2 0 0.000 0.0043 0.0030 0.01

WIEE2

intercept 20 20.037 0.0714 0.0748 0.10
X 0 -0.012 0.0975 0.0981 0.04
t -0.3 -0.352 0.0436 0.0414 0.21
t2 0 0.006 0.0032 0.0030 0.47
Xt 0 0.025 0.0532 0.0524 0.08
Xt2 0 -0.004 0.0036 0.0032 0.15

144



INTERPRETATION OF MODELS WITH COHORT ATTRITION

Web Figure 5.7: Empirical means and estimated expectations of the mixed model and marginal

models using IEE, WIEE1 WIEE2 when the drop-out mechanism is at random

(MAR) and the death risk depends on an interaction between X and the random

slope (DNAR)3 for X = 0 and X = 1 (N = 500).
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3. Generation models: λ(t) = 0.05 ∗ exp (−Xi − u1i + 0.3Xiu1i)

logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = −1 +Xi + 0.2Yij−1
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Web Table 5.6: Estimates of the mixed model and marginal models using IEE, WIEE1 WIEE2

when the drop-out mechanism is at random (MAR) and the death risk depends

on an interaction between X and the random slope (DNAR)3. The last column

corresponds to the probability of rejection of the null hypothesis: β = βG, with

βG the parameter values for data generation in the mixed model. ASE and ESE

are respectively the asymptotical and empirical standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

WIEE2

intercept 20 19.991 0.0646 0.0645 0.05
X 0 0.007 0.0903 0.0878 0.04
t -0.3 -0.273 0.0287 0.0295 0.16
t2 0 0.001 0.0011 0.0011 0.09
Xt 0 -0.021 0.0380 0.0379 0.09
Xt2 0 -0.001 0.0013 0.0014 0.07

IEE

intercept 20 20.015 0.0693 0.0715 0.06
X 0 0.009 0.0961 0.0962 0.05
t -0.3 -0.329 0.0412 0.0430 0.11
t2 0 0.010 0.0029 0.0030 0.91
Xt 0 0.002 0.0514 0.0525 0.06
Xt2 0 -0.005 0.0033 0.0034 0.40

WIEE1

intercept 20 19.980 0.0746 0.0743 0.05
X 0 0.011 0.1011 0.0987 0.05
t -0.3 -0.269 0.0500 0.0468 0.07
t2 0 0.002 0.0039 0.0029 0.06
Xt 0 -0.021 0.0600 0.0552 0.03
Xt2 0 -0.002 0.0043 0.0032 0.03

WIEE2

intercept 20 19.994 0.0718 0.0719 0.06
X 0 0.007 0.0985 0.0968 0.04
t -0.3 -0.294 0.0454 0.0443 0.04
t2 0 0.005 0.0034 0.0030 0.36
Xt 0 -0.008 0.0555 0.0529 0.04
Xt2 0 -0.004 0.0039 0.0033 0.17

Joint Model

intercept 20 20.000 0.0646 0.0646 0.05
X 0 0.001 0.0903 0.0878 0.04
t -0.3 -0.297 0.0301 0.0308 0.06
t2 0 0.000 0.0012 0.0011 0.05
Xt 0 -0.004 0.0394 0.0388 0.05
Xt2 0 0.000 0.0014 0.0014 0.05
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INTERPRETATION OF MODELS WITH COHORT ATTRITION

Web Figure 5.8: Empirical means and estimated expectations of the mixed model and marginal

models using IEE, WIEE1 WIEE2 when the drop-out mechanism is at ran-

dom (MAR) and the death risk depends on the current unobserved true value

(DNAR)4 for X = 0 and X = 1 (N = 500).
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4. Generation models: λ(t) = 3 ∗ exp
(
−Xi − 0.2Ỹi(t)

)
logit (P (T2i > tij |T1i > tij , T2i > tij−1)) = 0.3Xi + 0.2Yij−1
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Web Table 5.7: Estimates of the mixed model and marginal models using IEE, WIEE1 WIEE

2when the drop-out mechanism is at random (MAR) and the death risk depends

on the current unobserved true value (DNAR)4. The last column corresponds

to the probability of rejection of the null hypothesis: β = βG, with βG the

parameter values for data generation in the mixed model. ASE and ESE are

respectively the asymptotical and empirical standard errors.

Proba
rejection

βG β̂ ASE ESE H0: β = βG

WIEE2

intercept 20 19.991 0.0642 0.0620 0.04
X 0 0.003 0.0902 0.0918 0.06
t -0.3 -0.291 0.0284 0.0282 0.06
t2 0 0.001 0.0012 0.0012 0.16
Xt 0 -0.007 0.0380 0.0377 0.05
Xt2 0 -0.001 0.0015 0.0014 0.06

IEE

intercept 20 20.054 0.0702 0.0700 0.11
X 0 0.017 0.0984 0.1019 0.06
t -0.3 -0.418 0.0433 0.0447 0.78
t2 0 0.019 0.0030 0.0032 1.00
Xt 0 0.022 0.0560 0.0559 0.07
Xt2 0 -0.007 0.0036 0.0038 0.51

WIEE1

intercept 20 20.037 0.0787 0.0835 0.09
X 0 -0.019 0.1135 0.1236 0.06
t -0.3 -0.354 0.0550 0.0608 0.22
t2 0 0.008 0.0041 0.0044 0.62
Xt 0 0.033 0.0746 0.0786 0.09
Xt2 0 -0.006 0.0054 0.0055 0.20

WIEE2

intercept 20 20.053 0.0707 0.0706 0.10
X 0 0.011 0.0992 0.1027 0.07
t -0.3 -0.413 0.0441 0.0450 0.73
t2 0 0.018 0.0031 0.0032 1.00
Xt 0 0.026 0.0570 0.0567 0.07
Xt2 0 -0.007 0.0037 0.0038 0.51

Joint Model

intercept 20 19.999 0.0643 0.0622 0.04
X 0 -0.001 0.0902 0.0921 0.06
t -0.3 -0.300 0.0286 0.0281 0.03
t2 0 0.000 0.0012 0.0012 0.04
Xt 0 -0.001 0.0383 0.0375 0.05
Xt2 0 0.000 0.0015 0.0014 0.03
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6 Discussion

The work presented in this thesis addressed several challenges raised by current re-

search on cognitive decline and dementia. First, we extended joint models in order to

account for interval censoring of the time-to-dementia with the competing risk of death.

However, when longitudinal data are truncated by death, the interpretation of maximum

likelihood estimators is debated as they target the mean trajectory among the immortal

cohort. In a second part, we compared likelihood-based and GEE estimators in terms of

interpretation to justify the use of mixed models and joint models within this framework.

6.1 Joint latent class model for semi-competing risks

and interval censoring

In the �rst part of this work, we proposed a joint latent class model for handling

longitudinal data correlated to an interval-censored time-to-event, while accounting for

the semi-competing risk of death. This model was proposed under the markovian and

semi-markovian assumptions. The estimating procedure was assessed on simulated data,

validating the e�ciency and consistency of the estimators. This model was applied to the

Paquid cohort to distinguish di�erent pro�les of cognitive decline associated with speci�c

risks of dementia and death. We were also able to di�erentiate the terminal cognitive

decline before death among subjects free of dementia from the cognitive decline before

dementia, which is steeper.

The joint latent class model can handle multiple longitudinal markers, which are con-

sidered as correlated measures of an underlying latent process. In a second application,

we built a predictive model, based on the Isaacs Set Test and the MMSE, to predict the

risk of dementia within the next �ve years. This model was estimated on the Paquid

cohort and then validated on the Three-city cohort. We obtained dynamic predictions

which can be updated at each new measurement of any of these two tests. The results
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suggest that combining MMSE and IST data is not better in terms of predictability (both

AUC and Brier Score) than the IST.

The joint latent class model relies on the assumption that given the classes, the lon-

gitudinal marker and the times-to-events are independent. We extended the score test

proposed by Proust-Lima et al. [2014] to handle interval censoring and semi-competing

risks. Under the alternative hypothesis H1, the transition intensities depend on charac-

teristics of the longitudinal process:

Yij = f1(Xij; βg) + f2(Zij; βg) uig + εij

αklig(t) = α0
klg(t) exp(W>

kli γklg + γ
(a)
kl uig)

Under the null hypothesis, γ(a)
kl = 0. The score is written:

U(γ
(a)
kl , θ) =

N∑
i=1

Ui(γ
(a)
kl , θ) =

N∑
i=1

∂LH1
i

∂γ
(a)
kl

Under H0, the test statistic U(0, θ̂)>V ar(U)−1U(0, θ̂) follows a Chi square distribution

with 3nu degrees of freedom, with nu the dimension of uig. The variance under the

null hypothesis can be estimated by the empirical variance [Freedman, 2007] de�ned as

Vem =
∑N

i=1 Ui(0, θ̂)Ui(0, θ̂)
> − Ui(0,θ̂)Ui(0,θ̂)

>

N
. It would be useful to perform a simulation

study to evaluate the type-I and type-II errors of this test. This score test can also be

applied to test the conditional independence between a speci�c transition intensity and

the longitudinal marker.

Besides, it is also possible to test if there is any residual correlation between the times-

to-events given the classes, using a score test. In the alternative hypothesis, all the transi-

tion intensities depend on a shared frailty νi ∼ N (0, D2) withD > 0, which is not included

in the mixed sub-model. Under H0, D = 0 and the test statistic U(0, θ̂)>V ar(U)−1U(0, θ̂)

would then follow a χ2
0:1 distribution, with U(D, θ) =

∑N
i=1 Ui(D, θ) =

∑N
i=1

∂L
H1
i

∂D
. This

score test was more deeply investigated by Loïc Ferrer and Cécile Proust-Lima, in the

joint shared-random-e�ect setting.

There is a growing evidence of heterogeneity in cognitive decline. To take into account

this heterogeneity, we can optimize the number of latent classes using either the BIC cri-

terion or a combination of such criteria. However, there is no real scienti�c consensus on
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what would be the best criterion to use, or on the optimal number of latent classes as the

biological reasons for heterogeneity remain unclear. Another approach would be to esti-

mate the number of latent classes directly in the model, for instance using non-parametric

bayesian methods such as Dirichlet process mixtures [Antoniak, 1974], in order to bypass

this model selection issue.

It would be interesting to extend the joint shared-random-e�ect model to competing

risks with interval censoring. The survival sub-model would be replaced by an Illness-

Death model as in the model presented in Dantan et al. [2011]. However, as stated in

the discussion of the third chapter, the interval censoring issue is less sensitive in joint

shared-random-e�ect models as the assumption that the risk of death is independent from

the dementia or health status, given the true current value of the marker, is reasonable

and simpli�es the likelihood, provided that the middle of the censoring interval is imputed

for subjects with dementia. Nevertheless, extending joint shared-random e�ect models to

handle interval censoring will be necessary for a rigorous comparison of the joint shared-

random-e�ect and joint latent class approaches.

In the proposed joint latent class model, every subject is considered at risk to get

demented. If it is plausible to consider that a sub-population is not at risk of dementia,

it is possible to �x the risk of dementia of a speci�c latent class to null. Besides, a referee

suggested that error in dementia diagnosis was frequent and should be handled in the

model by adding a reverse transition from Dementia to Health. First of all, we think

that error in dementia diagnosis in the Paquid cohort is unlikely because the diagnosis,

carried out by experts, included di�erent steps: three criteria of the DSM IIIR were �rst

clinically evaluated by a psychologist and then, the subjects who had met the three cri-

teria were seen by a neurologist who con�rmed and completed the diagnosis. Biological

examinations were performed if accepted by the practitioner and the subject. Finally,

each case was classi�ed after a consensus meeting, based on the whole follow-up (up to

25 years) of the subjects, and no false positive was recorded. Moreover, we do not think

that a reverse transition from Dementia to Health would be a good way to account for

misclassi�cation of dementia as this is clinically impossible. In the end, interval censoring

is untractable with reversibility between Health and Dementia, unless constraining the
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number of possible transitions. It would be more realistic for handling a classi�cation

error.

When applied to multivariate markers, the joint latent class model handles the di�er-

ent markers as noisy measures of a common latent process. However, the cognitive tests

quantify di�erent cognitive functions, with speci�c components such as speed (Isaacs Score

Test) or culture (MMSE) for instance, which could be represented by correlated latent

processes. This is even more valid when considering di�erent types of longitudinal mark-

ers, such as biological markers or imaging markers. To better understand the mechanisms

involved in the natural history of dementia, it could be interesting to consider several

correlated latent processes, as an integrative analysis, linked to the time-to-dementia and

time-to-death. Bachirou Tadde and Cécile Proust-Lima are currently working on a mul-

tivariate latent process measured by di�erent types of markers. This model could be

extended as a joint model in the shared-random-e�ect or latent class approach. However,

in the latter case, the number of parameters may be untractable.

At last, we implemented the Fortran program to estimate the model developed in this

thesis and made it available. We plan to include those routines in the R package 'jointl-

cmm'.

In our applications, the longitudinal follow-up can be stopped by either drop-out or

death. As maximum likelihood estimators are equivalent to imputing data beyond the end

of the follow-up, the interpretation of their estimand is questioned. In this case, it would

mean imputing beyond the time-to-death, targeting the immortal mean trajectory. In a

more general way, joint models correspond to a factorisation of the joint density function

of the longitudinal marker and the time-to-event f(Y, T ) involving latent variables, but

other factorisations exist such as pattern mixture models or partly conditional models,

which also account for the correlation between the survival and the longitudinal processes.

In the second part of the thesis, we investigated and compared the most frequently used

methods to handle longitudinal data when the follow-up is truncated by death.
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6.2 Methods for longitudinal data truncated by death

In the �fth chapter, we compared likelihood-based estimators of joint and mixed mod-

els to unweighted and weighted IEE estimators, when longitudinal data are truncated by

death and possibly right-censored by another cause of non-response. In the linear frame-

work, the individual change in the marker over time among the population currently alive

is consistently estimated by mixed models under the DCAR/MCAR and DAR/MAR as-

sumptions. If the probability of dying may depend on the true current value of the marker

(DNAR), joint models should be used. On the other hand, the population-averaged mean

among the population currently alive is consistently estimated by unweighted IEE under

the DCAR/MCAR assumption and by IEE weighted by the inverse probability to be

observed given that the subject is alive, under the DAR/MAR assumption. We carried

out simulations to check these interpretations and to assess the robustness of the di�erent

methods. At last, we applied them on the Paquid cohort to quantify the e�ect of gender

on the cognitive decline, assessed by the Isaacs Set Test.

Kurland and Heagerty [2005] de�ned the missing at random (MAR) assumption as

follows: P (T2i > t|T1i = s,HỸ
i (s),HY

i (s),HX
i (s)) = P (T2i > t|T1i > t,HY

i (t),HX
i (t)),

with s > t. The MAR assumption implies that the probability to be observed at t is

independent from the future time-to-death s and depends only on past values of the

marker observed up to t. This assumption is required to compute the weights as product

integrals:

1

w
(2)
ij

= P (T2i > tij|T1i > tij) =

j∏
k=2

P (T2i > tik|T1i > tik, T2i > tik−1,HY
i (tik−1),HX

i (tik−1))

Kurland and Heagerty [2005] proposed a more �exible assumption, called MAR-S, where

P (T2i > t|T1i = s,HỸ
i (s),HY

i (s),HX
i (s)) = P (T2i > t|T1i = s,HY

i (t),HX
i (t)), with s > t.

The probability to be observed at t depends on the future time-to-death and on the past

observed values of the marker. In this case, the weights need to be adapted by stratifying

on the time-to-death (or the corresponding visit). Then, the weights w(2)
ij , i = 1, ..., N

at occasion j would be estimated by an occasion-speci�c logistic regression on the sub-

sample including subjects alive at tj, sub-sample which may be smaller and smaller as j

increases. A future work aims at comparing the two computation methods on the Paquid
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cohort.

The MAR assumption implies that the risk of death is the same for subjects still

in the cohort and censored subjects. To be compatible with this assumption, the DAR

assumption must be precisely de�ned as P (T1i = s|T2i = t < s,HỸ
i (s),HY

i (s),HX
i (s)) =

P (T1i = s|HY
i (t),HX

i (t)). This means that the risk of death does not depend on the

possible time-to-drop-out. Therefore, in the simulation study presented in section 5.5

under the DAR/MAR assumption, the probability of dying depends on the marker value

at the previous visit. If the subject is already censored, the risk of dying then depends on

an unobserved value of the marker, and this is not in agreement with the usual missing

at random concept. To avoid the dependence on unobserved values between the time-to-

drop-out and the time-to-death, we could de�ne another assumption denoted DAR-DO

(DO for drop-out) by: P (T1i = s|T2i = t < s,HỸ
i (s),HY

i (s),HX
i (s)) = P (T1i = s|T2i =

t < s,HY
i (t),HX

i (t)). Here, the risk of death depends on the time-to-drop-out given the

observed marker values, which is incompatible with Kurland et al.'s MAR assumption

but is compatible with the more �exible MAR-S assumption.

Regarding the simulation results presented in section 5.5, none of the methods (except

the joint model) uses the information of the time-to-death for dropped out subjects, so the

way the time-to-death is generated for censored subjects does not matter. In practice, the

DNAR/MAR assumption is more realistic and we showed that joint models were robust

in this case, while mixed models were slightly biased.

The robustness of mixed models and joint models under the MAR-S assumption is

questionable. Under the DAR/MAR-S assumption, the probability to be observed at t

depends on the future time-to-death s (MAR-S), which may depend on unobserved values

of the marker between t and s (DAR). Thus, without conditioning on the time-to-death,

the drop-out probability may depend on unobserved marker values between t and s, which

de�nes the MNAR hypothesis. Joint models and mixed models may be biased in this case.

However, it would be of interest to investigate their properties under the DAR-DO/MAR-

S assumption, when the probability to die in s, given the subject dropped out in t < s,

only depends on values of the marker observed before the time-to-drop-out t (DAR-DO).
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In the presented application on the Paquid cohort, we excluded subjects with intermit-

tent missing data because the methods and hypotheses used to compute the weights did

not handle intermittent missing data. When the sample includes intermittent MAR data,

both mixed models and joint models are unbiased. On the other hand, the computation

of the weights for WIEE2 should be adapted, for example by adjusting the logistic regres-

sions on the last observed value (instead of the observed value at the previous visit) and

on the observation indicator at the previous visit. This extension could also be compared

on the Paquid cohort.

A type of models where the weighted IEE approach could be very useful is quantile

regressions. Indeed, quantile regression aims at estimating quantiles of the marker dis-

tribution in the population and not individual quantiles that have an unclear meaning.

Thus, the GEE approach is more adapted to quantile regression for longitudinal data than

the mixed model approach. A future work consists in developing the estimation algorithm

for WIEE2, handling intermittent missing data, in order to target the quantiles of the

trajectory of the marker among the dynamic population of survivors.

6.3 Conclusion

In cohort studies on dementia, interval censoring is most often neglected. This may

not be an issue if visit intervals are short but visits are often spaced by more than two

years. The initial purpose of this work was to investigate joint models to deal with lon-

gitudinal markers and the time-to-dementia, accounting for interval censoring. However,

death is a central issue in this type of analyses, as it implies a selection of the population,

and it can not be considered as any other cause of non-response as data beyond death

do not exist. Discussions within the Melodem group (Methods in longitudinal dementia

research) raised questions and debates about the interpretations of joint models, when

longitudinal data are truncated by death. Those discussions prompted us to focus on a

longitudinal marker correlated to death to clarify the interpretations of partly conditional

models (marginal models) and unconditional models (mixed models and joint models).

Analyses on cognitive decline and dementia require sophisticated tools to describe the
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natural history of dementia, without bias, and gain insights into its mechanisms. These

tools help clarify the role of risk factors, distinguishing their impact on the cognitive

decline, on the risk of dementia and on the risk of death. As an example, men seem to

have a slower mean cognitive decline than women over time but this work actually shows

that this is due to a stronger selection of men by death. Joint models are also useful

tools for earlier diagnosis, as they can help target subjects at high risk of dementia. The

current research in pharmacology focuses on the development of new treatments given

at earlier stages of dementia, as the existing ones have showed limited e�ciency on the

improvement of health and cognitive states. At last, these works can be applied to any

chronic disease with the competing risk of death.
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Prise en compte de la sélection par le décès
dans l'étude de la démence et du déclin cognitif

Ce travail a pour but de développer des outils statistiques pour l'étude du déclin cognitif
général ou précédant le diagnostic de démence, à partir de données de cohorte en tenant
compte du risque compétitif de décès et de la censure par intervalle. Le temps de démence
est censuré par intervalle dans les études de cohortes car le diagnostic de démence ne
peut être établi qu'à l'occasion des visites qui peuvent être espacées de plusieurs années.
Ceci induit une sous-estimation du risque de démence à cause du risque compétitif de
décès : les sujets déments sont à fort risque de mourir, et peuvent donc décéder avant la
visite de diagnostic. Dans la première partie, nous proposons un modèle conjoint à classes
latentes pour données longitudinales corrélées à un événement censuré par intervalle, en
compétition avec le décès. Appliqué à la cohorte Paquid, ce modèle permet d'identi�er des
pro�ls de déclin cognitif associés à des risques di�érents de démence et de décès. En uti-
lisant cette méthodologie, nous comparons ensuite des modèles pronostiques dynamiques
pour la démence, traitant la censure par intervalle, basés sur des mesures répétées de
marqueurs cognitifs. Dans la seconde partie, nous conduisons une étude comparative a�n
de clari�er l'interprétation des estimateurs du maximum de vraisemblance des modèles
mixtes et conjoints et estimateurs par équations d'estimation généralisées (GEE), cou-
ramment utilisés dans le contexte de données longitudinales incomplètes et tronquées par
le décès. Les estimateurs de maximum de vraisemblance ciblent le changement individuel
chez les individus vivants. Les estimateurs GEE avec matrice de corrélation de travail
indépendante, pondérés par l'inverse de la probabilité d'être observé sachant que le sujet
est vivant, ciblent la trajectoire moyennée sur la population des survivants à chaque âge.
Ces résultats justi�ent l'utilisation des modèles conjoints dans l'étude de la démence, qui
sont des outils prometteurs pour mieux comprendre l'histoire naturelle de la maladie.

Mots clés : Censure par intervalle, Décès, Estimateur moyen sur la population, Estimateur
spéci�que au sujet, GEE, Modèles conjoints, Modèles mixtes, Prédictions dynamiques, Risques
semi-competitifs.

Study of dementia and cognitive decline accounting for selection by death

The purpose of this work is to develop statistical tools to study the general or the pre-
diagnosis cognitive decline, while accounting for the selection by death and interval cen-
soring. In cohort studies, the time-to-dementia-onset is interval-censored as the dementia
status is assessed intermittently. This issue can lead to an under-estimation of the risk
of dementia, due to the competing risk of death: subjects with dementia are at high risk
to die and can thus die prior to the diagnosis visit. First, we propose a joint latent class
illness-death model for longitudinal data correlated to an interval-censored time-to-event,
competing with the time-to-death. This model is applied on the Paquid cohort to iden-
tify pro�les of pre-dementia cognitive declines associated with di�erent risks of dementia
and death. Using this methodology, we compare dynamic prognostic models for demen-
tia based on repeated measures of cognitive markers, accounting for interval censoring.
Secondly, we conduct a simulation study to clarify the interpretation of maximum likeli-
hood estimators of joint and mixed models as well as GEE estimators, frequently used to
handle incomplete longitudinal data truncated by death. Maximum likelihood estimators
target the individual change among the subjects currently alive. GEE estimators with in-
dependent working correlation matrix, weighted by the inverse probability to be observed
given that the subject is alive, target the population-averaged change among the dynamic
population of survivors. These results justify the use of joint models in dementia studies,
which are promising statistical tools to better understand the natural history of dementia.

Key words: Death, Dynamic predictions, GEE, Interval censoring, Joint models, Mixed models,
Population-averaged, Semi-competing risks, Subject-speci�c.
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