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RRÉSUMÉÉSUMÉ  
 

 Les cytokines de la famille γc sont essentielles au développement, à la 

différenciation thymique et à la survie périphérique des lymphocytes T naïfs. 

Transmettant leurs signaux par des récepteurs qui ont en commun la chaîne γc, les 

interleukines -2, -7, -15 et -21 sont des facteurs solubles pléiotropes. De par leur 

redondance lors d’une réponse immunitaire, le rôle individuel des cytokines γc dans 

l’homéostasie des lymphocytes T CD8 et dans la réponse anti-virale n’a été que 

partiellement élucidé. De plus, l’état actuel des connaissances ne permet pas de savoir 

avec précision à quel moment de la différenciation et selon quels mécanismes ces 

cytokines interviennent.  

Afin d’évaluer le rôle des cytokines γc dans l’homéostasie des lymphocytes T 

CD8 naïfs, nous avons comparé des cellules monoclonales CD8 issues de souris TCR 

transgéniques P14 γc-compétentes ou γc-déficientes. Nous avons montré que les cellules 

T CD8 naïves γc
-/- ne s’accumulent pas dans les organes lymphoïdes secondaires et que 

les quelques cellules résiduelles se caractérisent par une petite taille, une diminution de 

l’expression du CMH de classe I et une augmentation de l’apoptose. Nous avons 

ensuite corrigé le défaut intrinsèque de survie des cellules T CD8 γc
-/-naïves, en 

surexprimant la molécule humaine Bcl-2, un facteur anti-apoptotique. Cette approche 

nous a permis de restaurer le nombre de lymphocytes T CD8 naïfs en périphérie, 

malgré l’absence de chaîne γc. Par contre, tout comme ce qui avait été démontré pour 

les cellules T CD4, l’expression de Bcl-2 ne permet pas de corriger le défaut de taille et 

de synthèse protéique des cellules γc-déficientes. Nous concluons donc que les 

cytokines γc génèrent des signaux Bcl-2-dépendants et Bcl-2-indépendants pour 

maintenir le phénotype et l’homéostasie des lymphocytes T CD8 naïfs. 

Afin de définir l’implication précise des cytokines γc au cours de la 

différenciation des cellules T CD8, nous avons évalué la réponse des cellules T CD8 

Bcl-2+ γc
+/+ ou γc

-/- après infection par le virus de la chorioméningite lymphocytaire. De 

façon tout à fait étonnante, nous avons démontré que de nombreuses étapes de la 

réponse anti-virale primaire se déroulent normalement en l’absence de chaîne γc. En 

effet, l’expansion clonale, les changements phénotypiques associés à une activation et 

l’acquisition de fonctions effectrices par les lymphocytes T CD8 γc-déficients sont 

préservés. Par contre, les signaux dépendants de la chaîne γc s’avèrent essentiels à la 

différenciation et la prolifération des effecteurs tardifs ainsi qu’à la génération et le 

maintien des lymphocytes T CD8 mémoires. Nous proposons donc que les cytokines 

γc-dépendantes ne sont pas indispensables à l’acquisition de fonctions cytotoxiques et à 

la réponse anti-virale, mais génèrent des signaux Bcl-2-indépendants essentiels à la 

survie et à la prolifération des cellules T CD8 mémoires. 



SSUMMARYUMMARY  
 

Cytokines signalling through receptors sharing the γc chain, especially IL-7, are 

critical for the development and peripheral homeostasis of naïve T cells. Furthermore, 

IL-2, -7, -15 and -21 are pleiotropic factors that can play complimentary or overlapping 

roles in T cell homeostasis and immune responses to infection. However, identification 

of their precise function during an anti-viral immune response has been challenging. 

Indeed, γc deficiency affects not only the survival of naïve T cells but also the function 

of regulatory T cells, limiting the use of γc-deficient mice for assessing T cell immunity. 

Furthermore, the exact contribution of the γc-dependent cytokines in the differentiation 

of CD8 T cells remains disputed. Indeed, it is unclear at which step of the 

differentiation process these cytokines impact and what is their importance on the cell-

fate decision towards terminal differentiation versus memory generation.  

In order to assess the impact of γc deficiency on the biology of naïve CD8 T cells, 

we derived P14 TCR transgenic mice on the recombination-activating gene-2 deficient 

background with or without γc. In this setting, γc
 -/- naïve CD8 T cells fail to accumulate 

in peripheral lymphoid organs and the few remaining cells are characterized by small 

size, decreased expression of MHC class I proteins and enhanced apoptosis. By over-

expressing human Bcl-2, an anti-apoptotic molecule, the number of peripheral naïve 

CD8 T cells that lack γc could be restored. Nevertheless, as described for naïve CD4 T 

cells, the presence of Bcl-2 could not correct the size and protein synthesis defect of γc-

deficient CD8 T cells. We conclude that γc cytokines provide Bcl-2-dependent as well 

as Bcl-2-independent signals to maintain the phenotype and homeostasis of the 

peripheral naïve CD8 T cell pool. 

In order to dissect the entire CD8 T cell differentiation program in the absence of 

γc, we compared the response of CD8 T cells from γc
+/+ or γc

-/- P14 Bcl-2 mice after 

challenge with lymphocytic choriomeningitis virus. We demonstrated that although γc-

dependent signals are dispensable for the initial expansion and the acquisition of 

cytotoxic functions following antigenic stimulation, they condition the terminal 

proliferation and differentiation of CD8 effector T cells (i.e.: KLRG1high CD127low short-

lived effector T cells) via the transcription factor, T-bet. Moreover, the γc-dependent 

signals that are critical for memory T cell formation are not rescued by Bcl-2 

overexpression. Together, our results define the critical stages for γc cytokines in the 

programming of terminal effector CD8 T cells and in the Bcl-2-independent survival 

and homeostatic proliferation of memory CD8 T cells. 
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I. Homeostasis of naïve CD8 T cells 

 

A. Overview of thymopoïesis 

 

The thymus supports the development and selection of αβ T cells before their 

export in the periphery. This differentiation process from T cell progenitors to mature 

CD8 T cells is tightly regulated and involves numerous transcription factors essential for 

their development. Upon entry in the thymus, early thymic progenitors are committed 

to develop into the T cell lineage by the activation of the Notch signalling pathway. 

Further T cell development will be sustained by Notch signals throughout the journey 

of the T cell in the thymus (Laky, Fleischacker et al. 2006). Through interactions with 

specialized stromal and epithelial cells within the thymus, T cell progenitors will go 

through four distinct phases: generation of double positive thymocytes in the outer 

cortex, positive selection in the cortex, negative selection in the medulla and finally 

export of the mature T cells in the periphery (Figure 1).  

 

CD4+ CD8+ double positive (DP) thymocytes are the first T cell precursors to 

express the assembled T cell receptor (TCR) complex at their surface. The TCR 

rearrangement that precedes is a complex process that provides for the tremendous 

heterogeneity of the mature T cell pool. CD3- CD4- CD8- triple negative (TN) cells 

undergo massive proliferation and expansion during this process, through the influence 

of stem cell factor (ligand of c-kit) and the cytokine interleukin-7 (IL-7), which are 

simultaneously survival and growth factors. Once established, the pre-TCR and TCR 

will cooperate to promote the survival and differentiation of the T cell progenitors. 

However, despite these survival signals, a majority of thymocytes incapable of 

engaging self-MHC molecules presented by the cortical thymic epithelial cells will not 

be positively selected and will undergo programmed cell death. Concurrently to the 

positive selection of potentially useful thymocytes, DPs differentiate into either CD4 

helper T cells or CD8 cytotoxic T cells. This precise lineage fate will be determined by 

the MHC-restriction specificity of their TCR and is likely dependent on the strength of 

the MHC/TCR interaction (signalling by CD8 and MHC class I is weak and of short 

duration, thus terminating CD4 transcription) (Singer, Adoro et al. 2008). 

 

 



 9 

Once positively selected, thymocytes must undergo a step of negative selection 

of potentially self-reactive cells, to prevent possible autoimmunity. Thus, strong 

MHC/TCR interactions also engage apoptotic signals leading to destruction of auto-

reactive clones. Self-peptides being naturally presented by medullary thymic epithelial 

cells (mTECs) and dendritic cells (DCs) under the control of AIRE (Autoimmune 

Regulator), negative selection occurs in the medulla, during the DP to single positive 

(SP) transition. However, some TCR transgenic mice models exhibit negative selection 

earlier. Early clonal deletion will thus depend on the timing of TCR expression, the 

cortical and/or medullary site of self-antigen presentation and the affinity of the TCR for 

its cognate ligand. Therefore, in TCR transgenic mice models, negative selection may 

proceed throughout the journey of the thymocyte from the cortex to the medulla or be 

restricted to the medullary region, as it should (Hogquist, Baldwin et al. 2005). In fact, 

triggering of the TCR will lead to maturation of the thymocytes to become SP and the 

coordinate upregulation of CC-chemokine receptor 7 (CCR7) and other molecules at 

the surface of the cell. CCR7 ligands (CCL19 and CCL21) being predominantly 

produced by mTECs, the thymocytes will be attracted to the medulla. Once in the 

medulla, SPs that remain after negative selection will mature and be secreted by an 

active process involving the sphingosine-1-phosphate receptor 1 (SIP1) in the 

perivascular space of the thymus (Takahama 2006).  

 

Thymopoïesis is an impressive process, generating an infinite number of naïve T 

cells with different specificities, but is quite counter-productive, since only 1-3% of 

thymocytes survive this selective process. In fact, both positive and negative selection 

will lead to apoptotic cell death of thymocytes (Figure 2). Death occurs upon 

withdrawal of survival signals, being in the thymus mainly stem-cell factor, IL-7, pre-

TCR and TCR signals. Cytokine withdrawal will activate BH3-only proteins, in 

particular Bim, neutralizing the pro-survival Bcl-2 (B cell lymphoma-2) molecules, such 

as Bcl-2 or Mcl-1. Conversely, loss of pre-TCR and TCR signals decreases the 

expression of Bcl-XL and A1, two other pro-survival Bcl-2-family members. Will ensue 

the activation of Bax and Bak, and the downstream caspase cascade, leading to cell 

death. Thus, upon cytokine withdrawal, the balance between pro and anti-apoptotic 

molecules will favor cell death (Opferman and Korsmeyer 2003). The importance of the 

death receptor apoptotic pathway, as suggested by the study of Fas or Fas Ligand (FasL) 

deficient mice, appears however to be limited in the thymus but is essential for 

peripheral tolerance (Palmer 2003). Interestingly, enforced expression of Bcl-2 can 

prevent death through the intrinsic pathway. In fact, mice deficient for the IL7Rα chain, 

the common gamma (γc) chain and its downstream signalling molecule Jak3 present an 
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important block in T cell development and thus a severe combined immunodeficiency 

(SCID) phenotype (Cao, Shores et al. 1995; DiSanto, Muller et al. 1995; von Freeden-

Jeffry, Vieira et al. 1995; Baird, Thomis et al. 1998). Enforced expression of Bcl-2 

transgene rescues most of the thymocytes from death and restores peripheral T cell 

numbers (Akashi, Kondo et al. 1997; Kondo, Weissman et al. 1997; Maraskovsky, 

O'Reilly et al. 1997). Nevertheless, while Bcl-2 can compensate for the loss of IL-7/ γc 

survival signals, it cannot correct for the TN2/TN3 developmental block seen in IL7Rα -/- 

or γc
-/- mice, and thus fails to increase the total thymic cellularity (Rodewald, Waskow et 

al. 2001).  

 

B. T cell homeostasis 

 

Newly generated mature CD8 T cells exit the thymus to form a pool of long-

lived naïve T cells. Once in the periphery, this pool remains stable over time and is 

regulated by complex homeostatic mechanisms. In fact, the number of naïve T cells is 

relatively constant, independently of other T cell or non T cell lineage. Thus, the arrival 

of new thymic emigrants, the survival of naïve CD8 T cells and the slow turnover of 

those T cells is compensated by apoptotic mechanisms. Once again, as we will see, 

some of the survival and growth factors involved in thymopoïesis will be involved in 

the homeostasis of the naïve CD8 T cell pool.  

 

1. T cell survival 

 

Transfer of naïve cells in a MHC class I deficient environment or study of bone 

marrow chimeric mice lacking MHC class I expression revealed that naïve CD8 T cells 

require self-MHC contacts to survive (Tanchot, Lemonnier et al. 1997; Takada and 

Jameson 2009). Furthermore, abrogation of TCR expression or signalling reduced the 

life span of the naïve CD8 T cell to two to four weeks, thus confirming the absolute 

requirement for TCR-MHC contacts for the long term survival of the naïve T cell pool 

(Labrecque, Whitfield et al. 2001; Polic, Kunkel et al. 2001). Interestingly, polyclonal T 

cells compete with each other for survival signals and thus self-MHC contacts. Thus, 

transfer of large quantities of naïve T cells will result in short lifespan since the quantity 

of self-MHC ligands are limited and available only to a finite number of naïve T cells. 

The requirement for self-MHC contacts depends on the TCR specificity of the naïve 

cell, established in the thymus. Thus, TCR transgenic cells of different specificities do 
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not compete with each other. The distinct pro-survival mechanisms induced upon TCR 

ligation are poorly understood but probably involve typical signalling pathways 

downstream of the TCR (Seddon, Tomlinson et al. 2003). Constant and low-grade 

stimulation are most likely required. Recent studies have further revealed the essential 

role for TCR-mediated calcium influx for the maintenance of CD8 T cell homeostasis 

(Jha, Badou et al. 2009).  

 

The pro-survival cytokine IL-7 is also essential for the long-term maintenance of 

the naïve T cell pool (Figure 3). Blockage of IL-7 signals with antibodies or adoptive 

transfers of naïve T cells in IL-7 deficient mice reduces T cell survival (Schluns, Kieper 

et al. 2000; Tan, Dudl et al. 2001). Conversely, overexpression of IL-7 by an IL-7 

transgene increases the size of the naïve T cell pool (Kieper, Tan et al. 2002). Thus, as 

in the thymus, IL-7 is a vital determinant of long-term maintenance of the mature CD8 

T cells. IL-7 is produced constitutively by thymic ephithelial cells and fibroblastic 

reticular cells (in the secondary lymphoid organs), and in relatively stable amounts, 

except in situations of severe lymphopenia. Thus regulation of the sensitivity to IL-7 

comes from the modulation of the IL7Rα (CD127) chain at the surface of the cell. For 

the IL-7 signal to occur, IL-7 must bind the γc chain, thus activating Jak1 and Jak3, and 

subsequently Stat5. Stat5 will translocate to the nucleus and induce transcription of 

pro-survival genes. In the periphery, the dominant pro-survival molecules downstream 

of IL-7 are Bcl-2 and Mcl-1, Bcl-XL being not expressed in naïve CD8 T cells. Bcl-2 and 

Mcl-1 will thus mediate their function by regulating the activity of multiple pro-

apoptotic molecules (Bax, Bak, Bad, Bim, Bid, Puma), as it does in the thymus. 

Opferman et al confirmed the important role for Mcl-1 in naïve T cell homeostasis by 

demonstrating the severe depletion of naïve T cells in absence of Mcl-1 signals in 

mature T cells (Opferman, Letai et al. 2003). The crucial role for Bcl-2 was similarly 

confirmed in Bcl-2-/- mice, with severe reduction in naive CD8 T cell numbers despite 

near-normal T cell development in the thymus. Interestingly, the recent generation of 

Bim-/- Bcl-2-/- mice, and restoration of the naïve T cell pool in this context, reveals that 

death mechanisms regulating T cell homeostasis are mediated primarily through Bim 

(Wojciechowski, Tripathi et al. 2007). 

 

2. Homeostatic proliferation 

 

Slow turnover of naïve CD8 T cells is essential for the maintenance of the naïve 

T cell pool. Two types of proliferation have been described: the basal proliferation in 
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lymphorepleted hosts and the homeostatic proliferation in lymphodepleted hosts 

(Jameson 2002; Surh and Sprent 2008). In fact, the basal proliferation of the naïve T cell 

pool reflects the slow turnover of these cells and is minimal when we consider the 

CD44low population of CD8 T cells. On the other hand, the capacity of the naïve CD8 T 

cells to replenish the peripheral pool in situations of severe lymphopenia allows for the 

return to homeostasis. Even though basal proliferation and lymphopenia-induced 

proliferation (LIP) were often considered to be equivalent, they are not. In fact, the 

adoptive transfer of naïve CD8 T cells in a lymphopenic environment leads to the 

acquisition of phenotypic and functional characteristics of memory T cells, which is 

distinctly different than the maintenance of a naïve T cell pool. However, since the 

determinants of basal proliferation were initially described in LIP, we will mention 

some of the cornerstone studies on this subject. 

 

Self-MHC and IL-7 signals are vital for both LIP and basal proliferation of the 

naïve CD8 T cell pool. Adoptive transfer of naïve CD8 T cells in syngenic hosts made 

acutely lymphopenic by irradiation confirmed the dependence on these two factors 

(Ernst, Lee et al. 1999; Goldrath and Bevan 1999; Schluns, Kieper et al. 2000; Tan, 

Dudl et al. 2001). Thus, LIP is severely diminished in the absence of IL-7 or self-MHC 

ligands, for both polyclonal and TCR transgenic cells. Furthermore, the increased IL-7 

concentration in context of severe lymphopenia favours proliferation and amplifies the 

weak TCR signals received from contact with self-MHC. Interestingly, some TCR 

transgenic cells of low affinity, such as CD8 HY cells or CD4 OT-II cells, do not 

undergo LIP, while high affinity CD5high TCR cells do, suggesting that the TCR signal 

strength is an important determinant of LIP. The impact of negative regulators of TCR 

signalling, such as LAG-3, BTLA-4 and SIT, on LIP further demonstrate that it is the 

combined signal strength of TCR and IL-7 that establish the propensity for LIP. 

However, typical costimulatory molecules, such as CD28 and CD40, are dispensable 

for LIP (Surh and Sprent 2008). Since most naïve T cells do not divide under T cell 

sufficient conditions, it is most likely the increased availability of IL-7 that dictates 

homeostatic proliferation. This was confirmed by treatment with IL-7/anti-IL-7 antibody 

complexes, which increased CD8 T cell basal proliferation in lymphorepleted host 

(Boyman, Ramsey et al. 2008). However, competition for other resources, such as self-

MHC contacts, has also been described. Thus, TCR transgenic cells transferred in T cell 

sufficient hosts of different specificity proliferate, while they do not if transferred in 

hosts of the same TCR specificity, self-MHC ligands being not available (Kieper, 

Burghardt et al. 2004). The molecular mechanisms downstream of IL-7 involved in 

these proliferative functions are not fully understood. Overexpression of Bcl-2 is 
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insufficient to compensate for the inability of naïve T cells to undergo LIP in IL-7 

deficient hosts (Tan, Dudl et al. 2001). However, entry into the cell cycle is promoted 

by IL-7 induced degradation of the cyclin-dependent kinase inhibitor P27kip1 (Li, Jiang et 

al. 2006). Additional signals are most probably necessary for adequate homeostatic 

proliferation induced by IL-7.   

 

 Other types of homeostatic proliferation have also been described. Cytokine-

induced proliferation refers to the capacity of naïve T cells to undergo a very fast rate of 

homeostatic proliferation in response to high levels of IL-2 and IL-15 and to 

differentiate into effector and memory cells. Chronic lymphopenia-induced 

proliferation is the intense proliferation of naïve T cells upon adoptive transfer into 

immunodeficient mice in response to antigens derived from the commensal flora. Since 

we are interested by the homeostasis of the naïve CD8 T cell pool in the normal 

physiologic context of a lymphorepleted host, prior to infection, these issues will not be 

discussed further. 
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II. Effector CD8 T cell differentiation 

 

A. Summary of the primary immune response to pathogens 

 

Upon encounter of a pathogen, a naïve CD8 T cell embark on a precise path of 

differentiation into cytotoxic T lymphocytes (CTLs) and memory T cells. Even though all 

the parameters impacting on the ability to generate effector functions and sustaining 

memory development are still unresolved, it appears clear that a naïve CD8 T cell goes 

through four distinct phases during this primary immune response (Figure 4).  

 

The initial phase consists of the activation of the naïve CD8 T cell upon 

recognition of a pathogen-encoded peptide and depends on short but stable 

interactions with a mature DC in the peripheral lymphoid organs. The second phase 

follows with profound expansion of the activated CD8 T cells and differentiation into 

potent cytotoxic cells. The primed CD8 T cell divides 15 to 20 times and increases its 

number by 104 to 105 fold (Butz and Bevan 1998; Murali-Krishna, Altman et al. 1998; 

Kaech and Ahmed 2001). This activation and clonal expansion leads to major 

modifications in the CD8 gene expression profile and to differentiation into potent anti-

viral effector cells (Oehen and Brduscha-Riem 1998; Kaech, Hemby et al. 2002). The 

effector CD8 T cells gain access to the inflamed tissues and, via rapid cytokine 

secretion and granule exocytosis, eliminate the infected cells (Harty, Tvinnereim et al. 

2000; Masopust, Vezys et al. 2001; Weninger, Crowley et al. 2001). Follows a phase of 

significant contraction, where 90-95% of the effector cells are eliminated over the 

ensuing week (Badovinac, Porter et al. 2002; Bouillet and O'Reilly 2009). Finally, the 

remaining CD8 T cells establish long-term protection and are maintained by slow basal 

homeostatic proliferation (Homann, Teyton et al. 2001). The memory cells generated 

conserve key effector traits and high proliferative potential, thus providing rapid 

protection against re-infection (Kaech, Wherry et al. 2002).  

 

 Multiple parameters impact on the capacity of CD8 T cells to generate potent 

and functional effector cells. Through the following pages, we will review some of the 

important aspects involved in CD8 T cell differentiation. 
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B. Central role of conventional dendritic cells in CD8 T cell 

differentiation 

 

Conventional dendritic cells (cDCs) have been described as the sentinels of the 

body and are central in the delivery of antigenic and costimulatory signals to the naïve 

CD8 T cells. Their migratory faculty allows them to sample the environment for 

pathogenic stimuli in the peripheral tissues and present these antigens to naïve T cells 

in the lymph node. As professional antigen-presenting cells (APCs), they drive the 

activation and proliferation of naïve CD8 T cells. Furthermore, they sense the 

surrounding inflammation and dictate, to some extent, the fate of the primed T cell 

(Reis e Sousa 2006). 

 

1. Antigen presentation 

 

Since T cells require the antigen to be processed and presented, the migratory 

DCs detect and capture a pathogen-derived product, through macropinocytosis, 

receptor-mediated endocytosis or phagocytosis, and present it to the naïve T cell in the 

lymph node bound to molecules of the major histocompatibility complex (MHC). The 

MHC class I molecules present small endogenously synthesized peptides (8-10 amino 

acids) derived from proteins degraded in the cytosol to CD8 T cells. MHC class II 

molecules present longer peptides (15 amino acids) derived from exogenous proteins 

degraded in the endosomal compartment to CD4 T cells (Figure 5). 

 

In order to present virally-encoded peptides to naïve CD8 T cells through this 

direct presentation pathway, migratory or resident DCs need to be directly infected. 

However, through a process called antigen cross-presentation, the DCs are also able to 

present exogenous peptides to CD8 T cells. These exogenous antigens come from 

either infected epithelial cells, migratory DCs or dying cells in the lymph nodes. This 

cross-presentation phenomenon is thus essential for the generation of anti-viral 

immunity. However, it has to be noted that this is an oversimplification of antigen 

presentation, since DCs can present endogenous (that is synthesized by the APC itself) 

and exogenous (that is synthesized by other cells) peptides to both CD4 and CD8 T 

cells (Heath and Carbone 2001; Villadangos and Schnorrer 2007; Masson, Mount et al. 

2008). 
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2. DC maturation 

 

The appropriate activation and subsequent differentiation of the CD8 T cell into 

potent effector cells requires proper maturation of the cDCs (Figure 6). In fact, 

immature cDCs need to sense a “danger signal” in order to embark in a developmental 

program leading to maturation and efficient antigen presentation. Numerous factors 

will be recognized as part of this “danger signal” through the binding to specific 

receptors at the surface of the cDCs (notably pattern recognition receptors, cytokine 

receptors, Fc receptors, TNFR (tumor necrosis factor receptor) family, sensors for cell 

death). Bacterial and viral products, as well as inflammatory cytokines and self-

molecules, will thus render the cDCs immunogenic. This maturation process is 

associated with several coordinated events such as loss of endocytic and phagocytic 

receptors (DEC-205, macrophage mannose receptors, langerine, DC-SIGN, BDCA-2), 

increased delivery of peptides to the MHC molecules, increased half-life and 

expression of those MHC molecules, upregulation of numerous costimulatory 

molecules (CD40, CD80, CD83 and CD86), changes in the expression of chemokine 

receptors and adhesion molecules and reorganization of the cytoskeleton. The mature 

cDCs will also secrete numerous cytokines and chemokines, thus recruiting and 

activating surrounding immune cells. In fact and most importantly, the priming history 

of the cDC will impact on the activation signals given to the naïve CD8 T cells at the 

time of antigen presentation (Banchereau, Briere et al. 2000; Guermonprez, Valladeau 

et al. 2002; Ueno, Klechevsky et al. 2007).  

 

3. Immunological synapse 

 

Hence, it appears that cDCs play a significant role in initiating and controlling 

the magnitude and the quality of the adaptive immune response. In order to present its 

peptide and transmit its signals, the mature DC must establish a close contact with the 

targeted CD8 T cell. This stable interaction is highly organized and is constituted of an 

ordered distribution of receptors and ligands on each cell, creating a three-dimensional 

physical area called the immunological synapse (Figure 7). Upon contact with a cDC 

(or a target cell), the T cell microtubule organization centre (MTOC) relocates to an 

area just underneath the synapse. This reversal of polarity allows for adequate delivery 

of cytokine vesicles or cytotoxic granules to the cDC or the target cell respectively. In 

addition to this cytoskeleton rearrangement, the different molecules constituting the 

synapse arrange themselves in distinct areas within the interface. The TCR complexes 
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(hundreds to thousands), and its associated costimulatory molecules, locate themselves 

in the central region of the so-called supra-molecular activation complex (cSMAC), 

while the adhesion molecules predominate in the peripheral ring, the pSMAC. Bulky 

molecules, which are not involved in signal transduction, costimulation or adhesion, 

are located in the distal region (dSMAC) (Monks, Freiberg et al. 1998; Huppa and Davis 

2003; Friedl, den Boer et al. 2005). 

 

In order to establish a stable synapse, the CD8 T cells need to bind ten or more 

MHC-peptide ligands, promoting adequate calcium influx and activation of the NFAT 

pathway (nuclear factor of activated T cell) (Purbhoo, Irvine et al. 2004). However, the 

integration of the signals delivered by the DC is not static but rather dynamic, and 

depends on the antigen dose. In the lymph node, CD8 T cell priming lasts for 1-2 days 

and involves typically three distinct phases. During the first 8 hours, the CD8 T cell 

encounters numerous DCs for brief periods of time (less than 10 minutes). Despite the 

absence of long-lasting synapses, activation is induced and T cells upregulate CD69 

and CD44. The second phase lasts 16 hours during which the CD8 T cell establishes 

long and stable contacts with individual DCs (few hours). The T cells upregulate CD25 

and secrete some IL-2 and IFNγ, but don’t proliferate yet. Finally, during the last phase, 

the T cell returns to short-lasting interactions with multiple DCs. They dissociate 

themselves from the DCs and proliferate vigorously. Indeed, during the course of its 

activation, the CD8 T cell integrates signals from multiple DCs through different 

synapses, the type and duration of which impact on its future differentiation (Mempel, 

Henrickson et al. 2004; Bousso 2008). 

 

C. Three signals to activate a naïve T cell 

 

Multiple factors have been shown to influence the T cell immune response after 

antigenic presentation by DCs. These include the number of DCs displaying MHC-

peptide complexes, the maturation status of the antigen presenting cells, the kinetic of 

antigenic presentation, the number of naïve T cells displaying the appropriate TCR, the 

TCR affinities of the responding T cells, the cell intrinsic characteristics of the T cells 

and the inflammatory environment. The mature DC will thus convey three essential 

signals to the T cell, programming its activation and differentiation. The signal 1 relies 

on the TCR engaging with an appropriate peptide-MHC complex on the DC and 

provides the specificity to the response. By itself, signal 1 may lead to anergy or 

deletion of the T cell. The signal 2 refers to the compound signals given by the so-
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called co-stimulatory molecules. This second signal is essential for the generation of an 

adaptive immune response. Finally, signal 3 represents inflammatory signals delivered 

by the DC to the T cell which impact on its differentiation outcome. The different 

factors influencing these three distinct signals will be reviewed (Figure 8). 

 

1. Signal 1: TCR-MHC peptide interaction 

 

Signal 1 refers to the interaction between the TCR and its cognate antigen at the 

immunological synapse. The αβ TCR recognizes its specific MHC class I-bound peptide 

through its three highly variable complementary determining region (CDR). The 

associated CD3 homodimers or heterodimers (constituted of ε, δ, γ, ζ chains) are 

essential for the surface expression of the αβ heterodimer and for signalling via the 

receptor. Optimal signal transduction is favoured by clustering with the associated co-

receptor chain CD8. Upon peptide recognition and aggregation of the different 

constituents of the receptor, the ITAM sites of the CD3 chains are phosphorylated by 

the attached tyrosine kinase Lck. The tyrosine kinase ZAP-70 is then recruited and 

phosphorylated, activating numerous signalling pathways: the phospholipase c γ (PLCγ) 

pathway leading to calcium influx and activation of the protein kinase c (PKC) 

pathway, and the Ras/MAP kinase pathway. Follows the induction of new gene 

synthesis by activation of major transcription factors, such as NFκB, NFAT and AP-1. 

These transcription factors will modulate and influence the differentiation outcome of 

the primed T cell (Janeway, Travers et al. 2001). 

 

The strength of signal 1 is directly influenced by the magnitude and duration of 

the signal and impacts on the size of the anti-viral CD8 effector T cell response. Several 

studies have revealed that the magnitude is determined by the antigenic dose, the 

quantity of MHC/peptide or TCR complexes at the surface of the cells and the TCR 

affinity. In fact, modulating the density of MHC/peptide complexes on the DCs or 

infecting with different doses of pathogen influence directly the proliferative potential 

of the CD8 T cells (Wherry, Puorro et al. 1999; Bullock, Colella et al. 2000; Kaech and 

Ahmed 2001; Badovinac, Porter et al. 2002; Henrickson, Mempel et al. 2008). Thus, 

the greater the antigen load, the larger will be the subsequent expansion. Furthermore, 

the idea that the TCR affinity was essential in determining the strength of signal 1 came 

from studies reporting that high-affinity CD8 cells had a selective advantage during the 

immune response over the low-affinity CD8 T cells (Busch and Pamer 1999; Kedl, Rees 

et al. 2000; Kedl, Schaefer et al. 2002; Zehn, Lee et al. 2009).  
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As suggested in the previous section, the duration of signal 1 impacts on the 

expansion and differentiation of CD8 T cells. In fact, numerous papers have revealed 

that CD8 T cells were “programmed” very early after contact with the antigen-

presenting DC. Thus, less than 24 hours is required for a CD8 to embark on a complete 

program of proliferation and differentiation, without the requirement for further 

antigenic stimulation (Mercado, Vijh et al. 2000; Kaech and Ahmed 2001; van 

Stipdonk, Hardenberg et al. 2003). Interestingly, a recent study has proposed that some 

peptides can shorten the duration required before the establishment of stable 

interactions and thus increase the expansion and cytotoxic functions of the CD8 T cells 

(Henrickson, Mempel et al. 2008).  

 

The strength of signal 1 is also correlated to the acquisition of cytokine secretion 

and cytotoxic functions by the activated CD8 T cells (Wherry, Puorro et al. 1999; 

Bullock, Colella et al. 2000; Kaech and Ahmed 2001; Tian, Maile et al. 2007; 

Henrickson, Mempel et al. 2008). This was recently challenged by Bevan’s group who 

showed very elegantly that modulating the antigen presentation duration or the antigen 

affinity had very little impact on the cytokine secretion or the cytotoxic function of the 

generated CD8 effector cells, but changed the burst size and the kinetic of expansion 

(Prlic, Hernandez-Hoyos et al. 2006; Zehn, Lee et al. 2009).  

 

Finally, the magnitude and duration of signal 1 impact on the cell fate of the 

primed CD8. In fact, blunting the infection with antibiotic treatment, reducing the 

duration of stimulation with diphtheria toxin treatment of CD11c-DTR mice or 

increasing intraclonal T cell competition have all been shown to enhance the formation 

of memory precursor effector cells over the terminally differentiated KLRG1high effector 

cells (Williams and Bevan 2004; Marzo, Klonowski et al. 2005; Badovinac, Haring et 

al. 2007; Joshi, Cui et al. 2007). Interestingly, the function of these memory cells did 

not appear to be altered by the decreased strength of the signal (Williams and Bevan 

2004; Prlic, Hernandez-Hoyos et al. 2006; Zehn, Lee et al. 2009).  

 

2. Signal 2: Co-stimulatory signals 

 

The second signal influencing the CD8 immune response is constituted by the 

integrated signals received from the co-stimulatory molecules at the immunological 

synapse. Two family of molecules are involved in this signal 2, regulating immunity 

and tolerance: the B7 family and the TNF family. Since I will not discuss issues 
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regarding peripheral tolerance, only the molecules involved in the expansion and 

differentiation of CD8 T cells will be mentioned. 

 

Co-stimulatory molecules are essential for the appropriate expansion and 

differentiation of CD8 cells, since insufficient TCR signals may lead to anergy and 

tolerance. The major molecules of the B7 family influencing CD8 differentiation consist 

of CD80 (B7-1), CD86 (B7-2), inducible co-stimulatory ligand  (ICOSL), programmed 

death ligand 1 and 2 (PD-L1 and 2). TNF family members comprise the CD40L, CD70, 

4-1BBL and OX40L molecules. Each of these molecules has its appropriate receptor 

expressed on the activated T cell, either constitutively or induced by activation. Their 

ligation can lead to stimulatory or inhibitory signals, thus regulating CD8 T cell 

expansion. For example, both CD28 and CTLA4 are receptors for CD80 and CD86. 

While CD28 delivers signals for efficient CD8 expansion, CTLA4 delivers inhibitory 

signals suppressing their proliferation. In fact, it is the temporal and sequential 

apparition of these receptors at the surface of the CD8 which dictates the functional 

outcome of the combined signals received through these B7 and TNF receptor proteins, 

initially contributing to the production of large populations of effectors and 

subsequently regulating their expansion (Sharpe and Freeman 2002; Williams and 

Bevan 2007; Croft 2009).  

 

The co-stimulatory molecules have a positive and synergistic function on TCR-

activated CD8 T cells, CD28 being the most potent and most studied of them. Their 

ligation provides primarily proliferative and survival signals to the CD8 cells, enhancing 

and sustaining their expansion. They increase the CD8 responsiveness to suboptimal 

signal 1 and thus decrease its threshold of activation (Kundig, Shahinian et al. 1996; 

Tan, Whitmire et al. 2000). The molecular mechanisms involved in cell survival are not 

elucidated for CD8 T cells, but the anti-apoptotic molecules Bcl-2 and Bcl-XL are 

involved in the survival signals transmitted to CD4 T cells by co-stimulatory molecules 

(Rogers, Song et al. 2001). Some of these co-stimulatory molecules contribute also to 

the generation of appropriate CD8 T cell effector functions (CD28, CD70, 4-1BB) and 

development of potent secondary responses (CD28, CD70, 4-1BB, ICOS, 

OX40)(Hendriks, Gravestein et al. 2000; Wallin, Liang et al. 2001; Hendriks, Xiao et al. 

2005; Borowski, Boesteanu et al. 2007; Fuse, Zhang et al. 2008).  

 

As stated above, signal 2 molecules can also regulate the appropriateness of the 

response. This is particularly the case for CTLA-4 and PD-1 that inhibit the TCR- and 

CD28- mediated signal transduction and arrest the cell cycle. Interestingly, PD-1 is 
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upregulated in exhausted effector CD8 T cells in the context of chronic viral infections 

with or without CD4 help, in humans and mice (Barber, Wherry et al. 2006; Day, 

Kaufmann et al. 2006; Trautmann, Janbazian et al. 2006). Blocking the ligands of PD1 

with antibodies restores adequate cytotoxicity and clearance of the pathogen (Barber, 

Wherry et al. 2006; Trautmann, Janbazian et al. 2006; Ha, Mueller et al. 2008). Thus 

PD-1 not only regulate the proliferation of activated CD8 cells but also their effector 

function.  

 

Because these co-stimulatory molecules can have redundant effects, it has 

sometimes been difficult to establish their individual role in anti-viral immune 

responses. In fact, CD8 T cell responses to lymphocytic choriomeningitis virus (LCMV) 

were efficiently induced in mice deficient for CD28, CD27, CD40L or OX-40, while 

slightly reduced in 4-1BB deficient mice. Other pathogens have yielded different 

results. In these cases, and as we will see later, other costimulatory or inflammatory 

pathways can complement the studied defect and promote adequate CD8 effector T 

cell expansion and differentiation. Most importantly, the strength of signal 1 and the 

infectious context influence the potential impact of costimulatory signals in CD8 T cell 

expansion and differentiation. Thus, CD28 has been shown to be fundamental for 

generation of CTL responses in Listeria monocytogenes, vesicular stomatitis virus or 

influenza virus infections, but as mentioned, is dispensable in LCMV infections 

(Williams and Bevan 2007; Boesteanu and Katsikis 2009). 

 

3. Signal 3: Pro-inflammatory cytokines 

 

Besides its role on DC maturation and antigen presentation, and its ability to 

augment the expression of costimulatory molecules, the environmental milieu has been 

shown to directly impact on the CD8 T cell expansion and differentiation after an 

infectious challenge. In fact, numerous studies and reviews have reported in the last 

few years the importance of these pro-inflammatory cytokines in the acquisition of 

adequate cytotoxic functions and the transition from effector to memory cells (Haring, 

Badovinac et al. 2006; Kaech and Wherry 2007; Williams and Bevan 2007; Harty and 

Badovinac 2008; Joshi and Kaech 2008; D'Cruz, Rubinstein et al. 2009). To date, three 

major cytokines are known to participate in this signal 3: interleukin-12 (IL-12), type 1 

interferons (IFNα/β) and IFNγ.  
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Depending on the infectious agent studied, IL-12, type 1 IFNs and IFNγ have all 

been shown to directly support the expansion and function of effector CD8 T cells by 

increasing their proliferation and survival, and promoting the development of potent 

cytotoxicity. In this case, survival signals occur through the upregulation of the anti-

apoptotic molecule Bcl-3 (Valenzuela, Hammerbeck et al. 2005). The expression of 

their receptor is modulated throughout the infection. Thus, these cytokine-driven 

signals might prevail at different moments of the immune response, regulating the 

expansion and differentiation of CD8 T cells. While IL-12 signals appear to be 

important throughout the expansion phase, the co-stimulatory IFNγ signals are essential 

in the first day following antigenic challenge (Whitmire, Tan et al. 2005). Moreover, 

type 1 IFN receptors (IFNR) are downregulated just after infection but are reexpressed 

rapidly (Haring, Badovinac et al. 2006). 

 

By studying receptor knockout mice to these different molecules, an essential 

role for those cytokines in the differentiation of CD8 effector T cells was revealed. 

Interestingly, once again, it appears that these cytokines have redundant functions in 

mice and that the infectious agent used determines the dependency on one or the other 

cytokine. After LCMV infection, IFNα/βR-/- effector CD8 T cells are severely impaired in 

their survival potential and thus total expansion. Furthermore, while cytokine secretion 

is preserved, granzyme B levels and viral clearance are severely diminished (Cousens, 

Peterson et al. 1999; Kolumam, Thomas et al. 2005; Aichele, Unsoeld et al. 2006; 

Thompson, Kolumam et al. 2006). On the contrary, IFNγR1-/- mice show moderate 

expansion and IL12p35-/- mice exhibit normal expansion upon LCMV infection 

(Cousens, Peterson et al. 1999; Whitmire, Tan et al. 2005). In contrast, Listeria 

monocytogenes infections are very sensitive to IL-12 signals, but are not affected by 

blockage of the type 1 IFNs or IFNγ pathways (Badovinac, Tvinnereim et al. 2000; 

Thompson, Kolumam et al. 2006). Interestingly, LCMV is an important producer of type 

1 IFNs but produces virtually no IL-12, while Listeria monocytogenes infections 

produce primarily IL-12 and IFNγ. Once more, the response to a pathogen is translated 

into a unique pattern of inflammation, and this inflammation regulates differently the 

priming and differentiation of CD8 T cells. As we will see later, this inflammatory 

context, and thus the signal 3 cytokines involved, influences also the cell fate decisions, 

the contraction phase and the generation of memory cells. 
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D. CD4 help in CD8 effector differentiation 

 

The role of CD4 help in activation and differentiation of CD8 T cells is still an 

area of intense debate. In the last few years, numerous papers have challenged the 

classical model of CD4 help. These studies have now confirmed that CD4 help is 

essential in the programming and/or maintenance of potent secondary immune 

responses - the mechanisms involved in this particular aspect will be analyzed in the 

next chapter. However, the role for CD4 T cells in the expansion and the differentiation 

of CD8 effector T cells remains controversial (Bevan 2004). 

 

Classically, the role for CD4 help has been thought to come from their ability to 

license the DCs into potent antigen presenting cells (Figure 9). In fact, after antigen 

uptake and processing, the DC presents major histocompatibility complex (MHC) class 

II bound peptide to the CD4 T cell, which in turn upregulates CD40L expression. 

Through interaction with CD40 on the mature DC, the CD4 T cell potentiates the 

costimulatory signals given by the B7 and TNF family molecules and increases the 

secretion of IL-12. Interestingly, the CD4 cell per se is not required to license the DC, 

since treatment with an agonist antibody for CD40 could replace the requirement for 

CD4 T cells (Bennett, Carbone et al. 1998; Schoenberger, Toes et al. 1998). In this 

model, the CD4 help leads to the creation of three cell clusters, enhancing the 

proximity between the cellular partners and the activation of the CD8 T cell (Beuneu, 

Garcia et al. 2006). This clustering is promoted by the upregulation of CCR5 on the 

naïve T cells and presence of CCL3/CCL4 at the site of CD4 T cell /DC interactions 

(Castellino, Huang et al. 2006). It is thus thought that both T cells recognize the 

antigenic epitope on the same DC, but that the CD8 T cell receives its signals through 

direct interaction with the DC, and not the CD4 T cell, at least during the initial phase 

of the response (Beuneu, Garcia et al. 2006). Furthermore, some authors suggest that 

non-cognate antigens might also deliver help signals to the DC, promoting further 

activation of the CD8 cell (Fernando, Khammanivong et al. 2002).  

 

This CD4 help model was initially thought to be true for all antigens, but 

numerous studies done with pathogens, and thus in the context of high pro-

inflammatory signals, prompted revision of the model (Figure 9). In fact, in LCMV or 

Listeria infections for example, expansion and potent effector functions could be 

generated in the absence of CD4 T cells or MHC class II molecules. It was thus 

concluded that certain infectious agents were able to circumvent the need for CD4 help 
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through the stimulation of PRRs on the DC or the release of inflammatory cytokines, 

which promoted the maturation of the DCs. This was confirmed by elegant studies 

showing a role for type 1 IFNs in the appropriate generation of unhelped CD8 effector 

T cells (Le Bon, Etchart et al. 2003). Furthermore, Johnson et al. demonstrated the role 

for the upregulation of CD40L on the TLR3/9-activated DCs in the priming of CD8 T 

cells, demonstrating another potential mechanism behind the absence of requirement 

for help in infectious situations (Johnson, Zhan et al. 2009). Once again, as we saw 

earlier for the other stimulatory signals, multiple redundant pathways collaborate to 

allow for the generation of potent and numerous cytotoxic CD8 T cells. 

 

The world of CD4 help was once again challenged when some authors 

proposed that CD4 help was in fact dispensable for the expansion and acquisition of 

effector functions by most of the former TH dependent antigens (cellular antigens). In 

fact, by using tetramer and ex vivo intracellular cytokine stainings, they were able to 

confront the previous data and show that it was the requirement for prolonged in vitro 

activation (6 days) that probably lead to false conclusions. These former techniques 

were in fact highlighting the abnormal secondary responses seen in unhelped CD8 T 

cells, but not the actual primary responses. After these studies, it was concluded that 

the primary immune responses to most antigens were dispensable of CD4 help, but that 

generation and maintenance of memory cells were dependent on it (Bourgeois, Rocha 

et al. 2002; Fernando, Khammanivong et al. 2002; Janssen, Lemmens et al. 2003). 

However, it is still possible that the priming protocols used in those studies provide 

some kind of danger signals sensed by the DC allowing for their proper maturation, and 

thus help-independent activation. Furthermore, it appears that the peak expansion and 

the cytotoxic functions of these primary CD8 T cells are often diminished. Finally, other 

approaches confirmed the absolute requirement for CD4 help in response to cellular 

antigen (Wang and Livingstone 2003). Moreover, herpes simplex infection has recently 

been shown to depend on CD4 help for the generation of potent effector responses 

(Johnson, Zhan et al. 2009; Rajasagi, Kassim et al. 2009). It thus appears that, 

depending on the situation, CD4 help might or might not be essential to the primary 

immune response to the so-called TH dependent and independent antigens. However, it 

is likely that CD4 cells are contributors to the primary CD8 immune response, by 

promoting the recruitment of cognate CD8 cells around mature DCs and delivering 

differentiation signals to them.  
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E. γ c-dependent cytokines in CD8 T cells expansion and 

differentiation 

 

The contribution of γc dependent cytokines in the survival and homeostasis of 

naïve and memory CD8 T cells has been clearly demonstrated, and is discussed in 

other sections. The differential expression of the different cytokine-receptor subunits 

during the immune response suggest that some of these cytokines might have a role in 

the proliferation of CD8 T cells (Figure 10). In this section, we will review the known in 

vivo functions of γc dependent cytokines during this precise expansion and 

differentiation period. We will later come back on the impact of these cytokines in the 

generation and maintenance of memory cells. 

 

1. IL-2 

 

Activated CD4 T cells, CD8 T cells and DCs produce IL-2. Being the major 

cytokine produced by CD4 T cells, IL-2 has been proposed as a mediator for CD4 help 

in some models, as discussed in the previous section. IL-2 ligation with its 

heterotrimeric receptor, composed of the IL-2Rα (CD25), IL2Rβ (CD122) and IL-2Rγ 

(CD132/γc) chain, induces several signal transduction pathways, including activation of 

the Jak1-Jak3/Stat5 pathway, phosphorylation of Lck, stimulation of the PI3K/AKT 

pathway and the Ras/MAP kinase pathway. TCR stimulation leads to extremely rapid 

expression of CD25 at the surface of the CD8 T cells, and maintenance for 72 hours. In 

vitro, IL-2 induces strong proliferative signals to CD8 T cells. It is also essential for the 

development of effector functions, such as IFNγ secretion and granzyme B-dependent 

CTL killing of target cells (Malek and Bayer 2004).  

 

In vivo, the importance of IL-2 is more modest. It appears to be necessary for 

maximal generation of effector T cells at the peak of the response, in an antigen-

dependent manner (Cousens, Orange et al. 1995; Williams, Tyznik et al. 2006). 

However, IL-2Rα-/- mice have only 2-fold less effector CD8 T cells than their wild type 

counterparts, demonstrating that this cytokine is not essential for CD8 T cell expansion 

(Williams, Tyznik et al. 2006). In fact, IL-2 requirement is minimal during the first 48 

hours and is principally required to sustain the proliferation of CD8 T cells in non-

lymphoid organs (D'Souza, Schluns et al. 2002; D'Souza and Lefrancois 2003). 

Furthermore, initial reports on the effector functions generated in the absence of IL-2 
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signals are conflicting, with controlled or uncontrolled LCMV infections and potent 

rejection of allografts (Kundig, Schorle et al. 1993; Cousens, Orange et al. 1995; 

Steiger, Nickerson et al. 1995). However, CTL cytotoxicity assays were diminished -

although not abrogated- in the absence of IL-2 signals. Interestingly, IL-2Rα-/- CD8 

effector T cells express more CD62L and CD127 at their surface and secrete more IL-2 

than their IL-2Rα+/+ counterparts, demonstrating that IL-2 might be essential for the 

complete differentiation of effector T cells (Williams, Tyznik et al. 2006). It would have 

been interesting to test the functions of those cells in the context of acute LCMV 

infection, since the initial reports were done in mice with defects in regulatory T cell 

numbers and functions, thus perturbing our interpretation of the data. Of note, recent 

papers propose an essential role for IL-2, and in particular Stat5 signals, in the 

expansion and differentiation of CD8 T cells in the absence of potent TCR activation 

(Verdeil, Chaix et al. 2006; Verdeil, Puthier et al. 2006; Kamimura and Bevan 2007). 

This confirms the role for IL-2 in the priming and costimulation of effector CD8 T cells.  

 

2. IL-15 

 

IL-15 secretion is induced primarily in response to TLR or IFN signals by 

activated DCs and macrophages. It is membrane-bound and presented in trans by the 

IL15Rα chain, which will bind to the IL2Rβ and IL2Rγ chain, common to the IL-2 

receptor (Dubois, Mariner et al. 2002). The signalling cascade will thus be common for 

both cytokines. However, because of its trans presentation, IL-15 requires cell-cell 

contact at the immunological synapse to deliver its signals (Figure 11). Despite their 

common receptor subunits and signal transduction pathways, IL-2 and IL-15 have 

distinct functions. In vitro, like other γc-dependent cytokines, IL-15 promotes expansion 

of the CD44high CD8 population (Vella, Dow et al. 1998; Manjunath, Shankar et al. 

2001; Judge, Zhang et al. 2002). However, despite potent IFNγ secretion, IL-15 primed 

CD8 T cells are poor killers (Manjunath, Shankar et al. 2001).  

 

In vivo, the requirement for IL-15 in the expansion and effector function of CD8 

T cells is controversial. In response to LCMV or Listeria infection, IL-15-/- and IL15Rα-/- 

mice generate a robust primary response, with efficient clearance of the pathogen 

(Becker, Wherry et al. 2002; Yajima, Nishimura et al. 2005; Yajima, Yoshihara et al. 

2006). The expansion of effector T cells to major dominant epitopes is similar to wild 

type mice, except for the GP33-41
+ population, and the surface expression of relevant 

activation markers is identical (Becker, Wherry et al. 2002). In contrast, IL-15 signals 
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appear to be important in the context of vaccinia virus infection or peptide-based 

vaccination. In the vaccinia virus setting, IL-15 seems to potentiate the proliferation of 

CD8 T cells during the last days of the expansion phase (Schluns, Williams et al. 2002). 

In peptide-loaded DC vaccination, treatment with IL-15 promotes CD8 T cell 

expansion and cytotoxic functions (Rubinstein, Kadima et al. 2002). Once again, 

depending of the infectious context, it appears that this second important γc cytokine 

may potentiate proliferative signals received by the CD8 T cells, especially during the 

last days of the expansion phase, but may not be essential for the differentiation of 

cytotoxic CD8 T cells.  

 

3. IL-21 

 

Activated CD4 T cells and NKT cells are the principal producers of IL-21, the 

last member of the γc family of cytokines. Its receptor, composed of the IL21Rα and the 

γc chain, is expressed constitutively on multiple cells, including CD8 T cells, and 

upregulated in response to TCR or IL-21 signals. Transduction through NFAT is 

essential for its synthesis, and activation of Stat3 for its function. Granzyme A, 

granzyme B and Bcl-3 are some of the IL-21 target genes. In T cell immunology, IL-21 

has been mainly described for its role in Th17 cell development and function. In vitro, 

IL-21 appears to potentiate the proliferative functions of other γc-dependent cytokines, 

in the presence or absence of TCR signals (Parrish-Novak, Dillon et al. 2000; Zeng, 

Spolski et al. 2005). Furthermore, it increases cytokine secretion and cytotoxic 

functions of activated CD8 T cells (Liu, Lizee et al. 2007). Its costimulatory function 

might be linked to its ability to prevent the downregulation of CD62L and CD28 upon 

IL-15 driven signals, at least in humans (Alves, Arosa et al. 2005).  

 

In vivo, the importance of IL-21 varies depending on the model studied. In 

response to vaccinia virus infection, IL21Rα-/- CD8 T cells proliferate less than controls, 

and have reduced cytotoxic functions (Zeng, Spolski et al. 2005). In contrast, IL-21 is 

not required for the expansion and function of CD8 T cells in acute LCMV infection, 

although IL-21 expressing cells have a slight growth advantage (Elsaesser, Sauer et al. 

2009). The role of this cytokine as a possible mediator of CD4 help in CD8 T cell 

responses has been recently investigated, especially in the context of chronic LCMV 

infection. In a recent study, Elsaesser et al suggest that the absence of IL-21 signalling 

prevents the downregulation of IL-2 secretion by CD4 cells, which will lead to 

exhaustion and abnormal viral clearance in the context of chronic LCMV infection 
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(Elsaesser, Sauer et al. 2009). Furthermore, IL-21 treatment of CD4-/- mice infected with 

LCMV Clone 13 will increase the functionality of the exhausted CD8 T cells and 

decrease the viral titers (Yi, Du et al. 2009). Finally, IL-21 appears to have a prominent 

role in primary anti-tumor CD8 responses, especially in conjunction with IL-15 (Zeng, 

Spolski et al. 2005). It promotes the development of potent anti-tumoral CD8 cells, by 

increasing their proliferation, expansion and cytotoxic functions (Moroz, Eppolito et al. 

2004).  

 

4. IL-7 

 

Lastly, multiple studies have looked at the role of IL-7 in the primary expansion 

of effector CD8 T cells. As suggested by the downregulation of IL7Rα upon T cell 

activation, IL-7 has not been shown to be essential for the expansion and differentiation 

of primary effector CD8 T cells in numerous infectious models (LCMV, vesicular 

stomatitis virus, Listeria infections) (Schluns, Kieper et al. 2000; Klonowski, Williams et 

al. 2006; Osborne, Dhanji et al. 2007; Nanjappa, Walent et al. 2008). Furthermore, 

overexpression of IL-7 or IL-7 treatment does not support the proliferation of KLRG1high 

effector CD8 T cells (Hand, Morre et al. 2007; Rubinstein, Lind et al. 2008).  

 

F. CD8 effector functions 

 

The ultimate goal of CD8 T cell activation and proliferation is its differentiation 

into potent effector T cells, capable of rapid pathogen clearance. This effector T cell 

will eliminate infected target cells via two independent mechanisms, granule exocytosis 

and death-receptor-induced apoptosis. These two major pathways are important for 

both immune surveillance and peripheral homeostasis. Furthermore, CD8 effector T 

cells release TNFα and IFNγ, essential inflammatory cytokines involved in T cell-

mediated immunity. However, it has to be noted that NK cells and CD4 T cells share 

with CD8 T cells the same effector mechanisms. In fact, because of the non-exclusive 

expression of these molecules and their pleiotropic effect, understanding their 

contribution in CD8 T cell resistance to infection is challenging. Furthermore, the 

relevance of each of these factors may differ between infectious agents. It is likely the 

combined involvement of these mechanisms that contribute to pathogen clearance and 

immune protection (Harty, Tvinnereim et al. 2000).  
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1. Cytokine secretion 

 

The major cytokine produced by the effector T cells is IFNγ. Upon TCR and/or 

IL-12 signalling, the CD8 T cells remodel the chromatin within the IFNγ locus and up-

regulate IFNγ-promoting transcription factors, allowing for the synthesis and release of 

important amounts of IFNγ. Among numerous transcription factors involved in IFNγ 
production, two have been shown to be regulating simultaneously the differentiation 

and IFNγ production of CD8 T cells: the T-box family members T-bet and 

eomesodermin (Pearce, Mullen et al. 2003; Sullivan, Juedes et al. 2003; Intlekofer, 

Takemoto et al. 2005). Naïve CD8 T cells are committed to become IFNγ producers by 

the constitutive expression of eomesodermin, and eomes was though to be sufficient for 

IFNγ production. However, recent papers confirmed the dependency on T-bet for the 

production of IFNγ by CD8 T cells, as seen in CD4 T cells (Mayer, Mohrs et al. 2008). 

Interestingly, IFNγ regulates the transcription of T-bet in a positive feedback loop 

promoting CD8 differentiation. As we will see later, these transcription factors also 

influence the lineage choice of the activated T cells.  

 

IFNγ binds to its ubiquitous receptor composed of two ligand-binding chains 

(IFNGR1) and two signal-transducing chains (IFNGR2). Ligation of IFNγ leads to the 

activation of JAK 1 and 2 and subsequent phosphorylation of Stat-1. Homodimerization 

of Stat-1 will form the Gamma Activated Factor (GAF) complex that will translocate to 

the nucleus to induce the transcription of target genes (Schroder, Hertzog et al. 2004). 

IFNγ regulates more than 200 genes and will thus have multiple functions in the 

immune system. In response to infectious challenge, IFNγ contributes to pathogen 

clearance directly and indirectly, through activation of the innate immune system. 

Indeed, IFNγ is capable of direct inhibition of viral replication by activation of kinases 

and deaminases interrupting viral synthesis. It also contributes to macrophage 

activation and survival, increasing their phagocytosis and killing abilities, essential for 

the elimination of infected cells. Moreover, IFNγ promotes class I and II antigen 

presentation, thus amplifying the priming of CD4 and CD8 T cells. Finally, it enhances 

recruitment of monocytes and lymphocytes at the site of inflammation by promoting 

the release of numerous chemokines and adhesion molecules.  

 

The importance of this cytokine in the resistance to infection has been 

highlighted by the study of IFNγ-/- and IFNGR1-/- mice and the discovery of human 

genetic mutations of the IL-12/IFNγ pathway. While IFNγ-/- and IFNGR1-/- mice are 
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highly sensitive to infections by multiple intracellular pathogens, humans with 

Mendelian Susceptibility to Mycobacterial Diseases are susceptible to environmental 

mycobacteria (Filipe-Santos, Bustamante et al. 2006; Schoenborn and Wilson 2007). 

Interestingly, IFNγ signals are essential for adequate response to chronic, but not acute, 

LCMV infections. Furthermore, IFNγ secreted by CD8 T cells, but not innate cells, is 

dispensable for clearance of Listeria infections (Harty, Tvinnereim et al. 2000).  

 

 The second important cytokine produced by effector CD8 T cells is TNFα. This 

cytokine is primarily active as trimers and binds to either TNFR1 or TNFR2, receptors 

belonging to the TNF receptor super family. TNFR1 is ubiquitously expressed and 

TNFR2 is mainly expressed by hematopoietic and endothelial cells. In response to TNF 

ligation, the TNFR binds to one or more TNFR-associated factors (TRAFs) that 

subsequently leads to activation of the transcription factors NFκB and MAP kinases 

(ERK, p38, JNK) (Aggarwal 2003). The biological actions of TNFα are thus diverse and 

involve the regulation of both cellular proliferation and cellular apoptosis. In immune 

responses against infections, TNFα appears to mediate its positive action via three 

distinct mechanisms. It synergizes with IFNγ to stimulate macrophage activation and 

their bactericidal and parasiticidal functions. It also upregulates adhesion molecule 

expression on endothelial cells, promoting recruitment of innate cells at the site of 

infection. Lastly, through its intracytoplasmic death domain, TNFα induces caspase-8 

dependent apoptosis of infected target cells.  

 

Once again, the importance of this cytokine in resistance to infections differs 

between pathogens. While it is dispensable during LCMV infections, TNFα is essential 

for secondary immune protection against Listeria infections. Furthermore, in humans, 

the link between anti-TNFα treatments and the resurgence of mycobacterial 

tuberculosis reveals the absolute requirement for this cytokine in some infections 

(Bruns, Meinken et al. 2009). However, TNFα may also have significant side effects 

following severe infections, as exemplified by its adverse role in cerebral malaria and 

sepsis (Harty, Tvinnereim et al. 2000; Pfeffer 2003).      

 

2. Granule exocytosis 

 

T cell mediated cytotoxicity is essential for the elimination of infected target cell 

and ultimate pathogen clearance. Two distinct and complementary pathways exist to 

achieve target cell lysis: the granule exocytosis pathway and the death-receptor 
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pathway, the former one being the most important for the elimination of infected cells. 

Both of these pathways are activated in response to signals from the TCR and stimulate 

the caspase cascade in the target cell, leading to apoptotic cell death.  

 

Efficient lysis by the granule exocytosis pathway requires the combined action of 

the pore-forming protein perforin and the cytolytic molecules granzymes. Upon 

recognition of pathogen-derived peptides at the surface of an infected cell, the CTL 

establishes a stable but transient immunological synapse. This synapse will allow the 

targeted release of the cytotoxic granules in the infected cell. The granules accumulate 

in close proximity of the MTOC and are shunted through a specialized region within 

the cSMAC. However, recent data suggest that granule polarization and cytolysis may 

occur without the formation of a cSMAC (O'Keefe and Gajewski 2005). Interestingly, 

the establishment of a cytotoxic immune synapse requires the engagement of only three 

to ten peptide-MHC complexes. The synapse duration is short, with calcium influx of 

only 2-20 minutes, and cells detach rapidly thereafter. Moreover, effector CTLs can 

form simultaneously many synapses with several target cells, allowing rapid elimination 

of the pathogen (Huppa and Davis 2003). 

 

The cytotoxic granules are specialized secretory lysosomes constituted of 

perforin and granzymes. Their number increases during the differentiation of CTLs, 

upon TCR triggering and γc-dependent cytokine stimulation (IL-2, IL-15 and IL-21), at 

least in NK cells (Glimcher, Townsend et al. 2004). Recent studies have suggested that 

the two T-box transcription factors T-bet and eomesodermin and the B lymphocyte-

induced maturation protein (Blimp-1) regulate the expression of both perforin and 

granzyme B (Pearce, Mullen et al. 2003; Sullivan, Juedes et al. 2003; Kallies, Xin et al. 

2009). Bcl-6, a transcription repressor, might also be involved in the suppression of 

granzyme B expression in naïve and memory cells (Yoshida, Sakamoto et al. 2006). The 

low pH and inhibitory functions of cathepsin B and calreticulin protects the CTL from 

its own destruction (Lieberman 2003).  

 

 Granzymes’ capacity to induce target-cell death is absolutely dependent on 

perforin, as highlighted by the severe susceptibility to LCMV infections in perforin 

knockout mice (Kagi, Ledermann et al. 1994; Walsh, Matloubian et al. 1994). 

However, the precise mechanisms involved are not fully understood (Figure 12). The 

first model relies on the membranolytic properties of perforin. In this model, the 

polymerization of perforin creates pores in the target-cell membrane, allowing the 

creation of an osmotic gradient leading to target cell lysis. Through these pores, 
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granzymes can also gain entry into the cytosol, leading to target cell death through 

caspase dependent and independent pathways. The second model proposes that 

granzymes may enter the cell in endosomes, either by binding to the cell surface 

electrostatically or by its ligation to the mannose-6-phosphate receptor. The presence of 

perforin in the same endosome is then essential for granzymes’ release into the target-

cell cytosol.  

 

 Among the granzymes present in the granules, granzyme B has the strongest pro-

apoptotic function.  It can cleave its substrates after aspartate residues, like caspases, 

and thus activate caspase-3 to induce apoptosis associated with rapid DNA 

fragmentation. However, the principal apoptotic mechanism used by granzyme B is 

target cell killing through caspase-independent pathways. This second pathway relies 

on the cleavage of Bid (a BH3 interacting death domain agonist) and the induction of 

mitochondrial damage and cytochrome c release. Caspase-activated DNAse (CAD) can 

also be directly activated by granzyme B, amplifying DNA fragmentation. Conversely, 

Granzyme A activates a slower mechanism of caspase-independent apoptosis through 

the targeting of an endoplasmic reticulum-associated complex, SET. In fact, these two 

granzymes act independently and synergistically to induce apoptosis. Other granzymes 

are also present in the cytotoxic granules but their exact role in apoptosis is less well 

defined (Lieberman 2003).  

 

As described earlier for other effector molecules, the relative relevance of the 

granule exocytosis pathway depends on the infectious agent encountered, the site and 

dose of infection and the immunity of the host. In fact, in certain circumstances, other 

cytotoxic pathways, in particular the Fas-dependent pathway, can complement or even 

surpass the granule exocytosis pathway. For example, while perforin and granzymes 

are essential in LCMV infections, they are dispensable in Listeria infections (Harty, 

Tvinnereim et al. 2000). Finally, besides its fundamental role in pathogen clearance, 

the granule-dependent cytotoxic pathway is critical in controlling the immune 

homeostasis after an infection. Indeed, because of their inability to clear the virus, 

perforin-/- mice develop a dysregulated response with sustained CD8 T cell activation, 

leading to important cytokine release and development of hemophagocytic 

lymphohistiocytosis syndrome (Jordan, Hildeman et al. 2004). Similar syndromes have 

been described in humans with genetic mutations in perforin or molecules involved in 

the polarization, docking, priming, fusion and exocytosis of the granules at the 

immunological synapse (Menasche, Feldmann et al. 2005).   
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3. Death-receptor induced apoptosis  

 

Death-receptor mediated cytotoxicity is the second pathway involved in 

pathogen clearance. While it is the most important killing mechanism of CD4 T cells, it 

complements the granule exocytosis pathway in CD8 T cells. This pathway is initiated 

by the ligation of the death-receptors expressed at the surface of the antigen-specific 

target cell (Figure 13). Three members of the TNFR superfamily can induce rapid target-

cell apoptosis once ligated: Fas (CD95), TRAIL receptor (TNF-related apoptosis-

inducing ligand) and TNF receptor. Immediately after activation, the adapter molecule 

FADD (Fas-associated death domain) binds to the death domain of the receptor and 

recruits pro-caspase-8. Once activated, caspase-8 initiates the caspase cascade 

resulting in apoptotic death of the target cell (Brunner, Wasem et al. 2003). 

Interestingly, despite the presence of soluble FasL, it was recently confirmed that the 

membrane-bound FasL is the only form capable of target cell lysis. Conversely, the 

soluble FasL form seems to have deleterious effects, potentiating the development of 

autoimmune diseases and tumors (O' Reilly, Tai et al. 2009).   

 

Once again, this pathway is highly regulated. Upon TCR stimulation, multiple 

transcription factors involved in the regulation of FasL expression are activated. NFκB, 

AP1, eGR2/EGR3, NFATs have all been described to interact directly with promoter 

regions of FasL or to modulate its transcription. Recently, CD28 costimulation and IL-2 

stimulation have also been shown to influence the transcription of FasL (Glimcher, 

Townsend et al. 2004). As described earlier for the granule exocytosis pathway, this 

apoptotic pathway is not only involved in T cell cytotoxic functions but is also essential 

for peripheral tolerance.  Two natural mice mutants with severe lymphoproliferative 

diseases, the gld and lpr mice, and human genetic defects in patients with ALPS 

(autoimmune lymphoproliferative syndrome) highlight the importance of FasL in the 

regulation of immune homeostasis (Rieux-Laucat, Fischer et al. 2003). 

 

In the immune response to infectious, it is interesting to note that CD8 T cells 

can coexpress simultaneously FasL and cytolytic granule proteins. However, it is likely 

that CD8 T cells preferentially use one cytotoxic effector mechanism over the other. 

This choice might be directed by the site of infection, the type of infectious agent, the 

acuteness or chronicity of the infection, or the degree of prior activation. This time, 

both acute LCMV or Listeria infections seem to be cleared without the help of FasL-

mediated apoptosis (Harty, Tvinnereim et al. 2000). However, a chronic infection to 
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mouse γ herpes virus (MγHV) for example requires the Fas pathway for its clearance. It 

is likely the persistent TCR stimulation present in chronic infections that causes the 

dependency on Fas-mediated signals (Hughes, Belz et al. 2008).  

 

G. Migration to peripheral tissues 

 

T cell migration between sites of priming and inflamed tissues is a tightly 

regulated process. Selectins, chemokine receptors and integrins are essential to guide 

the movements of the CD8 T cell in and out of the lymph node and towards the 

infected sites. Selectins enable T cells to adhere and roll on endothelial venules, while 

chemokine receptors mediate their firm adhesion by activating integrins, essential for T 

cell arrest and transmigration. Expression of those different homing receptors is 

modulated during the course of the immune response and directs the trafficking of CD8 

T cells. Interestingly, this process increases the heterogeneity of the effector T cell pool 

and impacts on the localisation, retention and function of the cells (Bromley, Mempel 

et al. 2008; Forster, Davalos-Misslitz et al. 2008). 

 

Naïve T cells express three principal homing receptors at their surface, L-selectin 

(CD62L), CCR7 and LFA-1, allowing for retention and movements inside a lymph node, 

and circulation through the secondary lymphoid organs of the body. CD62L binds 

peripheral node addressins on high endothelial venules, while CCR7 interacts with 

CCL19 and CCL21, its two displayed ligands. Firmer adhesion is provided by 

attachment of LFA-1, expressed at low levels, to ICAM-1.  In fact, naïve T cell motility, 

and thus localisation in the lymph node, is strictly dependent on CCR7 binding to 

CCL19 or CCL21, chemokines produced by endothelial cells and fibroblastic reticular 

cells (Forster, Schubel et al. 1999; Okada and Cyster 2007). Furthermore, CCR7 allows 

re-entry of the T cell through draining lymphatics (Bromley, Thomas et al. 2005; Debes, 

Arnold et al. 2005). As we will see later, CD62L and CCR7 molecules are reexpressed 

in some memory cells and might influence the proliferation capacity, effector function 

and localization of those cells.      

 

Upon inflammatory signals and fever, CCL21 and ICAM-1 expression in the 

lymph node is potentiated, allowing for efficient T cell recruitment and trafficking 

(Chen, Fisher et al. 2006). Moreover, after TCR stimulation, CCR7 and CD62L cell 

surface expression is transiently maintained, allowing for efficient T cell activation. 

Soon after, the expression of these two molecules is lost, and activated T cells 
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upregulate the expression of various combinations of adhesion and chemokine 

receptors as part of their differentiation program. Through upregulation of CCR5 and 

CCR2 for example, effector CD8 T cells will have a greater capacity to migrate to 

inflamed tissues. Interestingly, the site of entry of the pathogen influences the homing 

potential of the CD8 T cells, through DC-mediated signals. Intracutaneous injection of 

bone marrow-derived DC leads to increased E-selectin ligand expression, while 

intraperitoneal injection induces the gut-homing integrin α4β7 expression on CD8 T 

cells (Dudda, Simon et al. 2004). This was confirmed by a very nice study looking at 

the expression of selectins and integrins on effector CD8 T cells after implantation of 

tumor cells subcutaneously, intraperitoneally or intracranially (Calzascia, Masson et al. 

2005). Chemokines and their receptors are also critical for directing the homing of 

lymphocytes to specific tissues. For example, CCR9 defines a subset of lymphocytes 

with tropism for the small intestine, whereas CCR4 and CCR10 direct skin-tropic T cell 

trafficking, at least in CD4 T cells (Agace 2006).  
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III. Memory CD8 T cell differentiation 

 

Development of protective populations of memory cells is the hallmark of 

adaptive immunity. These memory cells will have specific characteristics allowing 

them to respond quickly and efficiently to re-infection and to be maintained for an 

extended period of time. The generation and maintenance of memory cells depend on 

multiple factors, which will be reviewed in the following pages. 

 

A. Contraction 

 

The abrupt loss of effector cells at the conclusion of the immune response is 

essential to prevent the persistence of dominant clones and allows for the 

reestablishment of peripheral homeostasis. From this contraction, few cells will be 

preserved to generate a new memory cell pool. Multiple control mechanisms are thus 

used to regulate the contraction of the effector T cell response and select for the 

memory cell precursors. 90-95% of the effector cells that are no longer needed at the 

end of the expansion phase will undergo apoptosis through two principal apoptotic 

pathways: the extrinsic or death receptor pathway or the intrinsic or mitochondrial 

pathway (Krammer, Arnold et al. 2007; Bouillet and O'Reilly 2009) (Figure 14). Some 

characteristics of these pathways have already been mentioned in the previous section 

on target cell killing, since they are used by the effector CD8 T cells to kill infected 

cells and to re-establish homeostasis in mice and humans, as previously described. In 

this section, we will come back on some particular aspects that have not been 

discussed. 

 

1. Activation-induced cell death 

 

T cells can die through a process of activation-induced cell death (AICD), 

involving the death molecule Fas. AICD is provoked by the in vitro TCR re-stimulation 

of already activated and expanded T cells in the absence of appropriate co-stimulation, 

and depends on the death receptor pathway (Fas, TNFR1, TRAILR). Upon TCR re-

stimulation, FasL is expressed on the same cell that expresses Fas or on neighbouring 

CD8 T cells, allowing for caspase-dependent apoptosis. The involvement of Fas in the 

return to homeostasis has been confirmed by the study of mice and men with mutations 
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in this pathway, as already described (Watanabe-Fukunaga, Brannan et al. 1992; 

Takahashi, Tanaka et al. 1994; Rieux-Laucat, Fischer et al. 2003). However, the in vivo 

contribution of Fas in recovery after viral infection has been challenged by the 

demonstration that contraction may be independent on Fas or FasL in the context of 

LCMV or herpes simplex infection (Lohman, Razvi et al. 1996; Zimmermann, Rawiel et 

al. 1996; Pellegrini, Belz et al. 2003). Furthermore, the concept of AICD in vivo has 

even been questioned since complete viral clearance would prevent any kind of TCR 

re-stimulation (Strasser and Pellegrini 2004). Thus, Fas-dependent apoptotic pathway is 

likely a mediator of T cell contraction, but is certainly not the only one and might even 

be dispensable in some models, especially in the context of acute infections. 

 

2. Death by neglect 

 

The second major pathway of T cell death involves the disappearance of 

appropriate survival signals, leading to activated cell-autonomous death (ACAD) or 

death by neglect. Recently, this pathway has been shown to be a major player in T cell 

contraction. Upon pro-survival cytokine deprivation, the expression of the pro-

apoptotic Bcl-2 family members Bim (Bcl-2 interacting mediator of cell death) and 

Puma (p53-upregulated modulator of apoptosis) is increased, leading to cell death by 

the intrinsic pathway (Hildeman, Zhu et al. 2002; You, Pellegrini et al. 2006). Bim and 

Puma bind to Bcl-2 or Bcl-XL at the mitochondrial membrane, abrogating the inhibition 

of Bax and Bak, and thus promoting the release of cytochrome c (Willis, Fletcher et al. 

2007). The balance of Bim/Puma versus Bcl-2/Bcl-XL thus regulates T cell death. 

Interestingly, TCR stimulation increases Bim, suggesting that this pathway is also 

involved in AICD (Sandalova, Wei et al. 2004). The relevance of Bim in termination of 

the immune response after infectious challenge has been confirmed in multiple models 

(herpes simplex, MγHV, LCMV) (Pellegrini, Belz et al. 2003; Hughes, Belz et al. 2008; 

Weant, Michalek et al. 2008). Furthermore, recent papers suggest that the Fas pathway 

might complement the Bim pathway in chronic MγHV infection or acute LCMV 

infection (Hughes, Belz et al. 2008; Weant, Michalek et al. 2008). Interestingly, the role 

of these two complementary pathways in T cell homeostasis is demonstrated by the 

much more severe lymphoproliferative diseases that develop in mice when both genes 

are deleted. 
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3. Determinants of CD8 T cell contraction 

 

In accordance with the prominent role of cytokine deprivation in T cell 

apoptosis, γc-dependent cytokines have been shown to regulate the extent of T cell 

contraction (Vella, Dow et al. 1998). In fact, γc-cytokine levels decrease as the antigen 

is cleared. Furthermore, proliferating T cells are more sensitive to cytokine withdrawal 

than resting T cells. Interestingly, recent in vivo studies have shown that treatment with 

IL-2, IL-7 and IL-15 delays the contraction phase and, in some cases, increases the 

number of memory cells generated (Blattman, Grayson et al. 2003; Yajima, Yoshihara 

et al. 2006; Nanjappa, Walent et al. 2008; Rubinstein, Lind et al. 2008). In fact, γc 

cytokines promote the expression of Bcl-2 and Bcl-XL, counter-balancing Bim and 

Puma and preventing mitochondrial-induced cell death (Akbar, Borthwick et al. 1996).  

 

CD8 T cell contraction appears also to be influenced by pro-inflammatory 

cytokines. In particular, IFNγ signals appear to be essential since IFNγ-/- or IFNGR1-/- 

mice fail to undergo contraction following LCMV or Listeria infection (Badovinac, 

Tvinnereim et al. 2000; Badovinac, Porter et al. 2004; Tewari, Nakayama et al. 2007). 

TNFα,  another pro-inflammatory cytokine produced during viral infections, might also 

be involved in the regulation of CD8 T cell contraction (Suresh, Singh et al. 2005). 

Finally, as mentioned previously, perforin deficient mice develop severe 

lymphoproliferation upon viral challenge, exemplifying the role of this pathway in T 

cell homeostasis (Matloubian, Suresh et al. 1999; Badovinac, Hamilton et al. 2003). 

However, the dysregulated immune response in perforin-/- mice is probably related to 

an excess of expansion rather than an impaired contraction (Badovinac, Tvinnereim et 

al. 2000; Badovinac, Porter et al. 2002).  

 

Two other aspects of CD8 T cell contraction are worth mentioning. First, it is 

interesting to note that the onset and magnitude of contraction is independent of the 

magnitude of the prior expansion and thus the dose or duration of the infection 

(Badovinac, Porter et al. 2002). It has been nicely demonstrated by Badovinac et al in 

an infectious model with attenuated strain of Listeria monocytogenes. After low or high 

dose of infection, and despite a ten-fold difference at the peak of the response, the 

onset and kinetic of contraction is exactly the same. Furthermore, treatment with 

antibiotics to decrease the antigen load or establishment of chronic infection does not 

perturb the timing and kinetic of the contraction phase (Badovinac, Porter et al. 2002). 

It is thus thought that CD8 T cell contraction might be programmed very early upon 
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antigen encounter, like its differentiation. Secondly, it has to be remembered that T cell 

contraction is not required for memory cell generation, since antibiotic treatments 

diminish significantly the strength of signal 1, abolish the expansion and thus the 

contraction phase, but not the generation of functional memory cells (Badovinac, Porter 

et al. 2004). The absence of inflammatory signals, especially IFNγ, might be involved in 

this process. 

 

B. Cellular markers for the identification of precursor memory cells 

 

One major unresolved question in CD8 T cell immunology is the understanding 

of the mechanisms involved in the lineage choices between the generation of potent 

effector responses and the selection of precursor cells destined to become long-lasting 

memory cells. Similarly, we still do not understand how apoptotic cell death is imposed 

on the majority of effector cells while preserving some of them from efficient 

elimination. The identification of memory precursor cells would enable us to study the 

initial events leading to the generation of stable memory. In fact, the advance in flow 

cytometry technologies has confirmed an important heterogeneity in the effector T cell 

pool. As we will see, numerous memory precursor identification markers have been 

proposed, but none unmistakably defines cells that will initiate the memory T cell pool. 

 

1. IL7Rα 

 

An important γc-dependent cytokine, IL-7, is essential for the survival and 

maintenance of both the naïve and memory CD8 T cell pool, through the regulation of 

the anti-apoptotic molecules Bcl-2 and Bcl-XL (Schluns, Kieper et al. 2000; Goldrath, 

Sivakumar et al. 2002). As discussed previously, its receptor, composed of the IL7Rα 
(CD127) and γc chains, is downregulated soon after activation and is slowly reexpressed 

thereafter. In the quest for memory precursor cells, an important breakthrough came 

from two independent studies proposing that CD127 could be used as an identification 

marker (Kaech, Tan et al. 2003; Huster, Busch et al. 2004). In a LCMV infection model, 

Kaech et al. demonstrated that 5-10% of the effector T cell pool is expressing the 

CD127 chain at the peak of the response. Adoptive transfer studies of CD127high and 

CD127low cells confirmed that the CD127high cells were most effective in generating 

memory CD8 T cells in recipient mice. Subsequent studies demonstrated that the 

CD127 kinetic of upregulation was correlated to the strength of the signals received at 
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the time of activation (Badovinac, Porter et al. 2004; Lacombe, Hardy et al. 2005). 

Antibiotic treatment in the Listeria model or DC vaccination, two models leading to 

more rapid generation on memory cells, were also correlated with an increased 

frequency of CD127high effector cells at the peak of the response. Thus, the re-

expression of CD127 was proposed to be an important identification marker of memory 

precursor cells.  

 

However, some authors questioned the relevance of CD127 expression for 

memory generation. First, Badovinac et al. showed that the presence of CD127 on CD8 

effector T cells did not prevent them to undergo T cell contraction (Badovinac, 

Messingham et al. 2005). Second, IL7 signals were found not to be essential for the 

selection of CD127high cells since IL7-/- effector CD8 T cells could upregulate CD127 

(Klonowski, Williams et al. 2006). Lastly, in a very nice model of enforced expression 

of CD127 in a transgenic mouse, the presence of CD127 did not rescue the effector 

cells that were destined to die (Hand, Morre et al. 2007; Haring, Jing et al. 2008). 

Despite these reports, CD127 expression appears to be an important characteristic of 

memory T cells and might be useful, in conjunction with other markers, in the 

identification of memory precursor cells. 

 

2. CD62L  

 

One of the markers that could be associated with CD127 in the identification of 

memory precursors is CD62L (L-selectin). As discussed earlier, CD62L is important for 

the homing of CD8 T cells away from the infected tissues and in the peripheral 

lymphoid organs. In humans, expression of CD62L (in association with CCR7) was 

strongly correlated with a central memory phenotype, thus suggesting that CD62L 

might be able to identify memory precursor cells (Sallusto, Lenig et al. 1999). In fact, 

two studies confirmed that CD62L in association with CD127 could identify three 

effector populations with distinct characteristics (CD62LlowCD127low, 

CD62LlowCD127high, CD62LhighCD127high) (Huster, Busch et al. 2004; Bachmann, Wolint 

et al. 2005). The CD62LlowCD127low effector cells are potent cytotoxic cells, while the 

CD62LhighCD127high effector cells have reduced cytotoxic functions but increased IL-2 

secretion and proliferative potential after rechallenge, and thus resembles memory 

cells.  
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However, the relevance of CD62L expression for the identification of functional 

memory cells, and thus their precursors, was soon questioned. In fact, it appears that it 

is not the expression of CD62L that defines the functional memory cell pool but the 

time passed since infection (Roberts, Ely et al. 2005). Furthermore, the kinetic of CD62L 

expression is influenced by early events at the time of priming, such as antigen levels, 

clonal competition, duration of infection and associated inflammatory environment 

(Wherry, Teichgraber et al. 2003; Marzo, Klonowski et al. 2005; Sarkar, Teichgraber et 

al. 2007; Wirth, Pham et al. 2009). Finally, in secondary immune responses, CD62L 

can no longer be used as a marker of memory cells, since secondary CD8 effector cells 

present a significant delay in their CD62L re-expression capacity while providing 

potent protection against rechallenge (Jabbari and Harty 2006). Thus, the absence or 

presence of CD62L expression on memory cells might not always be correlated with 

potent protective functions. However, its re-expression might be an added tool in the 

search for memory precursors. 

 

3. KLRG1  

 

In recent years, low expression of KLRG1 on effector cells was proposed as a 

new marker for the identification of memory precursor cells (Joshi, Cui et al. 2007; 

Sarkar, Kalia et al. 2008). KLRG1, for killer cell lectin-like receptor G1, belongs to the 

C-type lectin-like superfamily and is expressed by NK cells and T cells. It was recently 

shown to bind cadherins, although the impact of such binding in vivo is still not quite 

understood (Ito, Maruyama et al. 2006; Rosshart, Hofmann et al. 2008). Its expression 

is dramatically increased after infections and is suggested to be a marker of terminal 

differentiation of both cell types (Robbins, Terrizzi et al. 2003). In fact, extensive 

numbers of cell divisions are required for KLRG1 to be expressed. Furthermore, T cells 

expressing KLRG1 are potent killers but are unable to proliferate upon antigen 

challenge, thus identifying potent but senescent cytotoxic cells (Voehringer, Blaser et 

al. 2001). In a very nice study, Ahmed’s group suggested that KLRG1 expression could 

be used as an early marker of effector or memory precursor cells, at a time when 

CD127 is still undetectable (Sarkar, Kalia et al. 2008). They proposed that KLRG1high 

CD127low short-lived effector cells (SLECs) are destined to become terminal effector 

cells while KLRG1low CD127high memory precursor effector cells (MPECs) will become 

long-lived memory cells. Through transfer studies of KLRG1high and KLRG1low cells, they 

demonstrated that KLRG1low cells had a greater potential to become memory cells, and 

secreted more IL-2 than their KLRG1high counterparts. Interestingly, both subtypes were 



 42 

potent effector cells, with similar granzyme B expression, IFNγ and TNFα secretion and 

thus direct ex vivo killing. Furthermore, curtailing the antigenic stimulation, by 

decreasing the exposure time to the pathogen, promoted the development of KLRG1low 

CD127high MPECs, in accordance with quicker memory cell generation in this context. 

Interestingly, other studies had already suggested that the inflammatory environment at 

the time of priming impacted on the development of SLECs versus MPECs through the 

regulation of T-bet expression (Joshi, Cui et al. 2007). By studying T-bet-/- mice, they 

confirmed that T-bet was necessary and sufficient for the development of SLECs (Joshi, 

Cui et al. 2007). They also demonstrated that IL-15 signals were essential for the 

development of SLECs, thus suggesting a complex interplay between γc-cytokines 

pathways, downstream transcription factors and T cell lineage choices.  

 

Although these three markers are helpful tools, we have to remember that they 

do not unequivocally identify memory precursors cells. While, as we suggested, CD127 

expression is not sufficient for memory cell generation, CD62L expression does not 

always equal with presence or absence of memory functions, especially in secondary 

immune responses. Furthermore, the KLRG1/CD127 dichotomy is not absolute, since 

all of the KLRG1low CD127high MPECs do not become memory cells and some memory 

cells still express high levels of KLRG1. Thus, care has to be taken while studying 

mechanisms involved in memory generation since the precise identification of memory 

precursor cells is still under intense scrutiny. 

 

C. Inflammatory milieu and rate of memory development 

 

Numerous recent studies have suggested that the inflammatory environment 

present at the time of priming not only influences the differentiation and the contraction 

phase, but impacts on the time required to develop functional memory cells. In fact, 

memory CD8 T cell development is a gradual process, an on-going differentiation path 

to attain potent protective functions. The rate at which CD8 T cells acquire these 

memory characteristics is highly influenced by pro-inflammatory cytokines. In the 

reports by Badovinac et al, presented earlier in the ‘contraction’ section, antibiotic pre-

treatment in the Listeria model diminishes the inflammatory cytokine production and 

the duration of antigenic display, without influencing the number of memory cells 

generated. In fact, mice develop phenotypic and functional characteristics of memory 

cells within one week, thanks to the significant reduction in the inflammatory signals. 

More importantly, CD8 T cells in the antibiotic treated mice were capable of vigorous 
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expansion at seven days after the initial infection, while the control group could 

similarly expand much later, being at the peak of their effector response at that time, 

and thus much less responsive to booster immunization.  Interestingly, CpG treatment 

to restore inflammation prevents the rapid development of memory cells and extends 

the time required to gain memory functions (Badovinac, Porter et al. 2004; Badovinac 

and Harty 2007). Similarly, peptide-loaded DCs immunization provides a setting where 

CD8 T cells receive potent signals in the absence of inflammation. Consistent with the 

idea that inflammation influences the rate of memory generation, CD8 T cells primed in 

this context differentiate rapidly to a memory phenotype and are able to proliferate 

vigorously in response to re-infection (Badovinac, Messingham et al. 2005). 

Interestingly, CD8 T cells that respond to LCMV infection in an IL12-/- or IFNγ-/- 

environment exhibit rapid acquisition of memory characteristics and functions 

(Badovinac, Porter et al. 2004; Badovinac, Messingham et al. 2005; Pearce and Shen 

2007). Similarly, the inflammatory environment impacts on the expression of key 

transcription factors, such as T-bet. Low degrees of inflammation will decrease the 

levels of T-bet expression and promote the development of MPECs and memory CD8 T 

cells (Joshi, Cui et al. 2007).  

 

D. Memory cells functions and dysfunctions 

 

1. Protective memory cells  

 

The memory cells generated after the contraction phase persist for life and 

convey heightened protection after re-challenge. The protective capacity of memory 

CD8 T cells is dependent on multiple factors. First, as a consequence of clonal 

expansion, the number of antigen-specific precursors increases by 1000-fold (from 100-

200 naïve cells to 5X105 GP33-41-specific memory cells per spleen in the context of 

LCMV infection) (Blattman, Antia et al. 2002). Moreover, the selected clones have a 

higher TCR affinity, decreasing the subsequent threshold required for activation (Busch 

and Pamer 1999). Second, compared to effector cells, memory cells persist in a pre-

activated state with low levels of the cell cycle inhibitor P27kip and high levels of the 

cyclin-dependent kinase 6 (CDK6), allowing for their rapid transition from the G0/G1 

phase to the S phase of the cell cycle (Veiga-Fernandes and Rocha 2004). Thus, the 

augmented precursor frequency and the strong proliferative capacities of memory cells 

provide prompt protection. Third, compared to naïve cells, memory cells have an 
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increased capacity to acquire effector functions following changes in their gene 

expression profile. Chromatin remodelling and activation of different transcriptions 

factors after priming allows for constitutive expression of some effector molecules such 

as IFNγ, perforin and granzyme B. Thus, elevated levels of those transcripts will endow 

memory CD8 T cells with the capacity to release large quantities of effector proteins 

rapidly (Araki, Wang et al. 2009). Fourth, the localization of memory cells near 

infectious entry sites favours rapid and efficient responses. In fact, primary activation 

and differentiation generate changes in the expression of adhesion and chemokine 

receptors, as well as tissue-specific localization imprinting. It allows for homing of 

memory cells in either non-lymphoid tissues or secondary lymphoid organs (Weninger, 

Crowley et al. 2001). Finally, CD8 memory T cells possess self-renewal capacities 

provided by cytokine-dependent homeostatic proliferation mechanisms (Homann, 

Teyton et al. 2001; Surh and Sprent 2008). The multipotency and renewal capacities of 

memory cells are characteristics shared with other types of stem cells. It allows for the 

generation of a long-lasting pool of highly amenable and responsive cells. 

 

Similar to effector cells, significant heterogeneity exists among the CD8 memory 

T cell pool. As alluded previously, CD62L and CCR7 expression on memory T cells 

was suggested to distinguish two functionally distinct human memory T cell pools 

(Sallusto, Lenig et al. 1999). In humans, the central memory T cells (TCM) express lymph 

node homing receptors (CD62Lhigh CCR7high), are less lytic than their CD62Llow CCR7low 

counterparts, but proliferate more and secrete more IL-2 upon restimulation. The 

effector memory population (TEM) is undistinguishable from the effector cells in terms of 

CD62L and CCR7 stainings, resides mostly in non-lymphoid peripheral tissues, next to 

infectious entry points, and is constituted of potent killers and cytokine producers 

(IFNγ, TNFα). In mice, despite the fact that the importance of CD62L and CCR7 for 

homing to peripheral lymphoid organs was established, this sub-division amongst 

memory cells is not as definite. The existence of memory cells in distant tissues was 

reported by numerous studies, but investigations on the distinct roles of each of these 

two memory subsets are still awaited (Masopust, Vezys et al. 2001). This paradigm is 

even more questionable in CD8 immunology since most authors reported nearly 

equivalent cytototoxicity and cytokine production of CD8 TCM and TEM. Yet, the 

heightened proliferative capacity of TCM to antigen or γc-dependent cytokines has been 

described in some but not all types of infection (Unsoeld, Krautwald et al. 2002; 

Wherry, Teichgraber et al. 2003; Roberts and Woodland 2004; Roberts, Ely et al. 

2005). Nevertheless, as suggested earlier, the kinetic of upregulation of CD62L is 

influenced by multiple factors. Time itself changes the expression profile of the memory 
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T cell pool. Furthermore, memory cells are probably not committed to stay exclusively 

in one site and are most likely moving from one area to another, thus sensing multiple 

environments that will in turn influence their cellular profile and function. At last, as 

discussed for the identification of precursors cells, the absence of definite surface or 

molecular markers for memory cells renders functional comparative studies more 

difficult. Protective response against re-challenge is probably the best demonstration for 

the presence of memory cells.    

 

It is interesting to note that secondary memory CD8 T cells generated in the 

context of prime-boost vaccination strategies for example are distinct from primary 

memory cells. Upon re-infection, these secondary CD8 T cells undergo protracted 

contraction and present substantial delays in the upregulation of CD62L, as already 

discussed. Furthermore, they appear to be less sensitive to homeostatic signals than 

primary memory cells. However, on a single-cell basis, secondary memory CD8 T cells 

are more protective against re-infection and exhibit sustained granzyme B expression 

and cytotoxicity (Unsoeld and Pircher 2005; Jabbari and Harty 2006; Masopust, Ha et 

al. 2006). Thus, protective functions are influenced by multiple parameters, and the 

stimulation history impacts on the effector functions of the memory T cell pool. 

 

2. Lethargic or helpless memory cells 

 

Besides the evidence presented earlier on the minimal role for CD4 help in 

effector CD8 T cell differentiation, numerous studies have reported a surprising role for 

CD4 T cells in the generation of long-lived, functional CD8 memory T cells. Even in 

situations associated with high inflammatory environment, such as LCMV or Listeria 

infections, it appears that lack of CD4 help generates dysfunctional (lethargic) CD8 

memory cells. These helpless memory cells respond poorly to secondary challenge, are 

unable to re-expand and to secrete inflammatory cytokines. Furthermore, upon antigen 

re-stimulation, helpless memory cells synthesize and express important quantities of 

TRAIL at their surface, leading to their deletion by their own death-receptor apoptotic 

pathway (Janssen, Droin et al. 2005). The mechanisms through which CD4 help 

influences CD8 memory generation are still a source of intense debate. Some authors 

suggest that CD4 help is required at the beginning of the response, in order to imprint a 

complete differentiation program to CD8 T cells (Janssen, Lemmens et al. 2003; 

Shedlock and Shen 2003; Sun and Bevan 2003). Interestingly, Williams et al 

demonstrated that IL-2 signals given at the time of priming were essential for the 
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secondary expansion of CD8 memory T cells (Williams, Tyznik et al. 2006). It is not 

known if these IL-2 signals are uniquely derived from CD4 cells, but this cytokine 

certainly contributes to the programming of functional memory CD8 T cells. However, 

other authors propose that CD4 help is also required for the maintenance of a 

functional CD8 T cell memory pool, since CD8 memory numbers and functionality 

deteriorate over extended period of time in a CD4-/- environment, with or without the 

presence of TRAIL (Sun, Williams et al. 2004; Badovinac, Messingham et al. 2006). 

Help signals might also influence chromatin remodelling and transcription factors since 

unhelped CD8 memory cells present hypoacetylation at its histone sites and express 

relatively elevated levels of T-bet (Intlekofer, Takemoto et al. 2007; Northrop, Wells et 

al. 2008). Furthermore, T-bet deficiency restores the function of helpless memory T 

cells and promotes the acquisition of a central memory phenotype. It thus appears that 

signals received from the CD4 T cell at the time of priming might be essential for the 

development of robust CD8 memory responses. 

 

3. Exhausted memory cells 

 

Although acute infections generate potent and protective responses, multiple 

studies have revealed that chronic infections lead to ineffective or poor-quality CD8 

responses (Fuller and Zajac 2003; Wherry, Blattman et al. 2003; Fuller, Khanolkar et al. 

2004). When primed in the context of chronic antigenic stimulation, CD8 T cells loose 

their ability to perform cytotoxic functions. The CD8 memory T cells generated will 

become functionally exhausted and unable to provide sterilizing immunity. This 

exhaustion is characterized by a hierarchical loss in effector function, from inactivation 

of IL-2 production to a complete disappearance of all effector functions. Persisting 

infection can even lead to deletion of the CD8 T cell pool. Besides these severe 

dysfunctions, the antigen-driven proliferation of the CD8 T cells is severely impaired by 

chronic infection, thus preventing adequate expansion upon re-infection. Exhaustion is 

further characterized by the surface expression of specific inhibitory receptors, such as 

PD-1, 2B4 and LAG3 (Blackburn, Shin et al. 2009). The importance of PD-1, a TNF 

receptor family member, in the dysfunctional phenotype of memory cells of chronically 

infected mice was nicely confirmed by treatment with PD-1L antibodies, as already 

discussed. Blocking the interaction between PD-1 and its ligand leads to enhance viral 

control, increased cytotoxicity and cytokine production and ameliorated proliferation 

against viral antigen (Barber, Wherry et al. 2006; Ha, Mueller et al. 2008).  In the 

context of chronic infection, the long-term maintenance of the memory CD8 T pool is 
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also severely perturbed. First, effector CD8 T cells become unable to revert to a 

population of long-lived memory TCM cells. Second, maintenance through γc-dependent 

homeostatic mechanisms is hampered by the decreased expression of the γc-dependent 

cytokine receptors and the increased resistance to their signals. Therefore, memory 

CD8 T cells require persistent antigenic stimulation for their maintenance (Wherry, 

Barber et al. 2004; Shin, Blackburn et al. 2007).  

 

The mechanisms underlying the acquisition of such exhausted phenotype are 

still unresolved, however recent studies have shed a new light on the field. The absence 

of CD4 help or co-stimulatory signals (CD28, CD40L or 4-1BB) was shown to aggravate 

the impact of chronic antigenic stimulation on memory generation (Fuller, Khanolkar et 

al. 2004; Fuse, Zhang et al. 2008). Interestingly, CD4-derived IL-21 was recently 

suggested to be essential for the control of chronic infections (Elsaesser, Sauer et al. 

2009; Yi, Du et al. 2009). IL-21-/- or IL-21R-/- mice present considerable and rapid 

functional exhaustion upon infection with LCMV clone 13 and are unable to clear the 

viral infection. Likewise, IL-21 treatment of chronically infected CD4-/- mice rescues the 

functionality of the CD8 T cell pool and increases viral clearance. Besides the role of 

IL-21, the heightened inflammatory milieu present in the context of chronic infection 

might also negatively influence the differentiation of the CD8 memory T cell pool, 

since inflammation hinders the acquisition of memory functions. Finally, a recent study 

demonstrated that Blimp-1, a transcriptional repressor, is overexpressed in virus-

specific CD8 T cells in the context of chronic infections (Shin, Blackburn et al. 2009). 

High levels of Blimp-1 are correlated with increased expression of inhibitory receptors 

and decreased viral clearance. Thus, Blimp-1 appears to be one of the transcription 

factors involved in the regulation of exhausted CD8 T cells. 

 

E. Transcription factors and lineage choice 

 

Identification of key proteins and transcription factors involved in the transition 

from an effector to a memory cell has been the focus of major attention. Studies 

evaluating naïve, effector and memory cell populations have revealed major changes in 

the gene expression profile through differentiation. Thus, CD8 memory cells have a 

unique gene-expression profile and, as we discussed, unique functions (Kaech, Hemby 

et al. 2002). Several transcription factors have been shown to influence the 

differentiation of CD8 T cells, and its transition from effector to memory cell. In fact, 

some transcription factors influence the lineage choice of a cell and promote the 
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development of either terminally differentiated SLECs and TEM or less differentiated, 

long-lived MPECs and TCM.  

 

T-bet and its sister eomesodermin are the prototypic transcription factors 

involved in these cell-fate decisions. The T-box transcription factor T-bet, encoded by 

tbx21, was initially described for its role in Th1 differentiation. Conversely, 

eomesodermin, its sister encoded by eomes, is expressed specifically by activated CD8 

T cells, but not by CD4 T cells. Both of them regulate the expression of genes encoding 

perforin, granzyme B and IFNγ, and thus are involved in CD8-mediated cytotoxicity 

and viral clearance (Pearce, Mullen et al. 2003; Sullivan, Juedes et al. 2003). 

Interestingly, CD8 effector differentiation was recently shown to occur in two distinct 

phases in vitro, with an early induction of T-bet and a late induction of eomesodermin, 

thus complementing each other (Cruz-Guilloty, Pipkin et al. 2009). Besides their role in 

the acquisition of potent effector functions, T-bet and eomesodermin are essential for 

the expression of the IL2Rβ chain on memory CD8 T cells and thus their response to IL-

15 (Intlekofer, Takemoto et al. 2005). Hence, compound deficiency in both of these 

transcription factors leads to near complete loss of memory CD8 T cells. Recent studies 

have also revealed that T-bet promotes the development of SLECs over MPECs (Joshi, 

Cui et al. 2007). In fact, inflammatory signals induce the expression of T-bet, which in 

turn enhance KLRG1high CD127low SLECs. Interestingly, KLRG1 expression in NK cells is 

dependent on T-bet (Robbins, Tessmer et al. 2005). As expected, T-bet-/- mice are 

incapable of generating a KLRG1high CD127low SLEC population. T-bet also represses the 

expression of CD127 on CD8 T cells, thus diverting the differentiation further away 

from TCM generation (Intlekofer, Takemoto et al. 2007). In fact, high levels of T-bet are 

present in both SLECs and TEM cells, while eomes levels do not vary between subtypes 

of effector and memory cells, but increase with time (Intlekofer, Takemoto et al. 2007). 

Thus, T-bet deficiency, while preventing the development of TEM, promotes the 

generation of potent and protective TCM.  

 

The regulation of these two transcription factors is complex and influenced by 

multiple inflammatory (IL-12, IFNγ) and γc-dependent (IL-4, IL-15, IL-21) cytokines, as 

well as TCR and co-stimulatory signals. Thus, priming and stimulatory signals might 

influence the outcome of a cell through the regulation of these two transcription 

factors. However, the impact of those cytokines is complex since some of them might 

have divergent actions. Hence, IL-12 promotes the expression of T-bet but 

downregulates the expression of eomesodermin (Takemoto, Intlekofer et al. 2006). 

Likewise, IL-21 represses the expression of eomesodermin while inducing the 
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expression of T-bet (Strengell, Sareneva et al. 2002; Suto, Wurster et al. 2006). Thus, 

understanding the delicate balance involved in the regulation of these transcription 

factors will enable us to influence the generation of potent effector cells and long-

lasting immunity. 

 

A second group of transcription factors involved in the differentiation and cell-

fate decisions of CD8 T cells is Blimp-1, and its target Bcl-6. Blimp-1 was initially 

described for its crucial role in the differentiation and maintenance of B cells in mature 

plasma cells. Encoded by the gene prdm1, it represses transcription through 

modification of the chromatin structure. Besides its role in CD8 T cell homeostasis, 

Blimp-1 is a strong repressor of IL-2 gene transcription (Kallies, Hawkins et al. 2006; 

Martins, Cimmino et al. 2006). Actually, Blimp-1 itself is induced by IL-2 during the 

initiation of the immune response and appears to be essential for the contraction phase. 

Like T-bet, Blimp-1 is expressed in KLRG1high CD127low SLECs and TEM (Intlekofer, 

Takemoto et al. 2007; Rutishauser, Martins et al. 2009). Interestingly, three recent 

studies have demonstrated that Blimp-1 is crucial for the lineage choice towards 

terminally differentiated SLECs and their ensuing effector memory cells (Kallies, Xin et 

al. 2009; Rutishauser, Martins et al. 2009; Shin, Blackburn et al. 2009). In fact, CD8 T 

cells from Blimp-1 deficient mice infected with LCMV or influenza virus fail to 

differentiate into SLECs. They display a defect in the granule exocytosis target-cell 

killing pathway, through downregulation of perforin and granzyme B, thus suggesting 

that Blimp-1 is crucial for the acquisition of cytotoxic functions. Moreover, Blimp-1-/- 

CD8 T cells present a migration defect with increased expression of CCR7 and 

decreased expression of CCR5 and thus inability to home to peripherally infected 

tissues. As for T-bet, Blimp-1 differentiates CD8 T cells towards effector cell and away 

from memory cell generation. Interestingly, its suppression promotes the expression of 

eomesodermin and Bcl-6, which are both associated with memory cell development. 

However, Blimp-1 is essential for the secondary expansion of memory CD8 T cells 

following viral challenge. In fact, although Blimp-1-/- cells are present in higher 

numbers and exhibit a central memory phenotype, they are unable to expand upon 

rechallenge. Thus, Blimp-1 shares some properties with T-bet for the differentiation of 

SLECs but has a distinct role in the generation of secondary immune responses.  

 

Conversely, Bcl-6, another transcription repressor essential for the formation of 

memory B cells, is essential for the generation and maintenance of CD8 memory cells, 

especially TCM. Transgenic expression of Bcl-6 increases the number of memory cells 

and TCM upon viral infection, while Bcl-6 deficiency decreases their number (Ichii, 
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Sakamoto et al. 2004). Furthermore, Bcl-6 promotes the secondary expansion of the TCM 

population upon rechallenge. Since Bcl-6 was recently shown to downregulate the 

expression of granzyme B, and is suppressed by Blimp-1, it is likely to be involved in 

the lineage choices of a CD8 T cell, away from effector differentiation and towards 

memory generation (Yoshida, Sakamoto et al. 2006). 

 

F. Memory T cell maintenance and γ c-dependent cytokines 

 

The stable maintenance of the memory CD8 T cell pool depends on the 

longevity and the intermittent turnover of the cells surviving the contraction phase. 

Although the survival of memory cells was once thought to require contact with the 

priming antigen, it is now clear that both the survival and basal proliferation of antigen-

experienced memory CD8 T cells is MHC, antigen and TCR-independent (Lau, 

Jamieson et al. 1994; Mullbacher 1994; Tanchot, Lemonnier et al. 1997; Murali-

Krishna, Lau et al. 1999; Leignadier, Hardy et al. 2008). In accordance with the 

elevated expression of CD122 and CD127 on a majority of memory CD8 T cells, it was 

demonstrated that, in fact, memory CD8 T cell homeostasis in lymphoreplete 

environment relies on two γc-dependent cytokines, IL-15 and IL-7. 

 

IL-15 is essential for the slow basal turnover of memory CD8 T cells. IL-15-/- and 

IL15Rα-/- mice lack the naturally occurring CD122high memory cells generated upon 

encounter with self-antigens (Lodolce, Boone et al. 1998; Kennedy, Glaccum et al. 

2000). Transfer of those cells in an IL-15-deficient environment prevents basal 

proliferation and leads to rapid death of the transferred cells (Goldrath, Sivakumar et al. 

2002; Judge, Zhang et al. 2002). Furthermore, IL-15 transgenic mice are found to have 

elevated numbers of CD122high CD8 memory T cells (Fehniger, Suzuki et al. 2001). This 

dependency on IL-15 for basal proliferation was further confirmed for real antigen-

specific memory CD8 T cells. Memory CD8 T cells generated after infection with 

LCMV, VSV or vaccinia virus in IL-15-/- mice fail to homeostatically proliferate and thus 

disappear gradually (Becker, Wherry et al. 2002; Goldrath, Sivakumar et al. 2002; 

Schluns, Williams et al. 2002). Furthermore, transfer of wild-type antigen-specific 

memory cells in an IL-15-deficient environment precludes basal proliferation and 

longevity of the cells. Besides its significant role in the intermittent turnover of the 

memory CD8 T cell pool, IL-15 may also support their survival by upregulating the 

anti-apoptotic molecule Bcl-2 (Wu, Lee et al. 2002; Berard, Brandt et al. 2003).  
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IL-7 is a key player in the homeostasis of CD8 memory T cells by supporting 

their survival, through upregulation of Bcl-2, as it does for naïve CD8 T cells (Schluns, 

Kieper et al. 2000). Its action on basal turnover is minimal since increased transgenic 

overexpression of IL-7, even in the context of IL-15 deficiency, increases significantly 

the number of CD122high memory cells but not their basal proliferation, as determined 

by Brdu labelling (Kieper, Tan et al. 2002). The crucial role for IL-7 was recently 

confirmed by the analysis of IL7R mutant mice, in which the signal transduction 

through the receptor and Stat5 was abolished (Carrio, Rolle et al. 2007; Osborne, 

Dhanji et al. 2007). Those mice are able to generate CD8 memory T cells upon 

infection; however, even in presence of IL-15, the memory cells disappear slowly. 

Overexpression of Bcl-2 rescues the slow death of these memory cells, thus confirming 

that IL-7 is essential for the survival of CD8 memory T cells (Carrio, Rolle et al. 2007). 

Interestingly, the IL-7-dependency for long-term survival is more pronounced for cells 

primed by infectious agents than by a combination of antigen plus adjuvant (Burkett, 

Koka et al. 2003). In fact, memory cells generated upon infection can survive for 

extended periods in the absence of IL-15 by relying on IL-7. Nonetheless, these 

memory cells will ultimately disappear when deprived of IL-15-dependent homeostatic 

proliferation (Becker, Wherry et al. 2002; Goldrath, Sivakumar et al. 2002; Schluns, 

Williams et al. 2002). Thus, in the context of antigen-driven memory homeostasis, 

memory CD8 T cells primarily rely on IL-15 for their slow turnover and on IL-7 for their 

long-term survival. 

 

The role for IL-2 in CD8 memory T cell homeostasis is minimal. In fact, it is 

believed that the availability of IL-2 is probably too low to be physiologically relevant 

for the long-term maintenance of memory T cells. However, by ligation to the IL2Rβγ 
complex, IL-2 has been shown to compensate for the absence of IL-15 in IL15-/- mice, 

when given in supra-physiologic quantities. In fact, anti-IL-2 antibodies enhance the 

biological action of IL-2 and promote the basal proliferation of the CD122high memory 

CD8 population (Kamimura, Ueda et al. 2004; Boyman, Kovar et al. 2006). However, a 

clear role for IL-2 in the maintenance of antigen-dependent memory CD8 T cells 

remains to be proven. 

 

 Homeostatic mechanisms must be tightly regulated since maintenance of 

homeostasis requires to accommodate for the survival of the memory T cell pool and 

their slow turnover. In fact, it appears that the overall size of the memory T cell pool 

remains relatively constant over extended periods of time (Freitas and Rocha 2000). 

Thus, apoptotic mechanisms must be involved to regulate the size of the memory T cell 



 52 

pool. As stated before, survival of the memory CD8 T cells depends primarily on high 

levels of Bcl-2, in response to γc-dependent signals. Bcl-XL and Mcl-1 transcripts are 

also highly elevated in CD8 memory T cells. Apoptosis of some of the memory cells 

relies on the pro-apoptotic molecule Bim, as exemplified by the restoration of 

peripheral T cell homeostasis after infection in IL-7-deficient environment in the 

absence of Bim (Pellegrini, Bouillet et al. 2004). The balance between these two 

molecules will thus be determinant to keep constant the size of the CD8 memory T cell 

pool (Wojciechowski, Jordan et al. 2006; Wojciechowski, Tripathi et al. 2007). The 

stability in the total number of memory cells suggests also that influx of newly 

generated memory T cells would be accommodated by the reciprocal death of pre-

existing ones (Selin, Lin et al. 1999). However, recent data challenged this notion and 

proposed that in fact the memory T cell pool increases after each encounter, principally 

by the augmentation of TEM cells and their localisation in non-lymphoid tissues (Vezys, 

Yates et al. 2009). This would be more compatible with the idea that vaccinations to 

multiple pathogens would protect the host and would not harm him by reducing prior 

immunity. Although the mechanisms allowing for the accommodation of new incomers 

are not known, it is possible that time might change the sensitivity to γc-dependent 

cytokines, and thus might regulate the survival and turnover of the diverse memory T 

cell clones.  
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I. γ c-dependent cytokines provide Bcl-2-dependent and             

Bcl-2-independent homeostatic signals to naive CD8 T cells 

 
 

Complementary results to Article 1:  

γc cytokines provide multiple homeostatic signals to naïve CD4 T cells. Masse GX*, 

Corcuff E*, Decaluwe H, Bommhardt U, Lantz O, Buer J, Di Santo JP. Eur J Immunol 

2007, 37: 1-11. (*authors contributed equally) 

 

 

  Cytokines signalling through receptors sharing the γc chain, especially IL-7, are 

critical for the development and peripheral homeostasis of naïve T cells. Furthermore, 

IL-2, -7, -15 and -21 are pleiotropic factors that can play complimentary or overlapping 

roles in T cell homeostasis and immune responses to infection. However, identification 

of their precise function during an anti-viral immune response has been challenging. In 

fact, the study of mice defective in all γc-dependent pathways has been complicated by 

the development of severe autoimmunity secondary to the absence of regulatory T cells 

(Malek and Bayer 2004). Furthermore, the IL-7-dependent survival defect of γc
-/- cells 

has hampered the understanding of its role during the differentiation of CD8 T cells. Its 

downstream effect on Bcl-2 is crucial for the development and homeostasis of both γc
-/- 

and IL7Rα-/- T cells since Bcl-2 overexpression increases the peripheral T cell numbers 

in both mice (Akashi, Kondo et al. 1997; Kondo, Akashi et al. 1997; Maraskovsky, 

O'Reilly et al. 1997). Indeed, γc deficiency affects not only the survival of naïve T cells 

but also the function of regulatory T cells, and non transgenic γc
-/- mice ultimately 

develop an autoimmune syndrome secondary to TCR reactivity to environmental 

antigens (Nakajima, Shores et al. 1997; Sharara, Andersson et al. 1997; Suzuki, Zhou et 

al. 1999). This autoimmunity severely limits the use of γc-deficient mice for assessing T 

cell immunity. In contrast, certain TCR transgenic mice on the recombination-activating 

gene (Rag) 2 deficient background harbor monoclonal populations of naïve γc
-/- T cells 

that have little environmental cross-reactivity (Lantz, Grandjean et al. 2000).  

 

This approach allowed us to demonstrate that γc
-/- (and IL-7Rα-/-) CD4 T cells 

failed to accumulate in peripheral lymphoid organs and that this defect was associated 

with enhanced apoptosis (see Article 1 in Annexe). Over-expression of the human Bcl-

2 rescued the γc deficient T cells, by promoting IL-7-independent survival of the cells. 

However, the generated γc
-/- naïve CD4 T cells remained small in size and had a 
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persistent decrease in the expression of MHC class I and ribosomal proteins. This 

homeostatic defect could not be corrected by the addition of activated protein kinase B, 

suspected to be involved in the metabolism and survival of naïve T cells. Despite these 

homeostatic defects, γc
-/- CD4 T cells were able to expand and proliferate in response to 

specific antigens in vitro. Thus, these results suggest that γc cytokines provide Bcl-2- 

dependent and -independent signals to maintain the phenotype and homeostasis of the 

peripheral naïve CD4 T cell pool.  

 

To follow-up on this study, we investigated the impact of γc deficiency on the 

biology of naïve CD8 T cells, bearing in mind that the generation of a γc
-/- naïve CD8 T 

cell pool would provide us with means to study the roles for γc cytokines in anti-viral 

CD8 immune responses. Since the P14 mice model is the basis of this scientific work 

and is used throughout this thesis, it will be the only transgenic model presented here. 

However, the following results were also confirmed in another CD8 TCR transgenic 

mice model (Mata-Hari mice) and in a second CD4 model (OT2 mice). 

 

P14 mice develop naïve CD8 αβ T cells specific for the envelope glycoprotein 

33-41 (GP33-41) of the lymphocytic choriomeningitis virus (LCMV) in the context of H-

2Db. In order to study the impact of γc deficiency on CD8 T cell homeostasis, we 

generated Rag2-/- γc
-/- P14 mice (P14 γc

-/-). In the absence of γc, P14 CD8 SP T cells are 

hardly selected in the thymus and fail to accumulate in peripheral lymphoid organs 

(Figure 15A-C). These scarce peripheral γc
-/- CD8 T cells are reduced by 85-fold but 

display a naive profile (data not shown). Moreover, they present a small size and 

reduced expression of MHC class I protein along with markedly reduced Bcl-2 levels, 

suggesting a survival defect (Figure 15B). We thus decided to rescue the naive γc-

deficient CD8 T cell compartment, by enforcing the expression of the human Bcl-2 

transgene in T cells. As described for CD4 T cells, Bcl-2 corrected the peripheral T cell 

defect in these mice, generating normal numbers of splenic monoclonal CD8 T cells. 

Yet, consistent with the inability of Bcl-2 to correct the DN2 block in the early 

development of γc
-/- thymocytes, the number of total and CD8 SP thymocytes stayed 

below normal (by 6-fold and 3-fold respectively) (Figure 15A-C). Cell surface 

expression markers were not modified by Bcl-2 overexpression, and the peripheral P14 

Bcl-2 γc
-/- CD8 T cells conserved a naïve phenotype (Figure 15D). They however 

remained small in size and expressed slightly lower levels of MHC class I, confirming 

the requirements for γc-dependent but Bcl-2-independent signals in some aspects of 

CD8 T cell homeostasis.  
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Thus, it appears that CD4 and CD8 naïve T cells rely on the same cytokine-

dependent signals for their peripheral homeostasis. Furthermore, Bcl-2 overexpression 

rescues both compartments but does not correct the defects in size and protein 

synthesis seen in the context of γc deficiency. Finally, this transgenic approach allows 

us to generate a consistent population of naïve monoclonal γc
-/- CD8 T cells that can be 

used to dissect the importance of γc signals in anti-viral immunity.  
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II. γ c deficiency prevents CD8 T cell memory formation despite 

potent effector T cell development and function 

 
 

Article 2:  

γc deficiency precludes CD8 T cell memory despite formation of potent T cell effectors. 

Decaluwe H, Taillardet M, Corcuff E, Munitic I, Law HKW, Rocha B, Rivière Y, Di 

Santo JP. Submitted to Proceedings of the National Academy of Sciences.  

 
 

The P14 Bcl-2 γc
-/- model generated in the previous section is thus the ideal tool 

to study the role of γc-dependent cytokines on CD8 T cells throughout its differentiation 

program. In fact, studies on the isolated contribution of some of these cytokines during 

an anti-viral immune response have suggested a potential role for γc cytokines in the 

differentiation of CD8 T cells, during acute and/or chronic infections. Moreover, 

effector γc
-/- CD4 T cells are severely hampered in their capacity to reject skin grafts, 

thus indicating that γc signals might be indispensable to the generation of potent 

cytotoxic functions (Masse, Corcuff et al. 2007). Finally, IL-7 and IL-15 were both 

shown to be essential for the long-term survival and basal proliferation of the memory 

CD8 T cell pool, through Bcl-2-dependent and -independent signals. Despite these 

results, the exact contribution of the γc-dependent cytokines in the differentiation of 

CD8 T cells remains disputed. Indeed, these cytokines are highly redundant, which 

might conceal the fundamental role for γc cytokines in the generation of effector and 

memory CD8 T cells. Moreover, it is unclear at which step of the differentiation process 

these cytokines impact and what is their importance on the cell-fate decision towards 

terminal differentiation versus memory generation.  

 

In this study, we attempted to dissect the contribution of γc-dependent cytokines 

at each phase of an anti-viral immune response (see Article 2 in Annexe). Furthermore, 

because we had artificially corrected the γc-dependent survival defect of γc
-/- T cells with 

the anti-apoptotic molecule Bcl-2, we assumed that this approach would allow us to 

analyse the impact of γc signalling on the generation and function of memory CD8 T 

cells.  We thus adoptively transferred P14 Bcl-2 γc-competent or γc-deficient CD8 T 

cells into naive wild type (WT) recipients and infected them with the Armstrong strain 

of LCMV (see Figure 16 for experimental design). In contrast to what was expected, we 
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found that many aspects of the antigen-driven CD8 T cell primary immune response 

proceeded normally in the absence of γc, including the initial clonal expansion and the 

classical phenotypic changes associated with activation. Moreover, γc
-/- CD8 T cells 

were potent killers, despite decreased levels of granzyme B. Nevertheless, γc-dependent 

signals were necessary for the transition from effector to memory cell, affecting the 

differentiation and late proliferation of KLRG1high CD127low short-lived effector cells 

(SLEC). Furthermore, despite the presence of Bcl-2+ KLRG1low CD127high long-lived 

memory precursors (MPEC), γc signals were essential for the generation of memory 

cells. Together, our results define the critical stages for γc cytokines in the programming 

of terminal effector CD8 T cells and in the Bcl-2-independent survival and homeostatic 

proliferation of memory CD8 T cells. 



 59 

III. IL-2 and IL-15 are dispensable for primary and secondary 

CD8 T cell immune responses  

 

 

Supplementary results:  

IL2Rβ signals promote CD8 T cell memory formation but are dispensable for potent 

primary and secondary immune responses. Ongoing experiments, manuscript in 

preparation. 

 

 

 Since each γc-dependent cytokine has distinct and redundant roles in the 

differentiation of CD8 T cells, we were tempted to analyze the impact of IL2Rβ 

deficiency on the primary and secondary immune responses to viral infection. The 

IL2Rβ chain, like the γc chain, is shared by both IL-2 and IL-15 cytokines, and forms 

with it an intermediate affinity receptor. The high affinity receptor is heterotrimeric and 

gives its cytokine specificity by the ligation with its third subunit, being the IL2Rα chain 

(CD25) for IL-2 and the IL15Rα chain for IL-15. Despite these common cytokine 

receptor subunits and downstream signalling molecules, IL-2 and IL-15 have unique 

functions, the most important of them being the absolute requirement for IL-2 signals in 

the maintenance of regulatory T cells and the essential role for IL-15 signals in the basal 

proliferation of memory CD8 T cells. Even though the independent role for IL-2 and IL-

15 appears to be minimal in the differentiation of CD8 T cells, it is likely that the 

combined contribution of these two cytokines influence the expansion and cytotoxic 

functions of effector CD8 T cells. Furthermore, in the CD4-mediated model of graft 

rejection, the combined effect of IL-2 and IL-15 deficiency was more pronounced than 

the isolated impact of each of them. Lastly, the presence of IL-7 signals in the IL2Rβ-/- 

mice, as opposed to the γc
-/- mice, might allow us to dissect the role for these two γc 

cytokines in the function of memory CD8 T cells, which we were not able to do in the 

previous model.  

 

 Thus, we adoptively transferred P14 IL2Rβ-competent and deficient CD8 T cells 

in naïve WT mice and infected them with LCMV Armstrong. Although IL2Rβ+/- and 

IL2Rβ-/- cells proliferated initially with the same kinetics, the peak of expansion was 

significantly reduced in IL2Rβ-/- CD8 T cells (32 X 106 versus 9 X 106 antigen-specific 

cells respectively, p<0.0001) (Fig 17A). Interestingly, the cell surface expression of 
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numerous activation markers was similar in both subsets, although differences were 

noted in terms of KLRG1, CD27, CD62L, CD127 and granzyme B expression, as seen 

in P14 γc
-/- cells (Fig 17B and data not shown). A preferential accumulation of KLRG1low 

CD127high MPECs over KLRG1high CD127low SLECs is seen in IL2Rβ-deficient mice and 

the granzyme B defect is once again restricted to the KLRG1low cells (Fig 17C). 

Moreover, cytokine production was evaluated by intracellular cytokine staining and 

similar proportions of IL2Rβ-/- CD8 effector T cells produced IFNγ or TNFα following in 

vitro restimulation as their IL2Rβ+/- counterparts, although 2-fold more IL2Rβ-/- cells 

secreted IL-2 (Fig 17D). We next evaluated the in vivo killing capacity of IL2Rβ-/- CD8 T 

cells in perforin-deficient (Pfp-/-) chimeric mice. Despite the granzyme B defect, IL2Rβ-/- 

CD8 T cells were as potent killers as their IL2Rβ+/- counterparts (Fig 17E). Finally, to 

refine the evaluation of the effector function, we assessed if IL2Rβ-/- P14 T cells could 

prevent LCMV-induced hemophagocytic lymphohistiocytosis syndrome in Pfp-/- hosts. 

Pfp-/- recipients receiving either IL2Rβ+/- or IL2Rβ-/- CD8 T cells survived equally well 

through the period following LCMV infection and remained healthy, without 

developing any signs of the disease (Fig 17F and data not shown). Together, our data 

indicate that IL2Rβ signals condition the expansion and differentiation of KLRG1high 

CD127low SLEC but are dispensable for adequate effector functions, despite reduction in 

the granzyme B levels.  

 

In order to evaluate if the abnormal differentiation of IL2Rβ-/- CD8 T cells had an 

impact on the development of memory T cells, we studied LCMV-infected chimeric 

mice more than 90 days after infection. This time, IL2Rβ-/- CD8 T cells were maintained 

after the contraction phase, for more than five months post infection. However, they 

were present in significantly lower proportions than their IL2Rβ+/- counterparts, with 

0.5% of the blood CD8 T cells being IL2Rβ-/- compared to 6.5% IL2Rβ+/- cells 

(p<0.0001) (Fig 18A). At day 90 post infection, the spleen and bone marrow were 

similarly diminished in the numbers of memory IL2Rβ-/- CD8 T cells (Fig 18B).  

 

To evaluate the functional capacity of these memory T cells, we reinfected the 

mice with the same dose of LCMV Armstrong. To our surprise, the P14 IL2Rβ-/- memory 

CD8 T cells were able to expand after reinfection, even though their proliferation was 

slightly diminished (Fig 19A). Interestingly, all of the IL2Rβ-/- memory CD8 T cells were 

KLRG1low CD127high CD62Lhigh prior to infection and few of them were able to increase 

their KLRG1 expression upon reinfection (Fig 19B). Functionally, the majority of 

secondary CD8 effector T cells were potent producers of IFNγ and TNFα, with or 
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without the IL2Rβ chain, with two-fold more IL2Rβ-/- cells being triple producers (IFNγ+ 

TNFα+ IL-2+ cells; p=0.02) (Fig 18C-E). Together, these results reveal an essential role 

for IL-2 and IL-15 cytokines in the generation of sufficient numbers of CD8 memory T 

cells, but appear to be in part dispensable for the expansion and acquisition of 

secondary effector characteristics. Future experiments will confirm if cytotoxic 

functions are preserved in IL2Rβ-/- memory CD8 T cells.  
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IV. Epitope specificity and relative clonal abundance do not 

affect CD8 T cell differentiation patterns during LCMV infection 

 
 
Article 3:  

Epitope specificity and relative clonal abundance do not affect CD8 T cell 

differentiation patterns during lymphocytic choriomeningitis virus infection. Munitic I*, 

Decaluwe H*, Evaristo C, Lemos S, Wlodarczyk M, Worth A, Le Bon A, Slin LK, Rivière 

Y, Di Santo JP, Borrow P, Rocha B. J Virol 2009, 83: 11795-11807. (*authors 

contributed equally)  

 

 

 All of the experiments presented above were done by adoptive transfer of 105 

TCR transgenic CD8 T cells (specific for a dominant epitope of LCMV) in naïve WT 

recipients, followed by infection. However, controversies exist regarding this approach, 

since recent reports have suggested that transfer of high number of cells would alter the 

differentiation process. In fact, the precursor frequency for the GP33-41 epitope is in the 

order of 100-200 cells per spleen in a naïve WT mouse, while the precursor frequency 

after adoptive transfer is considered to be around 10% of the number of transferred 

cells (thus 50-100-fold more than WT precursor frequency in our case) (Blattman, Antia 

et al. 2002). Marzo et al proposed that high precursor frequencies would favor the 

rapid acquisition of TCM phenotype and that only low precursor frequency would mimic 

the endogenous response (Marzo, Klonowski et al. 2005). Badovinac et al further 

insisted on the fact that changes in precursor frequency will influence the kinetic of 

expansion and the cell surface expression of activation and cytotoxic markers, while 

not affecting the peak number of effector cells or the extent of contraction (Badovinac, 

Haring et al. 2007). Despite these findings, it remains unclear if differences attributed to 

high precursor frequencies reflect changes in the differentiation pathways, as suggested, 

or if they were only a consequence of altered kinetics of differentiation. Thus, we were 

interested in evaluating the differentiation pattern of endogenous or transgenic CD8 T 

cells upon LCMV infection. We also assessed the different endogenous populations 

stimulated by LCMV, since some clones respond to dominant epitopes, while other to 

sub-dominant epitopes, creating a hierarchy in the response. 
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 In this study, we evaluated the differentiation profile of endogenous CD8 T cells 

specific for two dominant epitopes and one sub-dominant epitope of LCMV, along with 

TCR transgenic T cells transferred in low-dose or high-dose numbers, at effector and 

memory time points (see Article 3 in Annexe). To increase functional discrimination, 

we assessed the differentiation process with a sensitive single-cell multiplex RT-PCR 

method, allowing for the screening of all CD8 effector genes simultaneously in single 

cells (Peixoto, Monteiro et al. 2004). Surprisingly, endogenous CD8 T cells with 

different epitope specificities exhibited similar differentiation patterns at day 4.5, 8 and 

60. Furthermore, when comparing the endogenous and transgenic response to the same 

epitope in the same mice, the expression profile of effector genes was similar. The 

presence of GP33-41 transgenic cells decreased the expansion of the GP33-41-specific 

endogenous compartment, but did not alter the response to the other epitopes, nor the 

immunodominance hierarchy in the memory phase. Finally, we proposed that transfer 

of TCR transgenic cells with distinct congenic markers might be an essential tool since 

TCR downregulation is major at the early stages of the response and may hamper the 

detection of antigen-specific CD8 T cells. Altogether, our results demonstrate that 

distinct epitope specificity and precursor frequency do not affect the differentiation 

pattern of effector and memory CD8 T cells. 
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DDISCUSSIONISCUSSION  
 



 65 

 γc-dependent cytokines have multiple and diverse roles in immunity and are an 

essential component of the adaptive immune response to infections. While they are 

central to the development of mature T cells in the thymus, γc cytokines also influence 

T cell survival and homeostasis in the periphery (Ma, Koka et al. 2006; Surh and Sprent 

2008; Takada and Jameson 2009). Furthermore, IL-2, IL-7, IL-15 and IL-21 modify the T 

cell differentiation process upon infection and potentiate the generation and 

maintenance of memory T cells (Schluns and Lefrancois 2003; Rochman, Spolski et al. 

2009). A significant amount of literature has revealed overlapping roles for γc cytokines 

at different phases of an immune response. However, controversies remain on the 

absolute requirements for such cytokines during the expansion and differentiation 

stages of the response. The high level of redundancy in their functions might further 

eclipse their important role in T cell immunity. Moreover, distinct cytotoxic T cells 

(CD4 TH1 cells, CD8 T cells) might differ in their response to γc cytokines, since the 

requirements for γc-dependent signals in CD4 and CD8 memory T cell homeostasis vary 

(Surh and Sprent 2008; Takada and Jameson 2009). In this last section, we will discuss 

the importance of γc signals for the homeostasis and immune response of CD8 T cells 

and highlight some particular situations in which the influence of these cytokines might 

be altered.  

 

I. Naïve T cell homeostasis 

In order to avoid the possible redundancy of γc signals in the homeostasis and 

immune response to infection, we chose to work with a model in which all γc signals 

would be abrogated. The γc
-/- mouse is thus the best model, but the lack of regulatory T 

cells and subsequent autoimmunity hamper their use in experimental studies (Malek 

and Bayer 2004; Setoguchi, Hori et al. 2005). However, by crossing a γc
-/- mouse with a 

Rag2-/- TCR transgenic mouse, such autoimmunity can be prevented (Lantz, Grandjean 

et al. 2000). Interestingly, our models of γc deficiency (Rag2-/- P14 γc
-/- and Rag2-/- Ml γc

-/- 

mice) confirm an essential and indispensable role for γc cytokines in T cell homeostasis. 

As such, we showed that γc cytokines are of central importance for the survival of naïve 

CD8 and CD4 T cells, through the maintenance of the anti-apoptotic molecule Bcl-2. 

Over-expression of Bcl-2 increases the number of mature γc
-/- T cells to near normal 

numbers and allows for the generation of a stable and consistent naïve γc
-/- T cell pool. 

This Bcl-2 rescue is consistent with previous studies reporting that Bcl-2 overexpression 

partly restores the number of peripheral T cells in IL-7Rα and γc deficient mice 

respectively (Akashi, Kondo et al. 1997; Kondo, Akashi et al. 1997; Maraskovsky, 
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O'Reilly et al. 1997). Furthermore, as demonstrated by others (Schluns, Kieper et al. 

2000; Tan, Dudl et al. 2001), IL-7 appears to be the principal soluble factor involved in 

this process. Indeed, Rag2-/- IL2Rβ-/- P14 or Ml mice possess the same number of 

peripheral naïve CD8 or CD4 T cells as their IL2Rβ+/+ counterparts, while Rag2-/- IL7Rα-/- 

Ml mice present a significant reduction in the number of peripheral CD4 T cells. Even 

though the contribution of other γc-dependent cytokines, such as IL-4, IL-9 and IL-21, 

cannot be formerly excluded, their importance in peripheral T cell survival appears 

limited (Surh and Sprent 2008; Takada and Jameson 2009). 

Interestingly, our studies reveal a distinct need for γc-dependent signals in the 

peripheral homeostasis of naïve CD4 and CD8 T cells. In fact, the homeostatic 

requirements for γc cytokines appear to be more pronounced for naïve Ml CD4 T cells 

than they are for naïve P14 CD8 T cells. Without the γc chain, Ml CD4 cells are 

reduced by 100-fold in frequency and 250-fold in absolute numbers, while P14 CD8 T 

cells are reduced by 65-fold in frequency and 85-fold in absolute numbers. 

Furthermore, the restoration of the naïve γc
-/- T cell pool upon Bcl-2 overexpression is 

partial in the Ml CD4 γc
-/- model while it is complete in the P14 CD8 γc

-/- model. Thus, 

CD4 T cells might be more sensitive to cytokine deprivation than CD8 T cells. This 

increased sensitivity to death could be secondary to the altered expression of anti- and 

pro-apoptotic molecules in the absence of γc signals thus tipping the balance away from 

survival and towards cell death (Figure 3). Interestingly, preliminary studies in the lab 

propose that Ml γc
-/- and Ml Bcl-2 γc

-/- splenocytes express higher levels of activated Bax 

compared to their γc
+/+ counterparts (Masse et al., unpublished). In contrast, 

transcriptional analysis of the Bcl-2-related and BH3-only molecules did not reveal a 

significant difference between P14 Bcl-2 γc
+/+ and γc

-/- splenocytes (data not shown). The 

lack of such analysis in the Ml CD4 model prevents us to draw firm conclusions, but 

the differential expression of pro- and anti-apoptotic molecules in CD4 and CD8 γc
-/- T 

cells might explain the increased dependency of the CD4 T cells for γc signals. In this 

respect, CD4 T cells might require other IL-7-dependent signals for their survival. The 

IL-7 dependent anti-apoptotic molecule Mcl-1 could be a potential candidate 

(Opferman, Letai et al. 2003). 

Besides their importance in T cell survival, γc-dependent cytokines influence the 

homeostatic proliferation of the naïve T cell pool (Surh and Sprent 2008). The 

importance of homeostatic proliferation in these models stands from the fact that the 

TCR transgenic mice are generated on a Rag2-deficient background. Indeed, the 

absence of one T cell subtype increases the “sense of space” of the naïve transgenic 
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cells and the availability of growth factors (Freitas and Rocha 2000; Takada and 

Jameson 2009). Thus, the differences seen between the Ml CD4 γc
-/- model and the P14 

CD8 γc
-/- model might also be attributed to a distinct sensitivity to γc cytokines for naïve 

CD4 and CD8 T cell homeostatic proliferation. Since both basal and homeostatic 

proliferation rely on Bcl-2-independent IL-7 signals (Schluns, Kieper et al. 2000; Tan, 

Dudl et al. 2001), it is possible that the incomplete rescue of the Ml CD4 T pool is 

related to its decreased capacity for homeostatic proliferation in the absence of γc 

signals. This is consistent with the notion that overexpression of Bcl-2 is not sufficient to 

compensate for the inability of naïve T cells to undergo lymphopenia-induced 

proliferation in IL-7 deficient hosts (Tan, Dudl et al. 2001; Osborne, Dhanji et al. 

2007). Alternatively, the difference between the Ml CD4 and P14 CD8 model might be 

explained by the different TCR affinities of the cells, since homeostatic proliferation 

depends also on the intensity of TCR signalling (Ernst, Lee et al. 1999; Goldrath and 

Bevan 1999; Kieper, Burghardt et al. 2004; Hao, Legrand et al. 2006; Leitao, Freitas et 

al. 2009). It is thus possible that Ml CD4 T cells present an increased dependency for γc 

signals because of the weaker TCR affinity for their cognate peptide. This would be 

consistent with the observation that γc
-/- OT2 CD4 T cells and γc

-/- Mata-Hari CD8 T 

cells, which express very low affinity TCRs, are incompletely rescued by the Bcl-2 

transgene (data not shown). Thus, our results suggest that the TCR affinity defines the 

degree of reliance on IL-7 signals by setting the threshold required for γc-dependent 

homeostatic proliferation.  

 

II. Size and metabolism 

γc cytokines are also central for regulating the size and metabolism of the naïve T 

cell pool (Figure 3). In fact, γc signals are trophic factors and are essential for the 

metabolism and protein synthesis of both CD4 and CD8 T cells (Barata, Silva et al. 

2004; Cornish, Sinclair et al. 2006; Ostiguy, Allard et al. 2007). To maintain a resting 

and quiescent state, and sustain housekeeping functions, naïve T cells require a low but 

constant rate of energy metabolism (Fox, Hammerman et al. 2005). γc signals increase 

the capacity of the cell to take up extracellular nutrients to maintain its integrity. 

Interestingly, we showed that both CD4 and CD8 T cells are smaller in size, and 

express lower levels of MHC class I molecules at steady state, in the absence of γc 

signals. These are not cell-intrinsic defects since activation leads to potent cell growth 

(blasts) and increased protein synthesis. Moreover, overexpression of Bcl-2 does not 
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correct these anomalies, suggesting that Bcl-2-independent pathways are involved in 

the regulation of the size and metabolism of naïve T cells.  

In fact, signal transduction from γc-containing receptors not only involves the  

Jak-Stat pathway, but also the phosphoinositide-3-kinase (PI3K), the protein kinase B 

(PKB, also know as AKT), the mitogen activated protein (MAP) kinase and the src family 

kinase pathways, resulting in additional transcription factors activation (Figure 20). The 

PI3K-PKB pathway is particularly important for preventing naïve T cell atrophy (Barata, 

Silva et al. 2004). Thus, in the Ml CD4 model, we attempted to correct the survival and 

size defect by transgenic expression of activated PKB. Surprisingly, the increase in cell 

number was minimal and the size difference was unaffected. Thus, even though the 

PKB pathway does regulate pro-survival and pro-growth signals, the impact of this 

pathway on the regulation of CD4 T cell homeostasis appears to be minimal. It is likely 

that other γc-dependent pathways regulate the size and metabolism of naïve T cells. The 

trophic effects of IL-7 signals, downstream of PI3K, involve the activation of mTOR 

(mammalian target of rapamycin) and the sustained expression of GLUT1 (a glucose 

transporter) (Rathmell, Farkash et al. 2001; Wofford, Wieman et al. 2008). Could other 

γc-dependent molecules, aside from PKB, regulate the activation and expression of 

those proteins? Indeed, the oncogenic kinases PIM1 and PIM2, which are downstream 

of Stat5, appear to be essential for protein translation, glycolysis and uptake of 

extracellular nutrients during naïve T cell homeostasis (Fox, Hammerman et al. 2005; 

Hammerman, Fox et al. 2005). Finally, since γc
-/- T cells increase in size following 

activation, TCR and costimulatory signals most likely compensate for the lack of γc 

signals to allow for potent energy uptake during the expansion phase.  

 

III. Expansion 

Upon encounter with a pathogen, the naïve CD8 T cell embarks on a 

differentiation program leading to its activation, proliferation, differentiation, 

contraction and memory generation (Figure 4). Multiple parameters define the quality 

and extent of this immune response (Williams and Bevan 2007; Harty and Badovinac 

2008). The in vivo role for γc cytokines in the initial activation and expansion phase has 

been debated. Interestingly, upon infection with the Armstrong stain of LCMV, γc-

deficient P14 CD8 T cells proliferate and express the same levels of activation markers 

as their γc-competent counterparts, at least during the first five days. This confirms a 

surprising independence of all γc signals during the initial expansion phase of the 
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response. This initial autonomy from γc signals does not mean that such signals are not 

necessary for the fine tuning of the CD8 immune response. In fact, the presence of γc 

cytokine receptor subunits at the surface of the cell suggests a role for γc signals (Figure 

10). However, our results are consistent with the notion that CD8 T cell expansion is 

programmed upon a short encounter with the pathogen (Kaech and Ahmed 2001; van 

Stipdonk, Lemmens et al. 2001; van Stipdonk, Hardenberg et al. 2003).  

 

This in vivo independency from γc cytokines lasts 4-5 days, since clear 

differences appear thereafter. Thus, γc-deficient CD8 T cells proliferate less during the 

last days of the expansion phase, resulting in 10-times less cells at the peak of the 

response as compared to their γc-sufficient counterparts. This expansion anomaly is 

related to a diminished entry into cell cycle, but not to increased apoptosis. This is 

consistent with previous results showing that in vitro activated IL2Rβ-deficient cells 

express less p27kip1 and cyclin D3 as compared to IL2Rβ-competent cells (Malek, Yu et 

al. 2001).  

 

Which γc cytokines might be important for this late proliferative phase? IL-2 and 

IL-15 are likely the best candidates, since IL2Rβ-/- cells expand similarly to γc
-/- cells. 

This is consistent with previous reports demonstrating that IL-2 signals might be 

essential to sustain the proliferation of CD8 T cells (D'Souza, Schluns et al. 2002; 

D'Souza and Lefrancois 2003; Verdeil, Puthier et al. 2006). In the IL2Rα-/- model 

reported by Williams et al, the absence of IL-2 signalling decreased the peak expansion 

of P14 cells by 2-fold (Williams, Tyznik et al. 2006). An IL-2Rα-/- chimeric mice model 

suggested a 5-fold difference between IL2Rα-deficient and competent cells (Bachmann, 

Wolint et al. 2007). Thus, our results imply that, in addition to IL-2 signals, IL-15 signals 

are likely necessary for potent expansion of the CD8 T cell pool, even though the 

requirements for IL-15 at this precise phase of the response have been controversial in 

the literature. In fact, dominant and sub-dominant antigen-specific clones respond 

differently to antigenic challenge in the absence of IL15Rα signals. Interestingly, GP33-

41-specific CD8 T cells rely on IL-15 signals for their complete expansion (Becker, 

Wherry et al. 2002). Finally, although there are no clear statistical differences between 

the peak number of P14 γc
-/- and P14 IL2Rβ-/- effector T cells, the tendency for lower cell 

numbers at day 7 and 8 in the γc-deficient mice might suggest a role for IL-21 in the 

expansion of CD8 T cells, as proposed by others (Elsaesser, Sauer et al. 2009).  
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IV. Cytotoxic T cell differentiation 

Even though γc signals appear to be dispensable during the initial phase of the 

response to LCMV, they might influence the programming and differentiation potential 

of the cells. In fact, numerous papers have suggested a role for γc cytokines in the 

acquisition of cytotoxic functions (Schluns and Lefrancois 2003; Glimcher, Townsend 

et al. 2004; Waldmann 2006; Spolski and Leonard 2008). In particular, IL-2 and more 

globally Stat-5 signals promote the perforin and granzyme B-dependent cytotoxicity of 

CD8 T cells primed by partial agonists (Verdeil, Puthier et al. 2006). Furthermore, 

peptide-based vaccination strategies reveal a significant contribution of IL-15 signals for 

the acquisition of CD8 cytotoxic functions (Rubinstein, Kadima et al. 2002). Finally, in 

the Ml model, γc-deficient CD4 T cells lack granzyme B and IFNγ expression and fail to 

reject skin grafts (Masse, Corcuff et al. 2007). Quite surprisingly, our results propose 

that γc cytokines (and in particular IL-2 and IL-15) are not essential for the acquisition of 

CD8 cytotoxic functions in the context of acute LCMV infection. γc and IL2Rβ-deficient 

CD8 T cells eliminate efficiently peptide-loaded target cells and prevent the 

development of lymphohistiocytosis syndrome in Pfp-/- mice, presumably through 

efficient elimination of the virus.  

 

 How could such potent responses be accounted for? Most likely, other co-

stimulatory molecules present at the time of infection compensate for the lack of γc 

signals. Indeed, the role of γc cytokines in the acquisition of CD8 effector functions has 

been similarly demonstrated in the context of decreased “signal one” (weak agonists) or 

“signal three” (low inflammatory states)(Rubinstein, Kadima et al. 2002; Verdeil, Puthier 

et al. 2006). Since the combined signals received at the time of priming determine the 

extent of the differentiation potential (Haring, Badovinac et al. 2006; Williams and 

Bevan 2007), γc cytokines might be essential to complement the absence of other 

stimulatory signals. This theory would be coherent with the two following observations. 

First, numerous authors have demonstrated that CD4 help (involving CD40L and/or IL-

2) might not be required for the primary immune response of CD8 T cells in the context 

of pathogenic infections, owing to the high pro-inflammatory signals associated with 

such infections (Buller, Holmes et al. 1987; Rahemtulla, Fung-Leung et al. 1991; Wu 

and Liu 1994; Le Bon, Etchart et al. 2003). Second, the apparent conflicts in the 

literature concerning the role of γc-cytokines (especially IL-2 and IL-15) might thus be 

attributed to the type of inflammatory signals generated by different pathogens, as 

demonstrated for IFNα signals (Thompson, Kolumam et al. 2006). It is likely that 
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infection with other viral or bacterial pathogens, such as vaccinia virus, herpes simplex 

virus or Listeria monocytogenes, lead to different results. 

 

 Interestingly, our results are also consistent with the notion that incomplete 

expansion does not preclude acquisition of effector functions. In fact, in a recent paper 

by Bevan’s group, it was demonstrated that weak agonists promoted a curtailed 

proliferative response but were sufficient for proper differentiation of CD8 effectors 

(Zehn, Lee et al. 2009). Similarly, decreasing the duration of antigenic stimulation 

affected the magnitude of clonal expansion but not the functionality of the CD8 effector 

T cells (Prlic, Hernandez-Hoyos et al. 2006). Along these lines, γc-deprived antigenic 

stimulation would result in decreased overall strength of priming, leading to potent 

activation and effector differentiation, yet reduced clonal expansion.  

 

 An unexpected finding was the important difference between the Ml CD4 model 

and our P14 CD8 model in terms of effector T cell differentiation in the absence of γc. 

In fact, Ml γc
-/- cells were unable to reject skin grafts and had profound anomalies in 

their differentiation profile (in terms of CD27, NKG2D, ICOS, IL12Rβ1 markers) and in 

the expression of IFNγ and cytotoxic molecules (Masse, Corcuff et al. 2007), while 

effector functions of P14 γc
-/- cells were essentially normal. As stated above, the different 

context of activation, involving potent IFNα signals in the LCMV infectious model, 

might explain such differences (Kolumam, Thomas et al. 2005). Furthermore, CD4 T 

cells are distinctly different than CD8 T cells in their priming and activation 

requirements. Thus, CD4 T cells need longer antigenic stimulation and stronger co-

stimulatory signals in order to embark on their differentiation pathway (Whitmire and 

Ahmed 2000; Foulds, Zenewicz et al. 2002). Moreover, the transcriptional signals 

required to become a potent TH1 effector cell are more complex than the ones 

necessary for CD8 differentiation. These combined factors demonstrate that, as 

opposed to CD8 T cells, CD4 T cells most likely have a higher threshold for activation 

(Kaech, Wherry et al. 2002; Seder and Ahmed 2003). Thus, it seems possible that CD4 

T cells need to integrate γc signals at the time of priming in order to complete their 

differentiation, while CD8 T cells have minimal requirements for them.  

 

Despite these potent effector functions, γc
-/- and IL2Rβ-/- CD8 T cells express 

lower levels of granzymes A and B transcripts (data not shown), and have less 

granzyme B granules per cell. These findings are consistent with previous reports 

demonstrating a role for IL-2 and IL-15 in the induction of granzyme B (Manyak, 

Norton et al. 1989; Ye, Young et al. 1996). Thus, it appears that granzyme B 
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transcription is influenced by γc cytokines. Which transcriptional molecules could be 

involved in this regulation, and how could γc cytokines influence these pathways are 

still unanswered questions. In fact, granzyme B gene transcription is influenced by 

numerous transcription factors (such as Ikaros, RUNX1, ETS, CREB1 and AP1) 

(Glimcher, Townsend et al. 2004). Recently, T-bet was shown to bind the granzyme B 

promoter in NK cells (Townsend, Weinmann et al. 2004), while eomes overexpression 

resulted in the induction of granzyme B expression in TH2 cells (Pearce, Mullen et al. 

2003). Furthermore, Blimp-1 deficient CD8 T cells failed to differentiate into potent 

effectors (Kallies, Xin et al. 2009; Rutishauser, Martins et al. 2009). Thus, these three 

important transcription factors might be targets of γc cytokines. 

 

Although the precise signal-transduction mechanisms have not been thoroughly 

explored, γc-dependent regulation of granzyme B transcription likely involves the Stat5 

pathway (Zhang, Scordi et al. 1999; Verdeil, Puthier et al. 2006). T-bet might also 

contribute to this regulation since its transcription is influenced by γc cytokines (our 

results and (Townsend, Weinmann et al. 2004; Suto, Wurster et al. 2006)). Finally, IL-2 

was recently shown to induce Blimp-1 expression (Martins, Cimmino et al. 2008). 

Thus, Stat5, T-bet and Blimp-1 might be involved in the regulation of granzyme B 

transcription by γc cytokines. Given that these transcriptional pathways are also 

implicated in the regulation of perforin levels (Zhang, Scordi et al. 1999), we expect 

similar reduction in perforin expression in P14 γc
-/- CD8 effector T cells. The reasons 

why this is not the case suggests that γc-independent signals might be sufficient for 

perforin synthesis.  

 

V. Lineage choice 

Throughout differentiation, CD8 T cells integrate signals to define their cellular 

fate (Kaech and Wherry 2007; Sarkar, Kalia et al. 2008). Since T-bet, eomesodermin 

and Blimp-1 are involved in the generation of potent effector functions, it is not 

surprising that these same transcription factors influence the lineage choice of a CD8 T 

cell. In fact, T-bet and Blimp-1 promote the generation of KLRG1high CD127low SLECs 

and its corresponding TEM memory subtype (Intlekofer, Takemoto et al. 2007; Joshi, Cui 

et al. 2007; Rutishauser, Martins et al. 2009). Likewise, the absence of γc signals 

restricts the development of SLECs through the modulation of T-bet and possibly Blimp-

1 (although this was not formerly tested). Furthermore, IL2Rβ-/- memory CD8 T cells 

present a strict TCM phenotype (at least in terms of CD62L/CD127 expression). Thus, the 
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cytokines influencing the acquisition of an effector-specific lineage phenotype are most 

likely IL-2 and IL-15, which does not exclude the involvement of other γc-dependent 

cytokines, such as IL-21, might not be similarly involved. Interestingly, the levels of 

Eomes mRNA were not influenced by the absence of γc signals in P14 CD8 effector T 

cells. This is compatible with a recent report demonstrating that IL-2 signals increase 

Eomes levels in antigen-specific CD8 T cells stimulated in vitro, while IL-21 represses 

the IL-2-induced Eomes transcription (Hinrichs, Spolski et al. 2008). It is also consistent 

with the demonstration that Eomes levels are comparable in both SLECs and MPECs 

effector cells, and increase with time in memory TEM and TCM CD8 T cells (Intlekofer, 

Takemoto et al. 2007). 

 

Even though the impact of γc signals in the terminal differentiation of effector T 

cells might be seen by some as trivial, we have to remember that the regulation of these 

important transcription factors is complex and influenced by multiple other 

inflammatory and co-stimulatory factors, which might complement the lack of γc 

signals. Furthermore, it would not be surprising to discover that all of these 

transcription factors are regulating one another, as suggested by others (Kallies, Xin et 

al. 2009). Analysing the transcriptional profile of γc
-/- CD8 T cells activated through 

peptide-derived vaccinations could be a powerful approach to confirm our findings. 

Nevertheless, even in the context of acute LCMV infection, γc signals clearly promote 

the development of SLECs over MPECs at the peak of the response. 

 

VI. Memory T cell homeostasis 

During the contraction phase, a proportion of antigen-specific cells are selected 

to constitute the memory T cell pool. How some cells can escape the potent apoptotic 

mechanisms leading to disappearance of 90% of the effector T cell pool remains a 

mystery. In fact, the evidence demonstrating that the pro-apoptotic molecule Bim is one 

of the major actors of T cell contraction suggests that opposite anti-apoptotic 

molecules, such as Bcl-2 or Mcl-1 might be important for the survival of selected T 

cells (Hildeman, Zhu et al. 2002; Pellegrini, Belz et al. 2003). Since γc cytokines, and in 

particular IL-7, are important regulators of pro-survival genes transcription (Akbar, 

Borthwick et al. 1996), we could suspect that γc cytokines would influence the 

contraction phase and survival of the memory T cell pool. This seems to be the case 

since treatment with IL-2, IL-7 and IL-15 delays the contraction phase and in some 

cases increases the number of memory T cells (Blattman, Grayson et al. 2003; Yajima, 
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Yoshihara et al. 2006; Nanjappa, Walent et al. 2008; Rubinstein, Lind et al. 2008). 

Interestingly, the absence of γc signals and the concurrent presence of the Bcl-2 

transgene during the contraction phase did not modify the slope of contraction in our 

model, but the timing and extent of contraction (data not shown). This is consistent 

with findings demonstrating that Bcl-2 overexpression does not prevent T cell 

contraction after a pathogenic challenge (Petschner, Zimmerman et al. 1998), 

suggesting that pro-apoptotic signals are strongly expressed and cannot easy be 

compensated for.  

 

One hypothesis of our model was that the presence of the Bcl-2 transgene might 

be sufficient to rescue the γc
-/- CD8 memory cells generated at the end of the 

contraction phase that would have otherwise died in the absence of IL-7-dependent 

pro-survival signals. Unexpectedly, despite the presence of Bcl-2, all of the γc deficient 

cells were eliminated by thirteen days post infection. The precocious loss of the γc 

deficient cells suggests that γc signals are mandatory for the generation of a memory T 

cell pool, through a Bcl-2 independent pathway. Interestingly, Osborne et al. recently 

showed that the presence of Bcl-2 in IL7Rα knock-in mice was not sufficient for 

maintenance of the memory T cell pool, although in these mice IL7Rα-/- memory cells 

could still be generated (Osborne, Dhanji et al. 2007). Furthermore, Bcl-2 did not 

appear to be strictly required for the maintenance of memory T cells in Bim+/- Bcl-2-/- 

mice, while its presence is necessary for cytokine-driven memory survival in vitro or 

memory T cell survival in lymphoreplete hosts (Wojciechowski, Tripathi et al. 2007).  

These surprising results suggest that other IL-7-dependent anti-apoptotic molecules 

might be essential for the survival of CD8 memory T cells and that the mere presence of 

Bcl-2 would not be sufficient to rescue γc
-/- memory cells, in clear contrast with current 

thinking. Once again, the pro-apoptotic molecule Mcl-1 would be a good candidate, 

while Bcl-XL is less likely to play a role in memory T cell homeostasis (Opferman, Letai 

et al. 2003; Zhang and He 2005).  

 

Which γc cytokines could be involved in the regulation of memory CD8 T cell 

homeostasis? Undoubtedly, IL-7 is the principal candidate. In the IL2Rβ-/- model, the 

presence of memory CD8 T cells suggests a fundamental role for IL-7 in their 

generation and maintenance. However, the picture is probably much more complex, 

since deficiency in IL-2, IL-7, IL-15 or IL-21 leads to decreased number of CD8 memory 

T cells (Becker, Wherry et al. 2002; Schluns, Williams et al. 2002; Williams, Tyznik et 

al. 2006; Osborne, Dhanji et al. 2007; Elsaesser, Sauer et al. 2009; Yi, Du et al. 2009). 

Interestingly, suppression of both IL-15 and IL-7 signals only partially abrogates the 
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development of memory CD8 T cells (Kaech, Tan et al. 2003). The complete 

elimination of P14 γc
-/- CD8 memory T cells upon viral infection suggests that a 

combination of these cytokines is likely involved.  

 

The comparison between the percentage of remaining IL2Rβ+/+ and IL2Rβ-/- cells 

at the end of the contraction phase is consistent with the fundamental role for IL-15 

and/or IL-2 signals in the homeostasis of memory CD8 T cells. In fact, in the context of 

viral infections, the magnitude of the initial clonal burst typically determines memory T 

cell numbers (Badovinac, Porter et al. 2002). However, when correcting for the 

abrogated primary expansion of the IL2Rβ-/- T cell pool, a 10-fold difference persist in 

the number of memory CD8 T cells generated in the absence of the IL2Rβ chain (data 

not shown), suggesting that IL-15 (and/or IL-2) contribute to the maintenance of the 

memory T cell pool. In fact, IL-15 signals are fundamental for the homeostatic 

proliferation of CD8 memory T cells, and cannot be complemented by IL-7 (Becker, 

Wherry et al. 2002). Furthermore, IL-15 can also deliver pro-survival signals (Berard, 

Brandt et al. 2003). Despite the seemingly stable IL2Rβ-/- CD8 memory pool in the 

blood, as assessed by regular bleeding of the mice, longer follow-up or memory cell 

counts in other organs would likely demonstrate a slow decrease in the numbers of 

IL2Rβ-/- memory T cells with time. Furthermore, it would be interesting to evaluate if 

Bcl-2 over-expression in the IL2Rβ-/- model increases the number of memory T cells 

after LCMV infection, despite the absence of IL-15 signals.  

 

VII. Recall responses 

The memory cells generated provide heightened protection against reinfection. 

The role of γc cytokines in the modulation of these recall responses is still an area of 

intense investigation. Few studies have clearly looked at this particular aspect. One of 

the cornerstone studies on the subject reveals that IL-2 signals at the time of priming are 

essential for the survival and accumulation of CD8 memory cells upon reinfection, but 

not for their proliferation (Williams, Tyznik et al. 2006). Signalling through the 

intermediate affinity receptor IL2Rβγ during the primary immune response, 

independently of the IL2Rα chain, mimics this IL-2-dependent expansion. Interestingly, 

this is consistent with the requirements for CD4 help at the time of priming to achieve 

potent CD8 T cell recall responses at the memory phase (Janssen, Lemmens et al. 2003; 

Shedlock and Shen 2003; Sun and Bevan 2003). This is in clear contrast with the role 

of IL-15 signals in recall responses, since Becker et al. reported that IL15-/- CD8 memory 

cells are capable of potent expansion upon rechallenge (Becker, Wherry et al. 2002). 
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Knowing the fundamental role for IL-2 in the expansion of memory CD8 T cells upon 

recall, but the independence from IL-15 signals for such responses, we were surprised 

to see that IL2Rβ-/- memory CD8 T cells expanded as well as their IL2Rβ+/+ counterparts 

upon reinfection. This is consistent with a previous report looking at the endogenous 

immune response to vaccinia virus in thymic-targeted transgenic IL2Rβ mice on an 

IL2Rβ-/- background (Yu JI 2003).  

 

While IL-15 signals are dispensable for the expansion of memory CD8 T cells, 

they appear to influence the differentiation of those cells into potent secondary effector 

cells. In fact, IL-15 signals allow for quicker acquisition of killing functions through 

upregulation of granzyme B (Yajima, Nishimura et al. 2005). However, independently 

of IL-15, memory CD8 T cells upregulate granzyme B efficiently on the fifth day of re-

infection. On the contrary, in the absence of CD4 help, memory CD8 T cells are 

incapable of cytokine secretion and cytotoxicity upon rechallenge (Janssen, Lemmens 

et al. 2003; Shedlock and Shen 2003; Sun and Bevan 2003). Once again, in clear 

contrast with these data, IL2Rβ-/- memory CD8 T cells not only expand after 

rechallenge, but secrete significant amounts of inflammatory cytokines and exhibit 

elevated protein levels of granzyme B. Confirmation of their potent cytotoxicity must be 

confirmed by proper testing of their specific killing abilities, but the presence of 

cytotoxic molecules in secondary IL2Rβ-/- cells suggest effective cytotoxic functions.  

 

 What could account for such differences? At this stage of the work, I can only 

speculate. Could it be that the memory CD8 population generated in the absence of IL-

2 signals is different from the memory population generated in the absence of both IL-2 

and IL-15 signals? A transcriptional analysis of the memory T cell pools in both contexts 

could help in answering this question. In fact, both T-bet and Blimp-1 influence 

memory T cell recall responses upon infection. While T-bet limits the expansion and 

protective responses of CD8 memory cells, Blimp-1 favors the acquisition of potent 

recall responses (Intlekofer, Takemoto et al. 2007; Kallies, Xin et al. 2009). Thus the 

relative expression of these two transcription factors could explain the distinct 

observations seen in the IL2Rα-/- and IL2Rβ-/- models. Future experiments will likely 

confirm this hypothesis. 
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The γ c cytokine model of CD8 T cell differentiation 

 

γc-dependent cytokines shape the CD8 immune response to LCMV infection and 

deliver essential signals for the proper programming and differentiation of CD8 T cells. 

These signals are distinct from co-stimulatory or pro-inflammatory signals and modulate 

specific phases of the response. As such, γc cytokines are essential for the late 

proliferation, the terminal differentiation of SLECs and the generation of long-lasting 

memory CD8 T cells. Depending of the infectious and inflammatory context, their 

influence might be minimized, but their activity is necessary to maximize the potential 

of the CD8 T cell pool. These γc-dependent signals also imprint specific cell fate 

decisions to the CD8 T cell pool, orienting the functional outcome of the anti-viral 

immune response. 

 

 At steady state, naïve CD8 T cells require Bcl-2-dependent IL-7 signals for their 

survival and Bcl-2-independent IL-7 signals for their growth, metabolism and protein 

synthesis. This second pathway might involve essential γc-dependent molecules of the 

PI3K pathway, aside from PKB, and of the Stat-5 pathway, possibly PM1/PM2, although 

these hypotheses have not been confirmed in the present work.  

 Upon encounter with a viral antigen, γc-dependent cytokines are dispensable for 

the initial proliferation and for the cytotoxic functions of CD8 T cells, leading to viral 

clearance. However, IL-2 and/or IL-15 are essential to maximize the proliferation of 

effector cells. Furthermore, these signals are important for the terminal differentiation of 

effector cells in granzyme B-expressing SLECs and for the subsequent generation of TEM 

cells. To accomplish these functions, IL-2 and IL-15 probably act via different 

transcription factors, likely involving T-bet and Blimp-1.  

 Conversely, IL-7 signals promote the differentiation of MPECs and the 

subsequent generation and maintenance of TCM cells. The survival function of IL-7 

requires the expression of multiple anti-apoptotic molecules, since Bcl-2 expression is 

not sufficient for the survival of γc
-/- CD8 memory T cells. Which transcription factors 

are modulated by IL-7 is unknown but eomesodermin and Bcl-6 might promote 

memory cell survival. 

 Other γc-dependent cytokines, in particular IL-21, are probably involved at 

different steps of these processes and might modify or potentiate the functions of other 

members of the same family of cytokines. Its indispensable role in chronic infections 

demonstrates the essential role for this cytokine in CD8 immune responses. 
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 Overall, γc-dependent cytokines act in concert to orchestrate the most potent 

and effective T cell response and are involved in the generation of a long-lasting pool 

of fully functional memory CD8 T cells.  
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Figure 21: The γc cytokine model of CD8 T cell differentiation 
 

γc-dependent cytokines shape the CD8 immune response to LCMV infection and deliver essential signals 
for the proper programming and differentiation of CD8 T cells. γc cytokines also regulate the growth and 
metabolism of naïve CD8 T cells and the generation and maintenance of a stable memory CD8 T cell pool.  
 

From H. Decaluwe (unpublished) 
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Cytokines signaling through receptors sharing the common c chain (cc), including IL-2,
IL-4, IL-7, IL-9, IL-15 and IL-21, are critical for the generation and peripheral
homeostasis of B, T and NK cells. To identify unique or redundant roles for cc cytokines
in naive CD4+ Tcells, we compared monoclonal populations of CD4+ Tcells from TCR-
Tg mice that were cc

+, cc
–, CD127–/– or CD122–/–. We found that cc

– naive CD4+ T cells
failed to accumulate in the peripheral lymphoid organs and the few remaining cells
were characterized by small size, decreased expression of MHC class I and enhanced
apoptosis. By over-expressing human Bcl-2, peripheral naive CD4+ T cells that lack cc
could be rescued. Bcl-2+ cc

– CD4+ T cells demonstrated enhanced survival
characteristics in vivo and in vitro, and could proliferate normally in vitro in response
to antigen. Nevertheless, Bcl-2+ cc

– CD4+ T cells remained small in size, and this
phenotype was not corrected by enforced expression of an activated protein kinase B.
We conclude that cc cytokines (primarily but not exclusively IL-7) provide Bcl-2-
dependent as well as Bcl-2-independent signals to maintain the phenotype and
homeostasis of the peripheral naive CD4+ T cell pool.

Supporting information for this article is available at
http://www.wiley-vch.de/contents/jc_2040/2007/37234_s.pdf

See accompanying commentary: http://dx.doi.org/10.1002/eji.200737721

Introduction

Cytokines play essential roles in lymphocyte home-
ostasis. During lymphoid development, distinct cyto-
kines have been identified that promote the survival and

proliferation of B, T and NK cell precursors in the bone
marrow and in the thymus. For example, IL-7 and stem
cell factor are crucial for early thymocyte differentiation,
IL-7 and fetal liver kinase-2 ligand drive B cell devel-
opment, and IL-15 is essential for the generation of
immature NK cells [1–5]. These observations indicate
that cytokines have specific (i.e. non-redundant) roles
during early lymphocyte development.

Cytokines that signal through the common c chain
(cc) include IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21. Upon
ligand binding, cc-containing receptors transmit intra-
cellular signals through the JAK1 and JAK3 tyrosine
kinases to activate primarily the transcription factors
STAT3 and STAT5 [6]. Several cc-dependent receptors
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also signal through the PI3K, protein kinase B (PKB),
MAPK and src family kinase pathways [7] and result in
additional transcription factor activation. These differ-
ent activation pathways converge in the nucleus where
they modify gene expression profiles, although the
impact of distinct transcription factors in this process is
still unclear. Considering the complexity of cc signaling,
it is not surprising that the transcriptional changes
elicited by distinct cc cytokines include both unique and
shared targets [8].

Downstream targets of cc signaling in lymphocytes
include proteins involved in cell survival and apoptosis,
such as members of the Bcl-2 family. This protein family
includes both pro- and anti-apoptotic members; the
latter inhibit the former by specific heterodimeric
interactions [9]. Bcl-2 is a major target in early
thymocyte development, especially during the IL-7-
dependent 'double-negative (DN)2 stage [10]. In the
absence of IL-7/cc, DN2 cells have decreased Bcl-2
levels, are prone to apoptosis and fail to proliferate
normally [11].

Nevertheless, Bcl-2 is not the sole target of IL-7
signals at this stage, since over-expression of a Bcl-2 Tg in
cc

– or CD127 (IL-7Ra)–/– mice does not correct the
transitional DN2 block [12], although it improves the
overall T cell homeostasis, especially in the periphery of
IL-7 signaling-deficient animals [13, 14]. One possibility
is that other Bcl-2 family members are also regulated by
IL-7 in early thymocytes, including the pro-apoptotic
Bax and/or Bad proteins [15]. Along these lines, mice
made deficient in both CD127 and Bax demonstrated
increased thymic cellularity compared with CD127–

mice [16]. Finally, the anti-apoptotic protein Mcl-1 is
also strongly up-regulated by IL-7 in thymocytes and
peripheral T cells [17]. Mcl-1 acts independently of
Bcl-2, and could explain the inability of enforced Bcl-2
expression to completely rescue the DN block in cc

–

mice, or to allow recovery of other IL-7-dependent
lymphocyte populations (i.e. cd T cells and B cells) in
this context [18].

Once thymocytes complete the selection process and
have fully differentiated as mature CD4 or CD8 single-
positive (SP) thymocytes, they exit the thymus and re-
circulate through the secondary lymphoid organs,
including the lymph nodes and spleen. In the periphery,
T cells require signals for their maintenance, which can
be conveyed by TCR engagement, cell surface co-
stimulatory receptors or soluble factors including
cytokines. Of the latter, cc-dependent cytokines play
critical roles for the homeostasis of naive ab T cells,
cd T cells, NK and NKT cells. Adoptive transfer studies
have shown that IL-7 supports peripheral survival and
homeostatic proliferation of 'adaptive' CD4+ and CD8+

ab T cells, while IL-15 is essential for survival of 'innate'
NK, NKT and cd T cells (reviewed in [19]).

The downstream effectors of IL-7 and IL-15 in this
context remain to be fully defined, although these
cytokines can regulate the expression of Bcl-2 family
proteins [10, 20]. With respect to the role of IL-7 in naive
T cell homeostasis, culture of human or mouse naive
T cells in vitro with cc cytokines up-regulates Bcl-2
expression [21] and over-expression of Bcl-2 increases
peripheral ab T cell numbers in CD127–/– mice [13, 14].
In contrast, Tg over-expression of Bcl-2 in cc

– T cells
showed a limited effect on numbers of peripheral naive
T cells [18]. This observation might indicate that
cc-dependent cytokines other than IL-7 are involved in
the homeostasis of naive T cells. Alternatively, these
results might have been influenced by the propensity of
cc-deficient mice to develop an inflammatory syndrome
(secondary to generalized T cell activation resulting
from an absence of regulatory T cells [22]). Our
knowledge of the biological roles played by cc cytokines
he maintenance of naive T cells remains incomplete.

In this report, we utilize Tg mice bearing the male
antigen-specific Marilyn (Ml) TCR to assess the role for
cc cytokines in the biology of naive CD4+Tcells. In order
to limit spurious TCR specificities resulting from
associations of the Tg TCR b chain with endogenously
rearranged TCR a polypeptides, all mice were RAG–/–,
and thereby harbored 'monoclonal' Tcell populations. By
comparing cc

+, cc
–, CD127–/– and CD122–/– Ml female

mice, we define a series of cc-dependent phenotypes in
peripheral naiveCD4+Tcells. Byover-expressingBcl-2or
a constitutively activated form of PKB in cc

+ and cc
– Ml

CD4+ Tcells, we have further characterized the signaling
pathways required for cc-dependent naive CD4+ T cell
homeostasis. Our results demonstrate that cc cytokines
(primarily IL-7)provideBcl-2-dependent aswell asBcl-2-
indpendent signals to peripheral naive CD4+ T cells.

Results

Phenotype of cc
– naive CD4+ T cells

The TCR-Tg model system Ml on the RAG2–/– back-
ground generates monoclonal populations of CD4+

ab T cells reactive with the male antigen Dby [23].
Peripheral CD4+ T cells in Ml female Tg mice have a
naive phenotype (CD44lo CD62Lhi), are non-cycling and
demonstrate limited homeostatic proliferation after
transfer to lymphopenic recipients [24], consistent with
their limited cross-reactivity to environmental and/or
self antigens. In the absence of cc, CD4 SP Ml T cells are
efficiently selected in the thymus, but fail to accumulate
in the peripheral lymphoid organs [23]. These periph-
eral cc

– Ml CD4+ T cells are reduced about 200-fold in
comparison to their WT counterparts, although they
demonstrate the expected naive CD44lo CD62Lhi
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phenotype. Moreover, cc
– Ml CD4+ T cells in the spleen

had markedly reduced Bcl-2 levels, suggesting a survival
defect [23].

In order to gain more insights into the unique or
redundant roles for cc cytokines in the homeostasis of
naive CD4+ T cells, we further characterized the cell
surface phenotype of splenic CD4+ Ml T cells that
developed in the absence of cc (Fig. 1A–D). We found
that splenic cc

+ and cc
– Ml CD4+ T cells expressed

similar levels of CD2, Vb6, CD4, CD44 and CD62L and
were negative for CD69 (Fig. 1A, B and data not shown).

Thus, unlike non-TCR-Tg cc
– mice, T cells from Ml cc

–

female mice had a naive phenotype.
Concerning cytokine receptors, CD127 expression

was normal in the absence of cc, while naive Ml CD4+

T cells failed to express CD25 or CD122 (Fig. 1C).
Consistent with their strongly reduced Bcl-2 levels [23],
we found that cc

– Ml CD4+ T cells had an abnormal
mitochondrial membrane potential as assessed by
staining with DIOC6 and were smaller in size than their
WT counterparts (Fig. 1D). These results provide an in
vivo confirmation of the previous report demonstrating
that IL-7 can maintain cell size and viability of naive
T cells in vitro [25]. We further found that cc

– Ml CD4+

T cells expressed lower levels of MHC class I molecules
(Fig. 1D). These results suggest that cc signaling in vivo
affects the naive T cell phenotype at multiple levels.

We next compared the phenotype of the peripheral
cells to the mature CD4 SP thymocytes in cc

+ or cc
– Ml

female mice to assess whether the phenotypes observed
were a simple consequence of cc deficiency, or whether
they resulted from a selective pressure that was imposed
in the periphery (Fig. 2A–C). Compared to their cc

+

counterparts, CD4 SP thymocytes from cc
– Ml female

mice bore identical levels of CD4, Vb6 and CD127
(Fig. 2B). In contrast, cc

– CD4 SP thymocytes were
smaller in size compared to WT cells and expressed
lower levels of H-2Db (Fig. 2C). These results indicate
that cc cytokines already begin to play a homeostatic
role at the mature CD4 SP thymocyte stage.

Enforced Bcl-2 expression restores peripheral
cc

– naive CD4+ T cell numbers

We next determined whether the phenotypes associated
with cc deficiency could be corrected by enforced
expression of Bcl-2. Previous studies had shown that
Bcl-2 could substantially improve ab Tcell development
in mice deficient in IL-7 signaling [13, 14], although it
was unclear whether this corrected a defect in the naive
cell compartment or improved survival of activated
memory T cells that are over-represented in CD127–/–

mice [26]. To target Bcl-2 to the naive CD4+ T cell
compartment, we generated 'monoclonal' Ml female
mice that over-expressed human Bcl-2 in T cells (using
the El-2-25 line; [27]) and were either cc

+ or cc
–.

Tg expression of Bcl-2 had little effect on the absolute
number of thymocytes in cc

+ or cc
– Ml female mice

(Fig. 3A), consistent with previous reports on the
inability of this Bcl-2 Tg to correct the DN2 block in early
thymocyte development in the absence of cc [12].
Nevertheless, Bcl-2 dramatically corrected the periph-
eral T cell defect in these mice (increase of 50-fold),
allowing for a near normal number of splenic naive
CD4+ T cells despite the absence of cc (Fig. 3A, B). This
result suggested that poor survival of cc

– Ml CD4+ Tcells

Figure 1. Phenotype of splenic cc
– Ml CD4+ T cells. (A)

Splenocytes were stained with CD4 and Vb6 antibodies and
analyzed by FACS. Ml CD4+ T cells are markedly reduced in the
absence of cc (100-fold decrease in frequency and 250-fold
reduction in absolute numbers). (B) Splenocytes were stained
with CD4, Vb6, CD44 and CD62L antibodies and analyzed by
FACS. Dot plots show normal CD44 and CD62L expression on
gated CD4+ Vb6+ Ml T cells in the absence of cc. (C) Splenocytes
were stainedwithCD4, Vb6, CD25, CD122 andCD127 antibodies
and analyzed by FACS. Dot plots show normal CD127
expression on gated CD4+ Vb6+ Ml T cells in the absence of
cc. (D) Forward scatter (FSC), mitochondrial membrane
potential (as measured by DIOC6) and H-2Db expression on
splenic CD4+ Vb6+ Ml T cells show reduced cell size, abnormal
survival and lower MHC class I expression in the absence of cc.
In histogram panels (B–D), cc

+ cells (open line) and cc
– cells

(shaded) are overlaid.
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was a major cause for their reduced cell numbers in the
spleen (but not in the thymus). Accordingly, Bcl-2+ cc

–

Ml CD4+ T cells had a normal mitochondrial membrane
potential (Fig. 3C). Cell surface expression of CD4, Vb6,
CD44, CD62L and CD127 was not modified by Bcl-2
over-expression (Fig. 3C and data not shown).

When cultured in vitro in the absence of exogenous
cc cytokines, Bcl-2

+ Ml CD4+ T cells (either cc
+ or cc

–)
demonstrated enhanced survival compared to non-
Bcl-2+ cc

+ Ml CD4+ T cells (data not shown).
Interestingly, despite their enhanced survival character-
istics in vivo and in vitro, Bcl-2+ cc

– Ml CD4+ T cells
remained small in size. Moreover, these cells continued
to have reduced expression of MHC class I (Fig. 3D) and
showed a generalized reduction in ribosomal protein
transcripts (Supporting Information Table 1). These
results confirm and extend previous in vitro studies on
the role of IL-7 and Bcl-2 in naive Tcell homeostasis [21,
25] and demonstrate that Bcl-2-independent pathways
are triggered in vivo by cc cytokines in naive T cells to
control cell size and expression of some cell surface
proteins.

The ability of exogenous Bcl-2 to rescue a substantial
population of cc

– naive CD4+ T cells provided the
opportunity to formally assess the role for cc cytokines
in antigen-induced T cell proliferation in vitro. IL-2 was

initially characterized as 'T cell growth factor' and
numerous studies have amply demonstrated the capa-
city for IL-2 to promote T cell proliferation in culture
(reviewed in [28]). We labeled splenocytes from Bcl-2+

Ml cc
+ or cc

– female mice with CFSE and cultured the
cells in the presence of antigen-presenting cells from
female or male CD3e– mice. We observed robust
proliferation of the Bcl-2+ Ml CD4+ T cells after antigen
stimulation and after several rounds of division,
activated T cells up-regulated their expression of several
cell surface markers (including CD25, CD44 and CD69)
and down-regulated CD62L (Fig. 4A–D and data not
shown), while increasing their cell size.

Although a similar profile of antigen-dependent
activation was observed in the absence of cc, the kinetics
showed that cc

– cells had a slight delay at day 4 post-
stimulation, which was not apparent at day 6 (Fig. 4D).
These results indicate that cc cytokines were redundant
for in vitro proliferation provided that their survival was
maintained by Bcl-2. Control Ml cc

+ CD4+ Tcells lacking
Bcl-2 showed a similar response (data not shown),
suggesting that Bcl-2 over-expression did not dramati-
cally alter the capacity of Ml CD4+ T cells to undergo a
normal differentiation program in response to male
antigen-presenting cells. Finally, despite their reduced
MHC class I expression, Ml cc

– CD4+ T cells were not

Figure 2. Phenotype of thymic cc
– Ml CD4+ T cells. (A) Thymocytes were stained with CD4 and CD8 antibodies and analyzed by

FACS. Ml CD4 SP thymocytes are increased in frequency but are present in near normal numbers (see also Fig. 3A). (B) Thymocytes
were stained with CD4, CD8, Vb6, CD122 and CD127 antibodies and analyzed by FACS. Dot plots show normal expression of the
indicated markers on gated Ml CD4 SP thymocytes in the absence of cc. (C) FSC, mitochondrial membrane potential (as measured
by DIOC6) and H-2Db expression on Ml CD4 SP thymocytes show reduced cell size, abnormal survival and lower MHC class I
expression in the absence of cc. In histogram panels (B, C), cc

+ cells (open line) and cc
– cells (shaded) are overlaid.
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selectively targeted for elimination by NK cells, despite
the presence of the latter in the cultures (data not
shown).

Reduced cell size in cc
– CD4+ T cells expressing

activated PKB

Cytokines appear to regulate naive T cell size in the
'resting' state and can provoke a 'blastogenic' response
characterized by increased cell size and enhanced
nutrient uptake (reviewed in [29, 30]). Since activation
of the intracellular kinase PKB (also known as Akt) in

response to growth factors can trigger increases in cell
size, metabolism and survival in several cellular systems
[29, 30], it has been proposed that IL-7 may act through
PKB to mediate its homeostatic effects. Previous studies
have shown that an activated PKB Tg could enhance
T cell survival in vivo [31, 32], although these Tg mice
developed autoimmunity and lymphoma, suggesting
PKB-mediated transformation. Moreover, conditional
deletion of phosphatase and tension homologue deleted
on chromosome 10 that counteracts PKB, can bypass the
dependence on IL-7 and pre-TCR signals in developing
thymocytes [33], although again these mice developed
T cell lymphomas. In both these cases, the PKB
expression in the peripheral compartment was not
restricted to naive T cells. We therefore asked whether a
PKB Tg expressed in developing and mature T cells [34]
would modify the cc deficiency phenotypes that we had
observed in naive Ml CD4+ T cells.

We generated monoclonal Ml cc
– female mice that

were also Tg for Bcl-2 and/or activated PKB. Unlike
Bcl-2, the PKB Tg only slightly increased numbers (about
threefold) of naive CD4+ T cells in the spleen
(Fig. 5A, B, G). Moreover, co-expression of Bcl-2 and
PKB Tg did not change the phenotype of naive cc

– CD4+

Tcells beyond that already observed after enforced Bcl-2
expression (Fig. 5C, D). Ml cc

– CD4+ T cells expressing
the PKB Tg remained small in size compared to their cc

+

counterparts (Fig. 5E, F). Thus, PKB expression in naive
T cells is not sufficient to correct the phenotype of
cc deficiency. In contrast to pharmacological inhibitors
that block the PI3K/PKB activation and result in
decreased cell size [25, 35], the absence of PKB
activation does not appear responsible for the small
cell size observed in Ml cc

– CD4+ T cells in vivo.

Involvement of CD127 but not CD122 in the
homeostasis of peripheral CD4+ T cells

In order to identify the cc-dependent cytokines that are
responsible for CD4+ T cell homeostasis, we generated
monoclonal Ml female mice deficient in either CD122 or
CD127 and then compared the development of naive
CD4+ T cells in these mice with that of their WT
counterparts. In the thymus, the absence of CD122 had
no discernable effect on thymocyte differentiation, and
absolute numbers of total thymocytes and CD4 SP Tcells
were normal (Fig. 6A). CD4 SP thymocyte size was
unaltered (data not shown). In contrast, CD127
deficiency dramatically decreased total thymocyte cell
numbers, although positive selection of CD4 SP
thymocytes proceeded efficiently (Fig. 6C), with total
numbers of CD4 SP thymocytes reaching near normal
values (Fig. 6E), similar to what reported previously in
the absence of cc [23]. These results confirm earlier
reports demonstrating that IL-7 (and potentially TSLP)

Figure 3. Bcl-2 over-expression rescues peripheral naive cc
– Ml

CD4+ T cells. (A) Absolute numbers of total thymocytes, CD4 SP
thymocytes and splenic CD4+ T cells in Ml cc

+, Ml cc
– and Ml cc

–

Bcl-2+ female mice. Six to 12 mice (4–6 wk of age) of each
genotype were analyzed. (B) Splenocytes were stained with
CD4 and Vb6 antibodies and analyzed by FACS. Splenic cc

– Ml
CD4+ T cells aremarkedly restored after expression of Bcl-2. (C)
CD4 and Vb6 expression and mitochondrial membrane
potential are normal in Ml cc

– Bcl-2+ CD4+ T cells. (D) FSC
and H-2Db expression on splenic CD4+ Vb6+ Ml cc

– Bcl-2+ T cells
show reduced cell size and lower MHC class I expression
despite enhanced survival. In histogram panels (C, D), cc

+ cells
(open line) and cc

– cells (shaded) are overlaid.
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but neither IL-2 nor IL-15 are involved in the generation
of the SP CD4 thymocyte pool [19].

Deficiency in CD122 had no obvious effect on the
peripheral homeostasis of Ml CD4+ T cells (Fig. 6B).
Absolute numbers of splenic CD122–/– Ml CD4+ T cells,
their size, mitochondrial membrane potential and cell
surface phenotype were similar to WT Ml CD4+ T cells
(Fig. 6E and data not shown). In contrast, CD127
deficiency resulted in a marked reduction of Ml CD4+

T cells in the spleen; residual CD4+ T cells were small in
size and had reduced DIO6 staining (Fig. 6F). Curiously,
cell surfaceH-2Db stainingwasonly slightly decreasedon
splenic CD4+ T cells from CD127–/– Ml female mice
(Fig.6F),suggestingthatcc cytokinesother thanIL-7may
be important for this phenotype. Moreover, careful
comparison of splenic CD4+ T cell numbers in cc

– and
CD127–/– Ml female mice showed that the former were
significantlyreducedcomparedtothelatter(Figs.3A, 6E;
p<0.05), consistent with the notion that naive T cell
homeostasis depends on cc cytokines beyond IL-7.

Previous studies had shown that Bcl-2 could not
replace the requirement for IL-7 in the homeostatic
expansion of peripheral CD8+ T cells [36]. We assessed
the in vivo role for IL-7 and Bcl-2 expression for the
survival and homeostatic expansion of naive Ml CD4+

Tcells using an adoptive transfer approach.WTor Bcl-2+

Ml CD4+ splenic T cells were labeled with CFSE and
transferred to alymphoid hosts that were IL-7+ or IL-7–.

After 2 wk, the recipients were sacrificed and Ml CD4+

T cells were enumerated and their CFSE profiles
analyzed.

Consistent with earlier reports [24], we found that
Ml CD4+ T cells underwent two to three rounds of
division after transfer to alymphoid recipients, while few
T cells were recovered after transfer to IL-7-deficient
hosts (Fig. 7). Bcl-2+ Ml CD4+ T cells showed a similar
pattern of 'homeostatic' proliferation after transfer to
alymphoid hosts as their Bcl-2 Tg– counterparts. In
contrast, Bcl-2+ Ml CD4+ T cells survived well in vivo in
the absence of IL-7, although they remained undivided
(Fig. 7). These observations confirm the role for IL-7 in
the survival of peripheral T cells [36] and further
demonstrate that IL-7 is required in a Bcl-2-independent
fashion for the homeostatic proliferation of naive CD4+

T cells.

Discussion

The roles played by cc cytokines in the homeostasis of
naive T cells are only partly defined. The use of cc

– mice
to address this question was hampered by the sponta-
neous T cell activation that results as polyclonal
repertoires with the potential to react with environ-
mental antigens expand in the absence of regulatory
T cells [37, 38]. We therefore utilized a model system

Figure 4. Antigen activation and proliferation of Ml cc
– Bcl-2+ T cells in vitro. (A) Splenocytes from the indicated mice were labeled

with CFSE and cultured in the presence of total splenocytes from male CD3e–/– mice for 6 days. At the indicated times, cells were
harvested, labeled with CD4, Vb6 and CD62L antibodies and analyzed by FACS. (B) FSC versus CFSE is shown on gated CD4+ Vb6+

T cells. (C) CD62L expression versus CFSE is shown on gated CD4+ Vb6+ T cells. (D) CFSE dilution profiles on gated CD4+ Vb6+ T cells
are shown. The percentages indicate non-divided CFSE+ cells (right) versus divided T cells (left).
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based on monoclonal TCR-Tg CD4+ T cells (MI mice)
with specificity for a male antigen peptide presented by
MHC class II. In female Ml mice, these cells are
positively selected, but once exported to the peripheral
lymphoid organs show little environmental cross-
reactivity. This particular characteristic of Ml-Tg mice
was essential, since it allowed us then to generate and
analyze cc

– Ml CD4+ T cells that maintained a naive
phenotype and to assess their properties ex vivo.

Using this approach, we were able to show that cc
–

na�ve T cells exhibit decreased survival parameters
(mitochondrial membrane potential, reduced expres-
sion of Bcl-2), were small in size and had reduced
expression of MHC class I molecules. These phenotypic
characteristics did not appear to result from a selection
process imposed by the peripheral naive T cell niche,
since they were also observed in the mature CD4+

thymocyte compartment. By restoring Bcl-2 expression
to developing thymocytes and mature cc

– naive T cells,
we could show that some of the phenotypic character-
istics of cc deficiency were linked. Bcl-2 over-expression
could correct the abnormal mitochondrial potential in
cc

– CD4+ Ml T cells, and allow these cells to survive in
vitro. This improved survival property resulted in a
rescue of the peripheral naive T cell lymphopenia
observed in the absence of cc [23]. Nevertheless, the
peripheral CD4+ naive T cell numbers were not
completely restored (their numbers remained about
twofold decreased compared to cc WT mice). Possible
explanations for this result include either an incomplete
thymic rescue by Bcl-2 [12], an additional defect in
thymic export and/or the existence of Bcl-2-indepen-
dent mechanisms for peripheral naive T cell homeo-
stasis.

Figure 5. Expression of activated PKB does not affect the peripheral homeostasis of cc
– Ml CD4+ T cells. (A, C) Thymocytes were

stained with CD4 and CD8 antibodies and analyzed by FACS. (B, D) Splenocytes were stained with CD4 and Vb6 antibodies and
analyzed by FACS. (E) FSC on splenic CD4+ Vb6+ Ml cc

– T cells (shaded) and CD4+ Vb6+ Ml cc
– PKB+ T cells (dotted line) show reduced

cell size compared to cc
+ cells (open line). (F) FSC on splenic CD4+ Vb6+ Ml cc

– Bcl-2+ PKB+ T cells (shaded) show reduced cell size
compared to cc

+ cells (open line). (G) Absolute numbers of splenic Ml CD4+ T cells in female mice with the indicated genotype are
shown.
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Considering the different cc-dependent cytokines
that are involved in naive T cell homeostasis, a
substantial literature exists that provides evidence for
a dominant role of IL-7 in naive T cell survival [25, 36,
39]. By comparing female Ml mice deficient in cc with
those deficient in CD127, we confirm that CD127 ligands
are major effectors of naive CD4+ T cell homeostasis.
Nevertheless, cc cytokines other than IL-7 are likely to
be involved, since a stronger reduction in peripheral
T cell numbers was observed in the absence of cc
compared to CD127. Which cc-dependent ligands could
be involved? We failed to document an effect of CD122
deficiency on naive T cell homeostasis, indicating that
IL-2 and IL-15 are redundant in this context. It remains
possible that these cytokines become important only in
the absence of CD127 although we failed to detect
CD122 expression on residual CD4+ T cells in Ml
CD127–/– mice (data not shown). Potential roles for IL-4,
IL-9 and IL-21 in naive T cell homeostasis therefore
remain possible.

Figure 7. Bcl-2 over-expression allows IL-7-independent
survival but not homeostatic proliferation of adoptively
transferred Ml cc

+ T cells. CFSE-labeled splenocytes from Ml
cc

+ or Ml cc
+ Bcl-2+ female mice were transferred into

alymphoid recipients that were IL-7+ (RAG–/– cc
–) or IL-7–

(RAG–/– cc
– IL-7–/–). Twoweeks later, splenocyteswere harvested

and stained with CD4, Vb6 antibodies and analyzed by FACS.
Dot plots show CD4 versus CFSE profiles on Vb6+ gated cells.

Figure 6. Homeostasis of naive Ml CD4+ T cells requires CD127 but not CD122. (A, C) Thymocytes were stained with CD4 and CD8
antibodies and analyzed by FACS. (B, D) Splenocyteswere stainedwith CD4 and Vb6 antibodies and analyzed by FACS. (E) Absolute
numbersof total thymocytes,CD4SP thymocytesandsplenicCD4+Tcells inMl cc

+,MlCD122–/– andMlCD127–/– femalemice. Four to
eightmice (4–6 wkof age) of each genotypewere analyzed. (F) FSC,mitochondrialmembranepotential (asmeasured byDIOC6) and
H-2DbexpressiononsplenicCD4+Vb6+MlCD127–/–Tcells. Inhistograms,cc

+cells (openline)andCD127–/–cells (shaded)areoverlaid.
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Considering Bcl-2-independent mechanisms of
cc cytokines, we found that cc

– Ml CD4+ T cells that
have been rescued by Bcl-2 remained small in size. These
observations raise questions concerning the potential
trophic signals transmitted by cc receptors in naive
T cells. Previous work from the Thompson laboratory
(reviewed in [30]) has enabled the elaboration of a
model for cell size regulation. PKB occupies a central
role, sitting at the crossroads of the regulation of cell
size, metabolism and survival. Activation of PKB results
in mTOR-dependent maintenance of glucose and amino
acid transporters required for metabolic health of the
cell. Nevertheless, the cellular receptor that triggers
PKB-dependent trophic effects in naive T cells remains
unclear. While IL-7 triggers PKB activation in thymocyte
precursors [40] and IL-7 withdraw results in T cell
atrophy [40], TCR signals also activate PKB and glucose
transporter expression is regulated through the TCR in
both thymocyte precursors and peripheral T cells [35,
41]. Direct evidence that PKB is required for naive T cell
homeostasis is lacking.

We found that constitutive activation of PKB did not
increase the size of naive CD4+ T cells in the absence of
cc. Therefore, Bcl-2 and PKB activation are not sufficient
to maintain naive T cell size and other cc-dependent
pathways are involved. In the absence of cc, naive CD4

+

Tcells expressed low levels of MHC class I molecules and
had reduced expression of ribosomal proteins. These
observations suggest a potential mechanism through
which cc cytokines could exert their effects on cell size.
By providing naive T cells with trophic signals that
maintain their overall metabolic state (via ribosomal
activity), cc cytokines (including IL-7) may assure
protein re-synthesis.

While the restoration of Ml CD4+ naive T cell
numbers was impressive, it remains to be seen whether
other TCR specificities (when placed in the context of
cc deficiency) will show the same dependency on Bcl-2.
Intrathymically, differentiating CD4 and CD8 SP thymo-
cytes appear to have different requirements for
cc cytokines [42]. Our preliminary data indicate that
Bcl-2 expression can rescue cc deficiency in certain TCR-
Tg models that select CD8 T cells (OT-I, P14) but not
others (HY-CD8) despite clear Bcl-2 expression in the
relevant peripheral T cell population (J.P.D., unpub-
lished observations). Gene expression profiling may
provide clues to understand the molecular basis for
these differences. It is likely that these observations
illustrate the concerted actions of TCR-induced signals
and cc cytokine-induced signals in reaching a minimal
threshold required for peripheral naive T cell homeo-
stasis [43].

Materials and methods

Animals

Ml TCR-Tg mice specific for the male antigen HY Dby on the
RAG2–/– or RAG2–/–/cc

–/– (C57BL/6) background have been
described [23]. Mice Tg for an activated PKB [34] or human
Bcl-2-Tg mice B6.Cg-Tg(BCL2)25Wehi/J [27] were backcrossed to
Ml RAG2–/– or RAG2–/–/cc

–/– mice to generate 'monoclonal' Ml
Bcl-2+mice with or without cc. CD122

–/– mice (B6Il2rbtm1Mak/J,
JAX) or CD127–/– mice (B6.129S7Il7ratm1Pes/J, JAX) were used
to generate 'monoclonal' Ml CD122–/– or CD127–/– mice. Mice
deficient in RAG2 and IL-7 have been described [20]. Donor
and recipient mice were used between 4 and 8 wk of age.
Animals were kept under pathogen-free conditions in the
animal facilities at the Institut Pasteur and all animal
experiments were approved by a local committee and in
accordance with French law.

Cell isolation and FACS

Single-cell suspensions from thymus and spleen were prepared
as described [20]. Cell suspensions were stained in PBS with
2% FCS during 15 min on ice in the dark. Before staining, cells
were treated with purified mouse IgG to block Fc receptors.
Monoclonal antibodies conjugated to fluorescein isothiocya-
nate, phycoerythrin (PE), PE-Cy5.5, peridinin chlorophyll-a
protein-Cy5.5, PE-Cy7, allophycocyanin, allophycocyanin-Cy7,
Alexa750 or biotin (eBioscience and BD Biosciences) included
CD2 (RM2-5), CD4 (GK1.5, RM4-5), Vb6 (RR4-7), CD25
(PC61), CD44 (1M7), CD62L (MEL-14), CD69 (H1.2F3),
CD122 (TMb1) and CD127 (A7R34). Biotinylated antibodies
were revealed with streptavidin-PE-Cy7 or allophycocyanin-
Cy7. Dead cells were excluded using TO-PRO3 or Sytox Green
(Molecular Probes). FACS acquisitions were performed using
CaliburJ or CantoJ (BD) analytical flow cytometers, and data
sets were analyzed using FlowjoJ software.

In vitro T cell activation and proliferation

Splenocytes were labeled with 1 lM CFSE as described [20]
and the equivalent of 50 000 CD4+ T cells were co-cultured
with an equal number of splenocytes from CD3e–/– male mice
in a total volume of 200 lL in RPMI 1640 medium with 10%
FCS. Cells were harvested after 4 days and the CFSE dilution
profiles of CD4+ T cells assessed by FACS.

Adoptive transfer experiments

Thymocytes from female Ml mice were labeled with CFSE, and
the equivalent of 2�106 CD4 SP thymocytes was transferred to
unconditioned RAG2–/–/cc

–/– or RAG2–/–/cc
–/–/IL-7–/– mice

(on the C57BL/6 background) via the retro-orbital chamber.
Splenocytes were harvested 2 wk later and CFSE+ CD4+ Tcells
enumerated and analyzed by FACS.
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Abstract 

Several cytokines (including IL-2, IL-7, IL-15 and IL-21) that signal through receptors 

sharing the common γ chain (γc) are critical for the generation and peripheral homeostasis of 

naive and memory T cells. Recently, we demonstrated that effector functions fail to develop 

in CD4+ T cells that differentiate in the absence of γc. In order to assess the role of γc 

cytokines in cell-fate decisions that condition effector versus memory CD8+ T cell generation, 

we compared the response of CD8+ T cells from γc
+ or γc

– P14 TCR transgenic mice after 

challenge with lymphocytic choriomeningitis virus. The intrinsic IL-7-dependent survival 

defect of γc
– naive CD8+ T cells was corrected by transgenic expression of human Bcl-2. We 

demonstrated that although γc-dependent signals are dispensable for the initial expansion and 

the acquisition of cytotoxic functions following antigenic stimulation, they condition the 

terminal proliferation and differentiation of CD8+ effector T cells (i.e.: KLRG1high CD127low 

short-lived effector T cells) via the transcription factor, T-bet. Moreover, the γc-dependent 

signals that are critical for memory T cell formation are not rescued by Bcl2 overexpression. 

Together, these data reveal an unexpected divergence in the requirement for γc cytokines in 

the differentiation of CD4+ versus CD8+ cytotoxic T lymphocytes. 

 

 



 115 

Introduction 

 CD8+ T cells are an essential component of the adaptive immune response to 

pathogens including viruses, bacteria and protozoa. Multiple parameters condition the 

generation of short-term effector CD8+ T cells and long-term memory CD8+ T cells (1, 2). 

Upon recognition of pathogen-encoded peptides and appropriate costimulation, CD8+ T cells 

undergo massive clonal expansion, and activation with profound modifications in their gene 

expression profile, leading to the differentiation of potent anti-viral effector cells (3, 4). These 

effector T cells patrol non-lymphoid tissues, and via rapid cytokine secretion and granule 

exocytosis, eliminate infected cells. The majority of CD8+ effector cells die from apoptosis, 

mediated by the B cell lymphoma 2 (Bcl-2) family proteins and the cell surface receptor 

CD95 (5). Immune protection is established by the T cells surviving this ‘contraction’ phase 

(6) and maintained by slow basal homeostatic proliferation (7). Memory CD8+ T cells 

conserve key effector traits and high proliferative potential, thus ensuring rapid protection 

upon re-infection (8).  

In recent years, the cell-fate programming of CD8+ T cells has been a major focus of 

interest. Indeed, a better understanding of the signals involved in the transition from effector 

to memory T cells could lead to the design of better vaccination strategies. The IL-7 receptor 

alpha-chain (CD127) has been proposed as a marker for CD8+ T cells destined to become 

memory cells (9) and the differential expression of CD127 and the killer cell lectin-like 

receptor G1 (KLRG1) by activated CD8+ T cells identified two subsets with distinctive cell 

fates: the KLRG1high CD127low short-lived effector cells (SLEC) and KLRG1low CD127high 

memory precursor effector cells (MPEC) (10, 11). The strength and duration of the antigenic 

signal, the CD4+ help received and the cytokine milieu have all been shown to influence the 

outcome of the CD8+ T cell response (1, 12, 13). However, specific versus redundant roles for 
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cytokines signaling through the common gamma chain (γc) in this cell fate decision 

programming are still poorly defined.  

Interleukin (IL)-2, -7, -15 and -21 share the γc receptor chain and its downstream 

signaling pathway, and influence distinct steps in the CD8+ T cell immune response. The 

indispensable role for γc cytokines in central T cell development, and peripheral T cell 

homeostasis is well established (7, 14). While IL-7 is vital for the survival and homeostatic 

proliferation of naive and memory CD8+ T cells (15), IL-2 and IL-15 are essential for the 

acute proliferation, contraction and cell-renewal capacity of the CD8+ T cells (16-18). 

Moreover, IL-21 production by CD4+ T cells promotes the cytotoxic function and 

maintenance of CD8+ effector T cells in the context of chronic viral infections (19, 20). While 

these studies define roles for γc cytokines in CD8+ T cell memory generation, it is unclear at 

which step of the differentiation process these cytokines impact and what is their importance 

on the cell-fate decision towards terminal differentiation versus memory generation.  

The role for γc cytokines in programming effector CD4+ T cells has been previously 

reported. Using the Marilyn TCR transgenic model of skin graft rejection, we showed that γc 

cytokines condition the progressive differentiation of CD4+ T cells (21). In the absence of γc, 

‘spurious’ CD4+ T cells are generated that show an activated phenotype (CD44hiCD62Llo) and 

migrate to the skin, but are unable to elicit graft rejection secondary to severe deficiencies in 

cytotoxic effector molecules and cytokine production capacities (21). The γc-dependent 

signals involved in programming cytotoxic CD4+ T cells engage both STAT5 and PI3K-

dependent pathways (22). Based on these results, we hypothesized an analogous role for γc 

cytokines in the differentiation of CD8+ T cells. However, γc cytokines are pleiotropic factors 

that can play complementary or overlapping roles in the CD8 differentiation process. In order 

to assess the impact of γc cytokines on CD8 T cell programming, we derived TCR transgenic 

mice on the recombination-activating gene 2 (Rag2) deficient background with or without γc. 
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Furthermore, we corrected the intrinsic survival defect of γc
-/- naïve CD8+ T cells by 

expression of human Bcl2. This approach allowed us to study the entire CD8+ T cell 

differentiation program in the absence of γc.  



 118 

Results  

Expression of Bcl2 rescues peripheral naive P14 CD8+ T cells in the absence of γc  

γc-deficiency affects not only the survival of naive T cells, but also leads to continuous 

accumulation of activated T cells in secondary lymphoid organs (23, 24). In contrast, γc
-/- 

TCR transgenic (Tg) mice on the Rag2 deficient background harbor monoclonal populations 

of naive T cells, thus providing an approach to study the role of γc cytokines during immune 

responses (21, 25). P14 TCR Tg mice that develop CD8+ αβ T cells specific for the envelope 

glycoprotein 33-41 (GP33-41) of the lymphocytic choriomeningitis virus (LCMV) were crossed 

onto the Rag2-/-γc
+/+ or Rag2-/-γc

-/- background. In the absence of γc, intrathymic development 

of P14 CD8+ SP T cells was strongly reduced and cells failed to accumulate in peripheral 

lymphoid organs (Fig S1A-B). The residual peripheral γc
-/- CD8+ P14 T cells display a naive 

profile (data not shown) but markedly reduced Bcl-2 levels (Figure S1A) similar to that 

previously described for γc-deficient CD4+ T cells (26). Expression of the human Bcl-2 

transgene could rescue the peripheral T cell survival defect in Rag2-/-γc
-/- P14 mice, generating 

naïve splenic CD8+ T cells with a normal phenotype and number (Figure S1). Bcl-2 

transgenic Rag2-/-γc
-/- P14 mice therefore provide an experimental model to assess the 

importance of γc signals in the differentiation of effector and memory CD8+ T cells that elicit 

anti-viral immunity. 

 

γc-dependent cytokines condition the proliferation and terminal differentiation of KLRG1high 

CD127low SLEC  

We adoptively transferred P14 Bcl2 γc-competent or γc-deficient CD8+ T cells into 

naive C57BL/6 (Ly5.1) recipients and infected them with LCMV Armstrong. Controls 

included transfer of P14 CD8+ T cells that did not harbor the Bcl2 transgene. Following 

antigenic stimulation in vivo, both P14 Bcl2 γc
+/+ and γc

-/- cells, as well as P14 γc
+/+ cells, 
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proliferated initially with the same kinetics, although the peak of expansion was significantly 

reduced in the absence of γc (50 X 106 versus 6 X 106 antigen-specific cells respectively, 

p<0.0001) (Fig 1A). Interestingly, the dynamics of activation (assessed by monitoring cell 

surface markers) was largely unchanged in the absence of γc (Fig 1B and S2A). Since recent 

reports have described two CD8+ T cell subsets (based on the expression of KLRG1 and 

CD127) with distinct functional properties (10, 11), we analyzed splenocytes of infected mice 

and found a preferential accumulation of KLRG1low CD127high MPEC over KLRG1high 

CD127low SLEC in γc-deficient CD8+ T cell effectors (Fig 1C-D and S2B). As the 

transcription factors T-bet and eomesodermin are implicated in CD8 T cell differentiation (27, 

28), and as SLEC formation requires T-bet expression (10), we analyzed their expression in 

activated WT and γc-deficient P14 Bcl2 CD8+ T cells. Interestingly, the reduction in the 

SLEC subset was correlated with decreased T-bet expression in γc
-/- CD8+ T cells (Fig 1E). 

Furthermore, Tbx21 and Klrg1 transcripts were markedly reduced at a single-cell level in γc
-/- 

CD8+ T cells, while Eomes levels remained comparable to γc
+ P14 Bcl2 CD8+ T cells (Fig 1F 

and S2C). Together, our data indicate that γc cytokines regulate T-bet expression and thereby 

condition the generation of KLRG1high CD127low SLEC. 

 

CD8 T cell killing function is unaffected by the absence of the γc chain, despite reduced 

granzyme B levels  

 We next characterized the impact of these alterations on the functional capacities of γc
-/- 

P14 Bcl2 CD8+ T cells. As shown in Fig 2A, granzyme B protein levels were strongly 

decreased in activated CD8+ T cells in the absence of γc, while perforin protein levels were 

unaffected. This granzyme B defect was restricted to KLRG1lo cells (Fig 2A, S3A). 

Morphological analysis of cytotoxic granules demonstrated that granule size and shape were 

unchanged in γc
-/- CD8+ T cells although average number of granules per cell was reduced 
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(Fig 2B). Regarding cytokine production, we found that a similar proportion of γc
-/- CD8+ 

effector T cells produced IFNγ and TNFα following in vitro restimulation as their γc
+ 

counterparts, although a significant increase (2-fold) in triple producers (IFNγ+ TNFα+ IL-2+ 

cells; p=0.002) were found in the absence of γc (Fig 2C and S3B, C).  

We next assessed the killing capacity of γc
-/- CD8 T cells. As perforin-deficient (Pfp-/-) 

mice show defective CTL and NK cell killing (29), we generated chimeric mice by adoptive 

transfer of naïve γc
+ or γc

-/- P14 Bcl2 CD8+ T cells into Pfp-/- recipients. Mice were infected 

with LCMV, and on day 7, we performed an in vivo killing assay using GP33-41-loaded target 

cells. Surprisingly, γc
-/- CD8+ T cells were as potent killers as their γc

+/+ counterparts (Fig 2D). 

We next determined whether γc
-/- P14 Bcl2 T cells could correct or prevent LCMV-induced 

hemophagocytic lymphohistiocytosis syndrome in Pfp-/- hosts. In this model, dysregulated 

cytotoxic function in response to LCMV infection leads to subsequent macrophages 

activation, hypercytokinemia, and multi-organ infiltration, resulting in hepatosplenomegaly, 

pancytopenia, fever/hypothermia, weight loss and death (30). Pfp-/- recipients receiving either 

γc
+ or γc

-/- CD8+ T cells survived equally well through the period following LCMV infection 

and remained healthy (Fig 2E). Both groups maintained their weight, had stable body 

temperature (Fig S4A, B) and failed to develop organomegaly or pancytopenia (Fig S4C, D). 

Together, our data indicate that, despite lower number of KLRG1high CD127low SLEC and 

decreased granzyme B levels, γc
-/- CD8+ T cells have potent effector functions.  

 

Defective CD8+ T cell expansion due to lack of responsiveness to γc
 cytokines in the late 

proliferative phase 

Since the significant differences in CD8+ T cell numbers at the peak of proliferation 

could be the result of either abnormal proliferation or increased apoptosis, we analyzed 

expansion kinetics in the early post-infection period by CFSE-labeling the CD8 T cells before 
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adoptive transfer and infection. The initial precursor frequency was identical in both groups 

with ∼10% surviving cells after transfer ((31), and data not shown). Furthermore, as shown in 

Fig 3A, the initial kinetics of T cell proliferation was unaffected in the absence of γc, with 

cells dividing at least 4-5 times in the first three days post infection. Although the percentage 

of cycling cells is identical at day 5 between both groups, γc
-/- cells proliferated less at day 7, 

with 2.5-fold fewer cells in the S/G2/M phase of the cell cycle and a 1.3-fold increase in non-

proliferating cells (Ki-67low) (Fig 3B). Flow cytometric analysis showed no abnormalities in 

the apoptotic pathway during the contraction period, with normal expression of Fas, TNFRI, 

TRAILR, caspase 3 and normal mitochondrial membrane potential (Fig 3C and data not 

shown). Finally, γc
-/- P14 Bcl2 CD8+ T cells did not demonstrate a survival defect in culture 

(Figure 3D). Collectively, these results demonstrate the requirement for γc-dependent 

signaling for the late phase of the proliferative response (day 5 to 7) in order to maintain an 

elevated number of effector CD8+ T cells.   

 

Memory cell generation requires γc-dependent Bcl2-independent signals  

In order to evaluate whether perturbed differentiation of γc
-/- CD8+ T had an impact on 

the development of memory T cells, we studied LCMV-infected chimeric mice more than 90 

days after infection. Surprisingly, γc
-/- P14 Bcl2 CD8+ T cells were not detected after the 

contraction phase (from day 13 onward, n>15 mice; Fig 4A), despite the presence of 

KLRG1low CD127high MPEC at the peak of the response (Fig 1D). We failed to detect γc
-/- P14 

Bcl2 CD8+ T cells in the spleen or the bone marrow of chimeric mice 90 days post-infection, 

and re-infection with LCMV Armstrong did not elicit memory responses from γc-deficient 

P14 Bcl2 CD8+ T cells (Fig 4B and data not shown). These results identify a critical γc 

cytokine-dependent but Bcl2-independent signaling pathway for memory T cell generation.
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Discussion 

Differentiation of CD8+ T cells from the naive state to the fully competent effector cell 

stage is a progressive process involving both intrinsic and extrinsic factors. It has been 

proposed that very early in the immune response, CD8+ T cells are imprinted to become either 

short-lived terminal effectors or long-lived memory cells (11, 32). This process is influenced 

by numerous parameters, including the duration of antigen exposure and the presence of 

costimulatory molecules and soluble factors (IL-2, IL-21) derived from CD4+ T cells (1). 

Stromal cells also play critical roles by elaborating nutritive factors (including IL-7 and IL-

15) that promote T cell survival (33). Collectively, the γc cytokines IL-2, -7, -15 and -21 have 

been implicated in T cell survival, activation, differentiation and memory T cell formation 

and maintenance (14, 16, 18, 34). 

We previously used γc-deficient mice to assess the unique and redundant roles for γc 

cytokines in CD4+ T cell differentiation (21). We found that γc cytokines (especially IL-7, IL-

15) conditioned the progressive differentiation of CD4+ T cells and in the absence of γc, 

activated T cells were generated but essentially lacked effector functions. Our present results 

demonstrate that many aspects of the antigen-driven CD8+ T cell primary immune response 

proceed normally in the absence of γc, including the initial clonal expansion, the classical 

phenotypic changes associated with activation and the generation of robust effector capacities. 

These results clearly demonstrate that the requirements for γc cytokines in CD4+ versus CD8+ 

T cell differentiation are remarkably divergent. 

What could account for this difference? The inflammatory cytokine milieu, that can 

include IL-12/IL-23 and type I/II interferon, has been shown to influence the T cell 

differentiation process (13, 35). In the LCMV model, type I IFN is abundantly produced and 

may provide accessory cell-dependent signals that can functionally replace the signals 

provided by γc cytokines via functionally redundant JAK/STAT activation pathways (36, 37). 
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An alternative explanation would imply that CD4+ T cell differentiation would be more 

dependent on γc cytokines that are elaborated during interactions with accessory cells (DC, 

stroma) than CD8+ T cells. It is known that CD4+ T cells have a strong requirement for co-

stimulatory signals during their differentiation (38) that likely extends to γc cytokines (21). In 

contrast, CD8+ T cell differentiation appears intrinsically programmed following antigen 

encounter (32, 39) that would obviate requirements for prolonged γc cytokine stimulation. 

While robust CD8+ T cell differentiation was observed in the absence of γc, γc-

dependent signals were necessary for the transition from effector to memory cell, affecting the 

differentiation and late proliferation of KLRG1high CD127low short-lived effector cells 

(SLEC). Furthermore, despite the presence of Bcl2+ KLRG1low CD127high long-lived memory 

precursors (MPEC), γc signals were essential for the generation and maintenance of memory 

cells. Together, our results define the critical stages for γc cytokines in the programming of 

terminal effector CD8+ T cells and in the Bcl2-independent survival and homeostatic 

proliferation of memory CD8+ T cells. 

Previous studies demonstrated that γc-dependent cytokines are important determinants 

of CD4+ and CD8+ T cell fate, with IL-2, -7, -15 and -21 impacting not only on the 

differentiation process but also the ability to generate and sustain memory responses (7, 14, 

16, 18, 34). In all cases, memory CD8+ T cells were detected, albeit at reduced levels (9, 15, 

19, 20, 40-45). This reduced memory formation, however, might have been secondary to 

reduced T cell survival, as γc cytokines promote homeostasis through enhanced expression of 

anti-apoptotic Bcl2 family members (46, 47). Here we find that in the absence of all γc 

cytokine signals, memory CD8+ T cell formation is completely abolished. Moreover, this γc-

dependent role in memory formation is Bcl2-independent. These observations suggest that 

multiple γc cytokines condition memory formation through survival-independent mechanisms. 
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What γc cytokines are involved in this process? Antigen-specific memory CD8+ T cells 

are detected in the absence of IL-2, IL-7, IL-15 or IL-21 (19, 20, 40-42, 44). Moreover, 

adoptive transfer of P14 CD122-/- cells (lacking IL-2Rβ) generates a pool of memory CD8+ T 

cells (unpublished results), indicating that a combination of γc cytokines are involved. IL-7 

and IL-15 have overlapping roles in T cell homeostasis (14, 48, 49) and a similar synergy may 

operate during memory generation. The downstream targets of IL-21 in memory T cells are 

poorly defined and could promote memory through distinct pathways. 

Triggering of γc receptors is linked to enhanced survival. Anti-apoptotic molecules 

other than Bcl2 are targets of γc cytokines, including Mcl-1 that is downstream of IL-7 (50). 

γc-dependent cytokines also regulate transcriptional profiles. One example is the B cell 

transcription repressor Blimp-1 that is involved in the terminal differentiation of CD8+ T cells 

(51). Of note, Blimp1-/- CD8 T cells fail to upregulate granzyme B and KLRG1 upon 

activation (52, 53). 

Collectively, our results reveal an unexpected divergence in the requirement for γc 

cytokines in the differentiation of CD4+ versus CD8+ cytotoxic T lymphocytes. Nevertheless, 

γc cytokines remain critical determinants of T cell memory. These observations suggest that 

selective modulation of γc cytokines could impact strongly on immunotherapies and should be 

taken into account when optimizing vaccine protocols.  
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Materials and Methods 

Mice 

CD45.2 Rag2-/- P14 TCR Tg mice (P14; expressing a TCR specific for the LCMV GP33-41 

epitope) were provided by A. Freitas (Institut Pasteur) and backcrossed onto the C57BL/6 

(B6) background. P14 Bcl2+ mice with or without the γc
 chain were then produced as 

previously described (26). P14, P14 Bcl2+ and P14 Bcl2+ γc
-/- chimeric mice were generated 

by adoptive transfer of 105 MACS-purified naive CD45.2 TCR Tg CD8+ T cells into naive 

CD45.1 B6 recipients 24 hours prior to infection. The recipients were purchased from Charles 

River (Margate, UK), and were 4-6 weeks old at the time of transfer. Chimeric mice were also 

generated in naive B6Prf1tm1sdz/J (Pfp-/-) mice provided by G. De Saint-Basile (Inserm U768, 

Paris, France). All mice were housed in specific pathogen-free facilities at the Institut Pasteur. 

 

Virus 

Stocks of the Armstrong strain of LCMV were plaque purified on Vero cells and grown in 

BHK-21 cells as described previously (54). Infectious LCMV was quantified by plaque assay. 

Mice were infected by intraperitoneal injection with 2 X 105 PFU of LCMV.  

 

Cell isolation and Flow cytometry analysis 

Single cell suspensions from thymus, spleen and bone marrow were prepared and stainings 

were performed as previously describe (26). Antibodies were purchased from eBioscience and 

BD Bioscience except for Granzyme B (Caltag), TNFR (Biolegend), T-bet (Santa Cruz 

Biotechnology) and ultra-avidin-R-phycoerythrin (Leinco). MHC class I peptide tetramers 

were made and used as described (55). Dead cells were excluded using Live/Dead Fixable 

Aqua Dead Cell stain kit (Molecular Probes, Invitrogen), except for the in vitro survival assay 
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were propridium iodide (3µM) was used. Data was acquired using a FACSCanto flow 

cytometer (BD Biosciences) and analyzed using FlowJo software (Treestar).  

 

Intracellular staining and In vivo cytotoxicity assay  

Intracellular staining was done on freshly isolated splenocytes according to manufacturer’s 

instructions, with the Fixation and Permeabilisation Kits from eBioscience or BD Bioscience. 

IFNγ, TNFα and IL-2 quantification were performed after in vitro restimulation with gp33-41 

peptide (0.2 µg/ml) in the presence of brefeldin A (10 µg/ml) for 4 hours. For cell cycle 

analysis, DAPI (Sigma) was added at the time of analysis, after intracellular staining for Ki-

67. CFSE labeling was done by incubating cells for 10 min at 37oC with 5 µM CFSE in PBS 

2% FCS. In vivo cytotoxicity assay (CTL assay) were performed as previously described (54). 

Briefly, a mixture of 107 gp33-41 peptide pulsed (10 µM) CFSEhigh-labeled (1 µM) and 107 

non-pulsed CFSElow-labeled (0,1µM) splenocytes was injected IV into Pfp-/- chimeric mice at 

day 7 post-infection. Peptide-specific cytotoxicity was determined 3 hours later.  

 

Multispectral imaging 

Cells were stained by monoclonal antibodies as described above and digital imaging was 

performed on a multispectral imaging flow cytometer (ImageStream100, Amnis Corporation, 

Seattle, WA).  At least 15,000 – 25,000 cells were imaged for each sample. The data was 

analyzed using the manufacturer's software (IDEAS, Amnis Corporation). The spot count 

algorithm included the creation of a sensitive system mask of granzyme B pixels above 

background.  Positive spots were more than one pixel in radius and twice the intensity of the 

background.  Spot counting accuracy was confirmed by manual verification of each image.  
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Single-cell gene expression analysis 

Single-cell sorting was performed on a FACSAria (BD Biosciences). Individual cells were 

analyzed for the co-expression of mRNAs coding for KLRG1 (Klrg1), CD127 (IL7ra), T-bet 

(tbx21), eomesodermin (eomes) and CD3ε (Cd3e), the latter to ensure CD8 sorting specificity 

as described (54). 
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Figure legends 

 

Figure 1. γ c-dependent cytokines condition the proliferation and terminal differentiation 

of KLRG1high CD127low SLEC. 105 P14, P14 Bcl2 or P14 Bcl2 γc
-/- CD45.2 CD8+ T cells 

were adoptively transferred into naive CD45.1 mice that were subsequently infected with 2 X 

105 PFU of LCMV Armstrong. Expansion and contraction of antigen-specific splenocytes 

were analyzed by flow cytometry at specific time points. (A) Total number of antigen-specific 

CD8 T cells was calculated based on GP33-41 tetramer and CD45.2 congenic marker staining. 

Data represent the mean ± SEM of six to twelve mice per time point, from three to five 

experiments (** p<0.005, *** p<0.0005, NS p≥0.05)  (B) Cell surface expression of the 

indicated molecules by P14 Bcl2 (shaded) and P14 Bcl2 γc
-/- (line) CD8+ T cells at baseline, 

day 5 and day 7 post-infection. Numbers indicate mean fluorescent intensity for each 

population (P14 Bcl2 top, P14 Bcl2 γc
-/- bottom). Results are representative of three to five 

separate experiments (n=7). (C, D, E) Development of short-lived effector cells (SLEC) is 

compromised in γc-deficient cells. (C-D) MPEC and SLEC subsets were analyzed at day 7 

post infection based on KLRG1 and CD127 expression. Bar graph represents the results from 

four separate experiments (mean ± SEM, n=6-12, *** p<0.0005, NS p≥0.05). Numbers in dot 

plots indicate the percentage of each correspondent population from a representative 

experiment. (E) T-bet expression was determined in P14 Bcl2 (shaded) and P14 Bcl2 γc
-/- 

(line) CD8+ T cells at day 7. Numbers indicate mean fluorescent intensity. (F) Individual P14 

Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) cells were recovered at day 7 post-infection 

and were tested directly ex vivo for their individual expression of Klrg1, IL7r, Tbx21 and 

Eomes mRNA. 50 CD3ε positive cells were included in the analysis, from four individual 

mice in two independent experiments. The percentage of tetramer+ CD45.2+ cells expressing 

the gene is represented (mean ± SEM , *** p<0.0005, NS p≥0.05). 
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Figure 2. CD8 T cell killing function is unaffected by the absence of the γ c chain, despite 

reduced granzyme B levels. (A) Day 7 infected P14 Bcl2 (shaded) and P14 Bcl2 γc
-/- (line) 

CD8+ T cells were analyzed by flow cytometry for cell surface KLRG1 expression and 

intracellular granzyme B and perforin expression. Flow cytometry plots are representative of 

eight mice from five independent experiments. Numbers on histograms indicate the mean 

fluorescent intensity of each population; numbers in dot plots indicate the percentage of cells 

in each quadrant. (B) Morphology and enumeration of granzyme B (GrzB) spots in CD8+ 

CD45.2+ cells at day 7 post infection by multispectral imaging. On the left panel, 

representative images showing cells containing 1, 2, 3, and >4 GrzB spots per cells. Images 

include bright field (BF), CD8, CD45.2, GrzB and composite of CD45.2 and GrzB (merge). 

On the right panel, bar graph showing the average distribution of spot counts (mean ± SEM) 

in P14 Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) CD8+ T cells from >5000 cells per 

mice analyzed in duplicate (* p<0.05, NS p≥0.05). (C) Splenocytes from day 7 LCMV-

infected chimeric mice were stimulated with GP33-41 peptide and analyzed for IFNγ, TNFα 

and IL-2 production by intracellular cytokine staining. Bar graph show the average percent 

cytokine production (mean ± SEM) by P14 Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) 

CD8+ T cells (n=5-6 per genotype from three independent experiments, NS p≥0.05). (D-E) 

P14 Bcl2 or P14 Bcl2 γc
-/- CD8+ T cells were adoptively transferred into naive perforin knock-

out (Pfp-/-) mice that were subsequently infected with 2 X 105 PFU of LCMV Armstrong. 

Killing function and development of hemophagocytic lymphohistiocytosis were followed 

over time. (D) In vivo CTL assay comparing day 8 P14 Bcl2 γc
+/+ (filled circle) and P14 Bcl2 

γc
-/- (opened circle) CD8+ effector T cells, to infected (filled square) and uninfected/naive 

(opened square) Pfp-/- cells. The individual percent killing over 3 hours represents the 

combined results of three independent experiments (*** p<0.0005, NS p≥0.05). (E) Survival 



 135 

of Pfp-/- (filled square) chimeric mice transferred with P14 Bcl2 (filled circle) and P14 Bcl2 γc
-

/- (opened circle) CD8+ T cells.  

 

Figure 3. Defective CD8 T cell expansion is related to lack of responsiveness to γ c
 

cytokines in the late phase of the proliferative response. (A) CFSE-labeled P14 Bcl2 or 

P14 Bcl2 γc
-/- CD45.2 CD8+ T cells were adoptively transferred into naive CD45.1 mice that 

were subsequently infected with 2 X 105 PFU of LCMV Armstrong. CFSE incorporation was 

determined by flow cytometry at day 3 post infection. Numbers indicate the percentage of 

divided cells. (B-D) P14 Bcl2 and P14 Bcl2 γc
-/- chimeric mice were generated as described in 

Fig. 2. (B) Five (left panel) and seven (right panel) days post infection, P14 Bcl2 (upper 

panel) and P14 Bcl2 γc
-/- (lower panel) CD8+ T cells were analyzed by flow cytometry for Ki-

67 and DAPI (n=3). Numbers indicate the percentage of cells in each boxed gate. (C) Cell 

surface expression of the indicated apoptotic-related molecules by P14 Bcl2 (shaded) and P14 

Bcl2 γc
-/- (line) CD8+ T cells was analyzed by flow cytometry at day 7 post-infection (n=3). 

(D) Day 5 post infection, splenocytes were recovered from the appropriate mice and kept in 

culture for 48 hours. Bar graph shows the corrected percentage of CD8+ CD45.2+ T cells alive 

based on a propidium iodide staining.  

 

Figure 4. Memory cell generation is established by γ c-dependent Bcl2-independent 

signals. P14 Bcl2 and P14 Bcl2 γc
-/- chimeric mice were generated as described in Fig. 2, and 

were followed longitudinally. (A) The frequency of GP33-41
+ CD45.2+ cells from P14 Bcl2 

(filled circle) and P14 Bcl2 γc
-/- (opened circle) CD8+ T cells is evaluated by flow cytometry 

over a 90 day time course. Results are representative of six to ten mice from three 

independent experiments. (B) Absolute number of GP33-41
+ CD45.2+ T cells in the spleen and 

bone marrow of P14 Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) chimeric mice at 90 

days post infection (n=4, N.D. not detected).  



 136 

Supporting Information (SI) 

 

Supplementary Figure 1. Bcl2 over-expression rescues peripheral naive γ c
-/- P14 CD8 T 

cells. (A) Flow cytometry analysis of P14, P14 γc
-/- and P14 Bcl2 γc

-/- thymocytes (left panel) 

and splenocytes (right panel) using a combination of CD4, CD8, GP33-41 tetramer and Bcl2 

antibodies. Mouse Bcl2 (black line), isotype control (dotted line) and human Bcl2 (red line) 

are represented when appropriate. Numbers in dot plots indicate the percentage of each 

correspondent population. Numbers in histogram indicate mean fluorescent intensity of each 

population (mouse Bcl2 in black, isotype in grey, human Bcl2 in red). Data is representative 

of three independent experiments. (B) Absolute numbers of total thymocytes, CD8 single 

positive (CD8 SP) thymocytes and splenic CD8+ Tetramer+ T cells in P14, P14 γc
-/- and P14 

Bcl2 γc
-/- mice. Five to eleven mice (5-9 weeks of age) of each genotype were analyzed. 

Differences were significant when comparing the three different genotypes in each cellular 

population (* p<0.05, ** p<0.005, *** p<0.0005). (C) Cell surface expression of the indicated 

molecules by P14 Bcl2 (shaded) and P14 Bcl2 γc
-/- (line) CD8 T cells at baseline. Results are 

representative of at least three separate experiments. 

 

Supplementary Figure 2. γ c-dependent cytokines are dispensable for the acquisition of 

numerous activation markers, but are essential in the differentiation of SLEC. 105 P14 

Bcl2 or P14 Bcl2 γc
-/- CD45.2 CD8 T cells were adoptively transferred into naive CD45.1 

mice that were subsequently infected with 2 X 105 PFU of LCMV Armstrong. (A) Cell 

surface expression of the indicated molecules by P14 Bcl2 (shaded) and P14 Bcl2 γc
-/- (line) 

CD8 T cells at day 7 post-infection. Results are representative of three to five separate 

experiments (n=7). (B) MPEC and SLEC subsets were analyzed at day 7 post infection, and 

are represented in bar graphs by the mean fluorescent intensity of KLRG1 and CD127 from 
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four separate experiments (mean ± SEM, n=6-12, *** p<0.0005, NS p≥0.05). (C) Individual 

P14 Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) splenocytes were recovered at day 7 

post-infection and were tested directly ex vivo co-expression of the indicated mRNAs. Each 

horizontal row represents the pattern of gene expression in the same single cell; gene 

expression is indicated in black, negative results are shown in white.  

 

Supplementary Figure 3. γc-deficient CD8 effector T cells present decreased granzyme B 

levels but conserve the ability to secrete cytokines upon restimulation. (A) Day 7 infected 

P14 Bcl2 (black bars) and P14 Bcl2 γc
-/- (white bars) CD8 T cells were analyzed by flow 

cytometry for cell surface KLRG1 expression and intracellular granzyme B. Bar graph 

represent the percentage (left panel) and mean fluorescent intensity (right panel) of granzyme 

B+ cells in antigen-specific KLRG1high and KLRG1low population (mean ± SEM, n=4, * 

p<0.05, NS p≥0.05). (B-C) Splenocytes from day 7 LCMV-infected chimeric mice were 

stimulated with GP33-41 peptide and analyzed for cytokine production by intracellular staining. 

(B) Bar graph shows the average mean fluorescent intensity of each cytokine by P14 Bcl2 

(black bars) and P14 Bcl2 γc
-/- (white bars) CD8 T cells (n=5-6 per genotype from three 

independent experiments, NS p≥0.05). (C) Cytokine production presented by flow cytometry 

plots from a representative experiment; numbers indicate the percentage of cells in each 

correspondent quadrant. Bar graph represents the corresponding percentage of cells secreting 

only IFNγ, IFNγ and TNFα, or simultaneously IFNγ, TNFα and IL-2 for each genotype 

(mean ± SEM, * p<0.05, ** p<0.005, NS p>0.05).  

 

Supplementary Figure 4. γ c-deficient CD8 T cells hinder the development of 

hemophagocytic lymphohistiocytosis in perforin knock-out mice. P14 Bcl2 or P14 Bcl2 γc
-

/- CD8 T cells were adoptively transferred into naive perforin knock-out (Pfp-/-) mice that 
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were subsequently infected with 2 X 105 PFU of LCMV Armstrong. (A) Mean body weight 

and (B) mean core body temperature of Pfp-/-  (filled square) chimeric mice transferred with 

P14 Bcl2 (filled circle) and P14 Bcl2 γc
-/- (opened circle) CD8 T cells. The data is 

representative of the mean ± SEM for six to ten mice per group. (C) Spleen (left panel) and 

liver (right panel) weight relative to body weight at day 7 post infection in P14 Bcl2 (black 

bars), P14 Bcl2 γc
-/- (white bars) chimeric mice and non-chimeric Pfp-/-  (grey bars) mice (n=4-

6). Differences are not significant between P14 Bcl2 and P14 Bcl2 γc
-/- groups but each of 

them is statistically different from the Pfp-/- control group (*p<0.05, NS p≥0.05). (D) 

Hemoglobin level, platelet count, lymphocyte count and neutrophil count at day 12 post 

infection in P14 Bcl2 (black bars), P14 Bcl2 γc
-/- (white bars) chimeric mice and non-chimeric 

Pfp-/-  (grey bars) mice. Grey shaded area represents the normal values for naive Pfp-/- control 

mice (mean ± SEM). Differences are not significant between P14 Bcl2 and P14 Bcl2 γc
-/- 

groups but each of them is statistically different from the Pfp-/- control group (** p<0.005, 

*** p<0.0005, NS p≥0.05). 

 



Decaluwe et al. Fig 1



Decaluwe et al. Fig 2



Decaluwe et al. Fig 3



Decaluwe et al. Fig 4



Decaluwe et al. Fig S1



Decaluwe et al. Fig S2



Decaluwe et al. Fig S3



Decaluwe et al. Fig S4



 147 

 
 
 
 
 

III. Article 3: Epitope specificity and relative clonal abundance 

do not affect CD8 T cell differentiation patterns during 

lymphocytic choriomeningitis virus infection 

Munitic I*, Decaluwe H*, Evaristo C, Lemos S, Wlodarczyk M, Worth A, 

Le Bon A, Slin LK, Rivière Y, Di Santo JP, Borrow P, Rocha B. J Virol 2009, 

83: 11795-11807. (*authors contributed equally) 
 
 



JOURNAL OF VIROLOGY, Nov. 2009, p. 11795–11807 Vol. 83, No. 22
0022-538X/09/$12.00 doi:10.1128/JVI.01402-09
Copyright © 2009, American Society for Microbiology. All Rights Reserved.

Epitope Specificity and Relative Clonal Abundance Do Not
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To evaluate the impact of immunodominance on CD8 T-cell properties, we compared the functional prop-
erties of dominant and subdominant populations in the response to lymphocytic choriomeningitis virus
(LCMV). To improve functional discrimination, in addition to the usual tests of phenotype and function, we
used a sensitive technique that allows the screening of all CD8 effector genes simultaneously in single cells.
Surprisingly, these methods failed to reveal a major impact of clonal dominance in CD8 properties throughout
the response. Aiming to increase clonal dominance, we examined high-frequency transferred P14 T-cell
receptor transgenic (TCR Tg) cells. Under these conditions LCMV is cleared faster, and accordingly we found
an accelerated response. However, when Tg and endogenous cells were studied in the same mice, where they
should be subjected to the same antigen load, they showed overlapping properties, and the presence of P14 cells
did not modify endogenous responses to other LCMV epitopes or a perturbed immunodominance hierarchy in
the memory phase. Using allotype-labeled Tg cells, we found that during acute infection up to 80% downregu-
lated their TCR and were undetectable by tetramer binding, and that tetramer-negative and tetramer-positive
cells had very different features. Since Tg cells are not available to evaluate immune responses in humans and,
in many cases, are not available from the mouse, the tetramer-based evaluation of early immune responses in
most situations of high viremia may be incomplete and biased.

The lymphocytic choriomeningitis virus (LCMV)-induced
immune cell response in mice is particularly impressive in its
breadth, since at the peak of the response �90% of activated
splenic CD8� T cells are directed against 28 defined epitopes
in H-2b mice (23, 24, 27). The immunodominance hierarchy
then observed may be determined by a variety of parameters,
including epitope prevalence, antigen processing and/or its
binding affinity to major histocompatibility complex (MHC),
T-cell precursor frequency and/or recruitment, and T-cell re-
ceptor (TCR) affinity and avidity (55). However, the extent to
which this immunodominance guides functional performance
still is unknown. Related to this issue is the question of
whether the information generated from studies involving ar-
tificially induced immunodominance by the adoptive transfer
of TCR transgenic (Tg) cells at a high precursor frequency can
be generalized to endogenous cells, which are present in small
numbers (10�4 to 10�5) and consist of polyclonal T-cell sub-

populations with different avidities. It was suggested recently
that CD8� TCR Tg cells originating from precursors intro-
duced at unnaturally high frequencies exhibit altered differen-
tiation during infection, as they were shown to reexpress
CD62L and interleukin-7R (IL-7R) much sooner than endog-
enous cells (2, 26). However, it remains controversial whether
these findings reflect, as suggested, major differences in differ-
entiation pathways (2, 26) or whether the observed dissimilar-
ities are due to differences in differentiation kinetics (35).

Cytotoxic effector CD8� T cells generated in various infec-
tious models traditionally were regarded as uniform popula-
tions that could secrete gamma interferon (IFN-�) and tumor
necrosis factor alpha (TNF-�) upon in vitro restimulation and
exert cytotoxic effects (12). However, the current methods used
to study CD8 function during immune responses have several
limitations. Cells producing cytokines usually are not detected
directly ex vivo, because these proteins, once produced, are
immediately secreted into the environment and do not accu-
mulate inside the cell in amounts sufficient to be visualized by
intracellular staining. Therefore, cytokine production currently
is detected after in vitro restimulation, but under these condi-
tions antigen-experienced cells from a normal response (where
cells are not tolerized) all score very similarly, i.e., it is no
longer possible to distinguish the expansion phase, effector
peak, or memory cells’ cytokine expression capacities; these
tests similarly identify all antigen-specific cells throughout the
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response (29). Concerns were raised that the in vitro restimu-
lation necessary for revealing many functional traits could re-
sult in the erroneous overestimation of the number and quality
of effector cells present in situ at any given time. Indeed, it was
shown that in vitro restimulation could induce major alter-
ations in ex vivo readouts: IFN-� mRNA expression frequen-
cies of 10% evaluated ex vivo were shown to increase to 90%
(47), and TNF-� expression increased from �1 to 100% after
a 4-h peptide stimulation (31). These differences may be due to
the organ’s three-dimensional structure, which significantly
modifies CD8 responses (38). In addition, cytokine secretion
greatly depends on the strength of stimulation (16, 37). There-
fore, the in vitro environment may fail to reproduce the in vivo
cell interactions, the peculiar inflammatory environment in-
duced by the infection, and the local amount of pathogen-
derived peptides.

To monitor CD8 differentiation as it unfolds in vivo, we
recently developed a sensitive reverse transcription-PCR (RT-
PCR) method capable of measuring the expression of up to 20
genes simultaneously in the same cell without further in vitro
manipulation. We showed that this method allows a much
better discrimination of cell properties throughout the immune
response compared to that of more conventional approaches
(28, 32, 33). We could discriminate very different cytokine
mRNA expression profiles at different phases of the response.
These and other gene expression profiles predicted very dif-
ferent functional properties of CD8 T cells in early expansion,
response peak, or memory phase that were confirmed by in
vivo functional tests. Notably, we also found that the coexpres-
sion frequency of mRNAs coding for perforin and granzyme B
in the same cell directly predicted CD8 T cells’ cytotoxic ca-
pacity (32).

As the approach described above provided us with a more
detailed analysis of the behavior of CD8� T cells during im-
mune responses, we applied it together with other more con-
ventional approaches to study the influence of clonal domi-
nance in the behavior of CD8 T cells after infection. We
studied endogenous cells responding to immunodominant
(NP396 and GP33) and subdominant (GP276) LCMV
epitopes and found they had similar properties, suggesting that
the infectious environment rather than TCR specificity or rel-
ative clonal abundance had the major influence in shaping
T-cell properties. To amplify differences in relative clonal
abundance, we further compared high-frequency transferred
TCR Tg cells specific for the GP33 epitope (P14) to the en-
dogenous cells recognizing the same or other LCMV peptides.
Surprisingly, we found that previously reported differences in
Tg behavior (2) could be fully explained by differences in the
response kinetics, since they were not found when Tg and
endogenous cells were studied in the same mouse. Moreover,
P14 transfers did not modify the endogenous response to other
LCMV epitopes or the immunodominance hierarchy in the
memory phase. Finally, in these adoptive transfer studies we
could monitor the transferred Tg population by both allotype
labeling and GP33 tetramer binding. We found that during the
expansion phase, a substantial fraction of allotype-positive Tg
cells downregulated TCR expression and could not be recog-
nized by tetramer binding, and that tetramer-negative (tetneg)
and tetramer-positive (tetpos) cells had very different proper-
ties. These results reveal that the evaluation of the early im-

mune response in normal individuals by tetramer binding is
incomplete and may be very biased. Thus, TCR Tg cells, be-
cause of their ease of detection by allotype markers, may pro-
vide the only means of accurately characterizing the entire
spectrum of activated CD8 T cells in the early stages of the
immune response.

MATERIALS AND METHODS

Mice. CD45.2 Rag2�/� P14 TCR Tg mice (P14) expressing a TCR specific for
LCMV epitope GP33-41 (GP33) and backcrossed onto the C57BL/6 (B6) back-
ground were bred at the Centre de Distribution, Typage et Archivage (CDTA,
Orléans, France). B6.CD45.1 and B6.CD45.2 mice were purchased from Charles
River (Margate, United Kingdom) and the Jackson Laboratory (Bar Harbor,
ME). Animal studies were carried out according to United Kingdom Home
Office regulations or the University of Massachusetts Medical School, Depart-
ment of Animal Medicine, regulations and were approved by the site ethical
review committee.

Antibodies, MHC class I (MHC-I) tetramers, and other reagents. Labeled
antibodies to CD8, CD45.2, CD45.1, TCR��, CD69, CD3, Ly6C, CD25, CD27,
CD127, CD44, CD122, KLRG1, IFN-�, TNF-�, and IL-2 and isotype-matched
control antibodies were from either BD Biosciences (San Jose, CA) or eBio-
science (San Diego, CA). Granzyme B was from Caltag. GP33-41 H-2Db (GP33),
NP396-404 H-2Db (NP396), and GP276-286 H-2Db (GP276) tetramers were
obtained from Beckmann Coulter (Marseille, France). 5-(6)-Carboxyfluorescein
diacetate succinimidyl ester (CFSE) was obtained from Molecular Probes (Eu-
gene, OR).

Viral growth and titration and infection of mice. LCMV strain Armstrong
(clone 5.3b) was grown in BHK-21 cells, and infectious LCMV was quantitated
by plaque assay on Vero cell monolayers as previously described (9). B6 mice
were infected intraperitoneally with 2 � 105 PFU of LCMV Armstrong. Some
animals were inoculated with 5 � 103 or 5 � 105 TCR Tg cells (prepared from
the lymph nodes of P14 mice) 1 day prior to infection.

CFSE labeling, intracellular staining, and in vivo cytotoxicity assays. CFSE
labeling was done by incubating cells for 10 min at 37°C with 1 	M CFSE in
RPMI medium. Cells were labeled with CFSE by incubation for 10 min at 37°C
with 1 	M CFSE in RPMI. For intracellular cytokine staining, splenocytes from
LCMV-infected mice were incubated without peptide or with 0.2 to 0.4 	g/ml
NP396, GP33, or GP276 peptide for 5 h in the presence of 10 	g/ml of brefeldin
A, and then cytokine levels were determined. Granzyme B staining was per-
formed without restimulation. Intracellular staining was performed using the
Cytofix/Cytoperm kit (BD Biosciences, San Jose, CA) according to the manu-
facturer’s instructions. In vivo cytotoxicity assays were performed as previously
described (4). Briefly, a mixture of 107 GP33 or NP396 peptide-pulsed (1 	M)
CFSE-labeled and 107 nonpulsed nonlabeled splenocytes was injected intrave-
nously into LCMV-infected or control mice at 8 and 60 days postinfection.
Peptide-specific cytotoxicity was determined in the spleen 12 h later and was
calculated using the following formula: 100 � {100 � [(% peptide pulsed in-
fected/% peptide nonpulsed infected)/(% peptide pulsed control/% peptide non-
pulsed control)]}.

Single-cell purification and gene expression analysis. The purification and
single-cell sorting of CD8 T cells was described previously (32). P14 cells were
distinguished from endogenous GP33-specific cells by the expression of a con-
genic marker. Each individual cell was analyzed for the coexpression of mRNAs
coding for TGF-� (Tgfb1), TNF-� (Tnf), IL-2 (Il2), IFN-� (Ifng), perforin (Prf1),
granzyme A (Gzma), granzyme B (Gzmb), FasL (Fasl), and CD3ε (Cd3ε), the
latter to ensure CD8 sorting specificity. The accuracy and efficiency of the
method were described previously (33).

Immunosuppression protocol. Two months after LCMV infection, mice were
depleted of T cells by the intraperitoneal injection of 500 	g of anti-CD8�
antibody (clone 53.6.7) and 500 	g of anti-Thy1.2 antibody (clone 30H12) twice
per week for five consecutive weeks, and lung, lymph nodes, spleen, kidney,
testes, brain, liver, and bone marrow were harvested for the determination of
virus titers. Virus titers in spleen, serum, or other tissues were determined by
plaque forming (49).

Statistical analysis. Associations or dissociations between the pattern of ex-
pression of different genes and differences in the expression of individual genes
between different populations of cells were analyzed using a two-tailed Fisher’s
exact test. A P value of �0.05 was considered statistically significant.

Gene nomenclature. Abbreviations used for mRNAs were those recom-
mended by the International Committee on Standardized Genetic Nomenclature
for Mice.
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RESULTS

Endogenous CD8� T cells with different epitope specificities
exhibit similar differentiation patterns after LCMV infection.
Although a reproducible response hierarchy is found during
LCMV infection in mice (15, 29), it still is unclear whether
dominant and subdominant T cells are functionally distinct
and/or whether their differentiation kinetics differ. To address
this, first we screened responding cells for the expression of 14
effector genes known to be expressed by T lymphocytes (32).
We found that during LCMV infection, only eight of these
genes were expressed. We evaluated the pattern of these
genes’ expression in CD8� T-cell populations specific for two
dominant LCMV epitopes (NP396 and GP33) and one sub-
dominant epitope (GP276) following the infection of mice with
LCMV Armstrong, which should cover all effector mediators
during this response. The ratio between the most and the least
abundant populations (NP396 and GP276 specific) was ap-
proximately 1:3 to 1:4, and the size of the GP33-specific pop-
ulation was between these levels (Fig. 1A), which is consistent
with observations made in previous studies (29). At days 4 to 5
postinfection, ex vivo cytokine gene expression was identical
between cells responding to all three epitopes, and approxi-
mately half of screened cells expressed Ifng and Tgfb1 (al-
though they were not always coexpressed), while Tnf was ex-
pressed in only a minority of cells (Fig. 1B). The frequency of
cells expressing effector molecules with direct cytotoxic poten-
tial (Gzma, Gzmb, and Prf1) was indistinguishable between
GP33- and NP396-specific populations. The only statistically
significant difference between the two dominant and the
subdominant population was that the latter expressed less
Gzma (Fisher’s exact test; P 
 0.0236 for NP396 versus
GP276 and P 
 0.0172 for GP33 versus GP276). However,
at day 8 the differences were abolished and all populations
expressed the individual genes with a similar frequency (Fig.
1B). At the same time, all of the cytotoxic effector genes
(Prf1, Fasl, Gzma, and Gzmb) reached the peak of their
expression. Due to a lack of suitably optimized antibodies to
evaluate native perforin, we could quantitate protein levels
of only granzyme B at the single-cell level. Intracellular
staining for granzyme B demonstrated that mRNAs were
actively translated into large amounts of protein, as the
percentages of cells expressing granzyme B mRNA and pro-
tein were approximately equal (Fig. 1C). To simplify the
analysis of gene coexpression (and to provide an estimate of
the cytotoxic potential of the cells in each population), we
determined the number of cells that coexpressed cytotoxic
genes (Prf1, Gzmb, Gzma, and Fasl) and calculated the
cumulative proportion of cells expressing all four of these
mRNAs, �3, �2, or �1 (Fig. 1D). On day 8 postinfection,
approximately 90% of all cells expressed at least one of
these cytotoxic effector genes, while 40 to 50% coexpressed
three or more.

We have shown previously that during maturation from the
effector to the memory phase, OT-1 and HY TCR Tg cells
markedly reduced effector gene expression and coexpression
(32). These findings were confirmed in all three endogenous
populations analyzed here. At day 60, the frequency of the
expression of the majority of effector genes was much lower
than that at the peak of cell expansion, and the cells showed a

low level of gene coexpression (less than 30% of cells ex-
pressed two or more genes together) (Fig. 1B and D). While a
similar proportion of NP396- and GP33-specific cells expressed
at least one of the cytotoxic effector genes, a slightly higher
proportion of GP276-specific did so (Fig. 1D). Importantly,
however, the percentage of cells expressing each individual
gene was not significantly different in memory populations of
different immunodominance. Overall, these results show that
dominant and subdominant populations do not show major
differences in effector gene expression patterns. Besides, cyto-
kine expression after T-cell activation previously failed to dis-
criminate between differences of cell populations recognizing
different LCMV peptides (29).

We next determined if differences in immunodominance
have an impact on the expression of cell surface markers
associated with CD8 differentiation. At the peak of the
response, LCMV-specific T cells had fully downregulated
CCR7, CD62L, and IL-7R and upregulated CD27 and
KLRG1 (Fig. 1E). While dominant NP396- and GP33-specific
cells scored similarly for all of these parameters, GP276-spe-
cific cells showed a slight decrease in CD27 expression and an
increase in KLRG1 expression. This difference could be due to
the delayed kinetics of GP276-specific cells we already de-
tected in our gene expression analysis and that disappeared in
the memory phase. As described previously, LCMV-specific
memory cells reexpressed CCR7, CD62L, and IL-7R, further
upregulated CD27, and downregulated KLRG1 (Fig. 1F) (41,
50). Since, in contrast to what is found in human T cells, CCR7
and CD62L are not necessarily coexpressed in mouse memory
cells (42), we evaluated the coexpression of these two markers.
Indeed, we found a significant fraction of CCR7� CD62Llow/�

cells in all LCMV-specific memory populations, i.e., these cells
could not be classified as either T-cell central memory (TCM)
or T-cell effector memory (TEM) (Fig. 1F). Besides, both
CCR7� and KLRG1� cells expressed IL-7R, in contrast to
what is found in human cells. Therefore, the overall phenotype
of LCMV-specific mouse memory cells contrasts to that found
in human populations, where TCM CCR7� cells express
CD62L and the loss of CCR7 and KLRG1 correlates with
IL-7R downregulation. It also must be noted that human TCM

and TEM populations have very different functional properties
and gene expression profiles even when studied using our sin-
gle-cell strategy (25, 28), while the gene expression of the
NP396-specific cell cohort, which had more CCR7� and
CD62Llow cells, was similar to that found in other cell types
(Fig. 1B). These results indicate that TCM and TEM human
memory populations have no direct equivalent in the mouse.

The comparison of memory cell phenotypes showed varia-
tions both between individual mice studied in the same exper-
iment and between experiments (see below). However, the
NP396-specific cohort frequently had higher frequencies of
CCR7� CD62L� cells and a slight reduction of CD27high rep-
resentation than cells with other LCMV specificities, but other
phenotypes were equivalent. These results confirm that cells
recognizing the NP396 epitope have a slower kinetics of
CD62L upregulation (35). However, the reduced expression of
CD62L in the dominant NP396-specific population contradicts
the notion that more abundant clones preferentially upregu-
late CD62L (30).
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Long-term gene expression at the memory stage is not due
to viral latency. As CD8� T-cell differentiation during LCMV
Armstrong infection resulted in the generation of a substantial
fraction of memory cells expressing mRNAs for at least one
cytotoxic effector component, we considered the possibility
that viral clearance is incomplete, and that although it is un-
detectable by plaque-forming assays, virus may be persisting at
low levels, as has been found to occur with more pathogenic
LCMV strains such as LCMV WE (7). CD8-deficient or CD8-
depleted mice are unable to contain the virus (11), so we
reasoned that if virus was latent, it would reappear if T cells
were depleted. We thus rendered a group of mice that had
resolved an acute LCMV infection immunodeficient by deplet-
ing them of T cells and tested them for the reemergence of
virus. Plaque-forming assays carried out on lymphoid tissues
and various peripheral organs (brain, kidney, testis, liver, and
lung) of T-cell-depleted animals were all negative (data not
shown), strongly arguing against the possibility that chronic
low-level stimulation by LCMV was provoking long-term gene
expression.

We have noted previously that the quantity of mRNA ex-
pression for each memory CD8 T cell was significantly below
the levels found at the peak of the response (32). Moreover,
memory cells did not express measurable levels of granzyme B
protein (Fig. 2A) and did not secrete IFN-� without restimu-
lation (data not shown), confirming previous findings (51).
Nevertheless, in contrast to naïve cells, they were capable of
performing peptide-pulsed target elimination after 12 h, which
was remarkably similar to target elimination by effector cells
(Fig. 2B). This analysis confirmed our previous findings that
mRNA profiles constitute sensitive means of predicting the
cytotoxic potential of CD8 cells (32).

Monoclonal TCR Tg cells and the endogenous cells of the
same specificity have identical differentiation patterns. As we
did not observe any striking differences in the expression pro-
files of several cytokine and cytotoxic effector molecules be-
tween the dominant and subdominant populations, we asked if
a more robust immunodominance hierarchy established upon
the adoptive transfer of high numbers of TCR Tg cells, in
which the latter would dominate the endogenous repertoire,
would reveal the differences in effector and memory cell

generation. We initially compared the functional properties of
LCMV-specific memory cells generated after the adoptive
transfer of large (5 � 105) and small (5 � 103) numbers of P14
cells. Given an estimated engraftment level of 10% (5), the
low-dose adoptive transfer likely would have resulted in a
precursor frequency approaching that of the endogenous
GP33-specific precursors, while the high dose likely exceeded it
by more than 100-fold (5, 24, 30). Importantly, memory P14
cells originating from large and small cell numbers had similar
IFN-� and TNF-� secretion potential upon in vitro restimula-
tion (Fig. 3A), arguing against the previously suggested idea
that a shifted CD8� T-cell maturation at the beginning of the
response has a long-term effect on memory T-cell func-
tions (2).

We next compared the early phases of the response. The

FIG. 1. Differentiation patterns of CD8 cells recognizing dominant and subdominant LCMV epitopes show marked similarity. B6 mice were
infected with 2 � 105 PFU of LCMV Armstrong. (A) The number of NP396-tet�, GP33-tet�, and GP276-tet� cells in the spleen was analyzed at
different time points after infection. The results shown are the means of values from three to six mice tested in two separate experiments, and the
error bars indicate one standard error above the means (SEM). (B) Individual cells of each epitope specificity were recovered at the indicated times
(days) postinfection from six individual mice in two independent experiments and were tested directly ex vivo for the coexpression of the indicated
effector mRNAs. Forty-five to 90 cells of each specificity were evaluated per time point. Only wells that were positive for CD3ε (indicating that
they contained a cell) were included in the analysis. Since we did not find significant variation between mice and between experiments, the data
were pooled. Each horizontal row represents the pattern of gene expression in the same single cell; representative results from 40 cells are shown.
Gene expression is indicated in black, and negative results are shown in white. Cells are ordered by the number of cytotoxic effector genes they
expressed. The percentages at the bottom of each column represent the frequency at which the indicated gene was expressed in the whole
population analyzed. (C) On day 8 postinfection, NP396-, GP33-, and GP276-reactive cells were identified by tetramer staining, and granzyme B
expression in each population was analyzed directly ex vivo by intracellular staining. The filled histograms represent granzyme B staining, and the
white histograms show the staining of the same populations with an isotype-matched control antibody. (D) The number of mRNAs for cytotoxic
effector genes (Prf1, Gzma, Gzmb, and FasL) coexpressed by each cell was calculated (0 to 4). The results are expressed cumulatively as the
percentage of cells specific for a given epitope that coexpressed mRNAs for �1, �2, �3, or 4 of these genes at the indicated times postinfection
(a cell expressing two genes would be included in both the �2 and �1 categories. Statistically significant differences (as determined using Fisher’s
exact test) are marked (�, P � 0.05). (E) Phenotypes of LCMV- specific T cells at day 8 after infection. Graphs are from one individual mouse
out of six mice studied in two independent experiments showing overlapping results. (F) Phenotypes of LCMV-specific memory cells. Results are
from one mouse out of seven studied in three independent experiments. We found considerable variation in the expression of CD62L.

FIG. 2. Long-term gene expression in memory cells is not due to
viral latency. B6 mice were infected with 2 � 105 PFU of LCMV
Armstrong. (A) Intracellular granzyme B expression was analyzed on
days 8 and 60 postinfection for the indicated epitope-restricted popu-
lations (black line). The isotype control staining of the same cell
populations also is shown (dashed line). The profile shown is repre-
sentative of results obtained from three individual mice. (B) An in vivo
cytotoxicity assay also was performed on days 8 and 60 postinfection,
and specific cytotoxicity is depicted; the results shown are the mean of
data from three individual mice, and the error bars indicate standard
errors of the means.
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differentiation of CD8� T cells initially present at either high
or low precursor numbers was analyzed previously in the dif-
ferent animals. However, adoptive transfers of �105 TCR Tg
cells accelerate the speed of viral clearance (10, 56). It there-
fore was possible that the observed differences in T-cell differ-
entiation kinetics (2, 26, 45) were attributable to the differ-
ences in the antigen clearance between mice left uninjected or
injected with high frequencies of naïve cells. We therefore
restricted our investigation to the comparison of P14 cells
transferred at high precursor frequencies to endogenous cells
present in the same mice to allow both populations to have an
equal exposure to the infectious environment. The gene ex-
pression analysis of naïve P14 cells showed that rare cells
expressed either Tgfb1 or Prf1 but none of the other effector
genes (data not shown). At days 4 to 8 of the response, TCR Tg
cells outnumbered endogenous GP33-specific cells by up to
30-fold (Fig. 3B), but the cytokine and cytotoxic effector genes

transcribed in both populations were similarly represented.
The resemblance between those populations also was apparent
on the analysis of cytotoxic gene coexpression (Fig. 3D). Most
importantly, memory TCR Tg and endogenous GP33-specific
cells had the same expression frequencies for all screened
genes (Fig. 3C and E). In summary, once putative differences
in antigen loads are avoided, both effector and memory GP33-
specific cells developing in the same mice from precursors
initially present at widely disparate numbers had equivalent
expression profiles for all genes tested.

It also was reported that high-dose naïve TCR Tg cell trans-
fers induced the precocious upregulation of CD62L and IL-7R
compared to that of equivalent populations injected at a low
frequency (2). To determine if these differences also were due
to accelerated response kinetics due to the faster resolution of
the infectious stimuli, we compared the expression of these
markers in normal mice and in P14-transferred mice infected

FIG. 3. Differentiation patterns of adoptively transferred TCR Tg cells and endogenous cells recognizing the same epitope in the same mice.
(A) B6.Ly5.1 mice were injected with 5 � 105 or 5 � 103 P14 Tg cells (Ly5.2�) and infected with 2 � 105 PFU of LCMV Armstrong. At day 90
postinfection, splenocytes were removed and restimulated in vitro with the GP33 peptide, and the proportion of P14 cells producing IFN-� and
TNF-� was analyzed by intracellular cytokine staining. The dot plots show representative results from one animal in each group and are gated on
P14� cells. The percentage of P14� cells secreting each cytokine is indicated within the dot plots. (B to E) B6.Ly5.1 mice were injected with 5 �
105 P14 Tg cells (Ly5.2�) and infected with 2 � 105 PFU of LCMV Armstrong. (B) The proportion of P14 and endogenous GP33-specific cells
in the spleen was analyzed over time in the same mice. The mean results from three individual mice are shown, and the error bars indicate standard
errors of the means. The inset shows a magnification of the endogenous cell graph. (C) Gene expression in individually sorted P14 and endogenous
GP33-specific cells was analyzed; the results are presented as described for Fig. 1B. (D) The pattern of the coexpression of cytotoxic effector
mRNAs also was analyzed and is presented as described for Fig. 1D. (E) The percentage of cells on day 60 expressing each of the indicated genes
(cytotoxic effector genes as shown in Fig. 3B) was analyzed and is shown for 90 individually sorted P14 and 70 endogenous GP33-specific cells. The
cells were obtained from three individual mice.
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simultaneously with LCMV. One week after infection, the en-
dogenous populations in normal mice had fully downregulated
IL-7R and CD62L expression, while P14 Tg cells expressed
higher levels of CD62L and IL-7R (Fig. 4A). However, this
upregulation was not peculiar to populations present in high
frequencies. In P14-injected mice, all LCMV-specific popula-
tions (either Tg or endogenous) also upregulated these mark-
ers. The abundant P14 and the rare GP33-specific endogenous
populations of P14-injected mice expressed similar levels of
IL-7R. Endogenous NP396- and GP276-specific cells also up-
regulated IL-7R expression, although they did so at slightly
lower levels than those found in GP33-specific T cells. The
CD62L expression was upregulated to equivalent levels in both
Tg and endogenous cells of all peptide specificities. These
results indicate that the precocious upregulation of these
markers described after high-frequency adoptive transfers is
not a property of dominant clones. Rather, it appears to be the
consequence of accelerated response kinetics that are known
to occur in these circumstances, since it affects all LCMV-
specific populations present in the same mouse. In addition, we
also failed to confirm that Tg memory cells expressed a pre-
dominantly CD62Lhi phenotype (Fig. 4B). Rather, we found a
significant variation in different mice studied in the same ex-
periment and between experiments.

Finally, we evaluated the impact of high-dose P14 adoptive
transfers on endogenous response. As reported previously (5)
and shown in Fig. 1, the absolute number of endogenous
GP33-specific cells was reduced in P14-injected mice com-
pared to that found in normal mice infected simultaneously
(Fig. 4C). Surprisingly, P14 adoptive transfers did not substan-
tially affect the T-cell responses to other LCMV epitopes (Fig.
4C and D). At both the response peak and at the memory
phase, the number of NP396- and GP276-specific cells deter-
mined either by tetramer staining or their capacity to secrete
cytokines after in vitro stimulation (Fig. 4D) was similar in
P14-injected and normal mice. We conclude that the injection
of P14 cells accelerates response kinetics, as shown by the
modifications of IL-7R and CD62L in all cells responding to
LCMV in P14 injected mice. Otherwise, it does not affect the
properties of LCMV-specific cells or influence the endogenous
responses to other LCMV epitopes.

TCR downregulation at the early stages of the response
masks the detection of Ag-specific cells. A potential drawback
to the use of tetramer staining to identify epitope-specific T
cells for functional profiling is the TCR downregulation that
follows T-cell activation. We tested whether tetramer staining
is a reliable marker of Ag-specific cells during the immune
response. The Tg cells that can be identified by an allotype
marker showed a substantial loss of surface tetramer labeling
during the expansion period. This effect was not immediate,
sparing the first 2 days of the response, when TCR-Tg cells
were activated but most had not divided (not shown). At day 3
of the LCMV response, we saw considerable mouse-to-mouse
variability, with 30 to 70% of P14 cells being undetectable by
tetramer labeling. By day 5, less mouse-to-mouse variation was
observed, yet 25% of P14 cells did not label with tetramers
(Fig. 5A). The comparison of tetneg and highly tetramer-posi-
tive (tethi) populations showed that the former did not express
CD3, confirming that the loss of tetramer binding was caused
by TCR downregulation (Fig. 5B, upper row). We further

tested if TCR downregulation could bias the evaluation of the
properties of antigen-specific cells during the response. In-
deed, tetneg and tethi cells on day 3 of infection differed in
CD69, CD27, CD25, and Ly6C expression levels (Fig. 5B,
lower row), while IL-7R, CD122, and CD44 were expressed
similarly (data not shown). To investigate if such downregula-
tion was just an artifact induced by high-frequency transfers or
could occur when antigen-specific naïve cells were present at a
physiologic number, we studied Tg cells injected at low fre-
quency. As expected, the kinetics of the Tg cell response was
much slower. At day 4, TCR downmodulation was evident but
Tg cells were very rare. We found a considerable TCR down-
modulation even at day 5 of the response, when more than half
of the Tg pool was failing to bind tetramers (Fig. 5C).

We aimed to investigate if TCR downregulation also could
bias the evaluation of the normal endogenous response. Since
tetneg endogenous cells cannot be visualized, we compared tethi

and tetramer-intermediate (tetint) cells in normal mice (Fig.
5D). Importantly, tetint cells had substantially higher granzyme
B expression than tethi cells (Fig. 5D), directly linking the
activation status measured by TCR downmodulation to a dif-
ferent effector profile. Thus, although we lack the means to test
for the endogenous cells that are completely tetneg (since these
cells do not express TCR they also should not score as IFN-�
producers after in vitro stimulation), our results strongly sug-
gest that our current methods of detection fail to identify a
substantial fraction of antigen-specific cells during the expan-
sion phase, and moreover, they introduce bias in the evaluation
of the properties of antigen-specific cells from normal mice.

Cytokine and cytotoxic effector gene expression are not syn-
chronized. As T cells do not reach lymphoid organs synchro-
nously and are exposed to highly varied microenvironmental
stimuli, cells at various differentiation stages are found at any
given time. Having established that TCR Tg cells allow us to
fully assess the early dynamics of the CD8 differentiation, we
further subdivided their progression steps by a combination of
CFSE and CD69 labeling. CFSE labeling allowed us to focus
on the majority of P14 cells (�95%) that have divided four or
more times by day 3 (Fig. 6A). The CFSE-low P14 population
was further subdivided into more recently and less recently
activated subsets on the basis of the differential expression of
an early and transient T-cell activation marker, CD69 (34); less
advanced CD69� and more advanced CD69� cells were
sorted. When gene expression patterns were analyzed, cytokine
gene expression was found to differ from the expression of
cytotoxic effector genes, and in general, cytotoxic effector
genes were transcribed longer than cytokine genes (Fig. 6B).
Cytokine expression consistently peaked early (on day 3 or
before), there was no difference between CD69� and CD69�

cells (Fig. 6B), and a highly significant drop of expression
occurred during the next day (Fig. 6C). On the other hand, the
transcription of cytotoxic effector genes varied: Gzmb and Prf1
peaked early, while Gzma and Fasl were present only in a
minority of CD69� cells, and a significant rise in their expres-
sion occurred as they progressed to the CD69� stage (for
Gzma, P 
 0.0001; for Fasl, P 
 0.002). Notably, the genera-
tion of Il2 mRNA was found rarely in ex vivo P14 cells (less
than 5% of total cells; data not shown) at any of the stages
tested (days 3, 4, 8, 15, 30, and 60). The latter finding casts
doubt on the physiological significance of reports that TCR Tg
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FIG. 4. Impact of high-dose naïve Tg transfers on the endogenous response. B6.Ly5.1 mice left untreated or were injected with 5 � 105 P14
Tg cells (Ly5.2�) and were infected simultaneously with 2 � 105 PFU of LCMV Armstrong and studied at days 8 and 60 after infection. (A) CD62L
and IL-7R expression in cells of with different peptide specificities at day 8 after infection. Histograms compare CD62L and IL-7R expression levels
of CD8 cells with the indicated peptide specificities in 1 P14 injected (inj.) (open graphs) and 1 noninjected B6 mouse (gray) of 12 mice studied
in two independent experiments. On the far left, P14 cells (open histogram) are compared to GP33-specific noninjected mice. (B) Variation of
CD62L expression in GP33-specific cells 2 months after infection. Graphs compare Tg cells (upper) to endogenous cells present in the same mouse
(middle). The lower graphs show endogenous cells in the mice that were not injected with P14 cells. (C) Absolute numbers of cells of different
peptide specificity at day 8 (left) and 2 months (right) after infection. Results show individual mice from one experiment out of two with equivalent
results. (D) IFN-� expression after in vitro stimulation with NP396 and GP276 peptides at day 8 (left) and 2 months (right) after infection.
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effector CD8 cells arising from high precursor frequencies are
more likely to secrete IL-2 upon in vitro stimulation (2). Il7r
downregulation (Fig. 6C) followed the kinetics previously de-
scribed on a protein level (19). Furthermore, we observed that
Ccr7 expression rapidly dropped between days 3 and 4, most
likely participating in the release of more mature Ccr7� cells
from T-cell-restricted areas of secondary lymphoid tissues. As
we have demonstrated that gene expression in LCMV-specific
cells evolves very fast over short periods of time and at defined
differentiation milestones (such as the CD69�3CD69� tran-
sition), the analysis of other markers of cell progression/fath
(17) is expected to provide us with an even richer picture of
gene differentiation dynamics and cell heterogeneity.

DISCUSSION

TCR Tg cells commonly are used in the assessment of the
properties of T cells. They are easy to manipulate and to
visualize. Their defined TCR expression allows one to monitor
the same clone throughout the immune response (39, 40). This
characteristic is fundamental to determine if the changes in
population properties throughout the response are due to the
selection of particular clones of antigen-specific cells. How-
ever, it was suggested recently that when TCR Tg cells are
present at high precursor frequencies, their intraclonal com-
petition for antigen leads to their suboptimal activation and
abnormal differentiation (2, 26, 45). Several reasons prompted
us to reexamine this claim in greater detail. First, several stud-
ies showed that a short-term contact with an antigen is suffi-
cient to trigger a complete CD8 differentiation program (18,
46), and that extensive CD8 expansion is not a prerequisite for
efficient memory generation (3). Second, in other studies ef-
fector CD8 numbers seem to hit a similar ceiling regardless of
initial variability in precursor numbers or specificity (22), ar-
guing for stimulation-tailored rather than T-cell-intrinsic dif-
ferentiation pathways. Finally, other data suggested alternative
explanations to the different behavior of high- and low-density
TCR Tg cell transfers. The adoptive transfers of �105 TCR Tg
cells have been shown to alter the kinetics of pathogen clear-
ance and the timing of peak CD8� T-cell expansion (10, 35,
56). Since high- and low-dose transferred populations were
studied systematically in different recipients where antigen
loads and antigen clearance are known to be different, alter-
ations in the course of infection could account for the different
population properties in mice that received different numbers
of TCR Tg cells.

FIG. 5. MHC-I tetramer labeling during the expansion phase.
B6.Ly5.1 mice left untreated or receiving Ly5.2� P14 Tg cells were
infected with 2 � 105 PFU of LCMV Armstrong and studied at dif-
ferent time points after infection. (A and B) Mice were injected with
5 � 105 Tg cells. (A) Results compare GP33 tetramer (tet) binding in
Ly5.2� P14 naïve cells and in P14 cells at on day 3 (top) and day 5
(bottom) after infection. Staining is from individual mice representa-
tive of four experiments with two to three mice per time point. (B) On
day three after infection, P14 cells were arbitrarily subdivided into
tetneg (gray) and tethi (white) subsets, and each population was tested
for the expression of the indicated cell surface molecules. Gates for
tetneg cells were established in noninfected B6 mice and for tethi in

naïve Tg cells. (C) B6 mice were injected with either 5 � 105 or 104

Ly5.2� P14 Tg cells and studied at days 4 and 5 after infection. Results
are for GP33 tetramer binding in P14 Tg cells. Naïve mice (upper left),
cells from mice injected with 5 � 105 naïve cells (upper right), and cells
from three individual mice injected with 104 naïve cells (lower graphs)
are shown. At day 4, very few Tg cells were detected in the latter mice.
(D) Granzyme B expression in cells expressing different tet binding
intensity in normal mice. CD8 cells were recovered 5 days after infec-
tion, labeled with GP276 tetramers, and subdivided into tetint and tethi

populations. Results show the gates used for such subdivision and
intracellular granzyme B staining for tetint (gray) and tethi (white)
populations; the dashed lines represent the staining of the same cells
with an isotype control antibody.
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Competition for antigen and clonal competition also occur
in normal immune responses and contribute to the immu-
nodominance hierarchy observed. A partial or complete com-
pensation for a loss of a particular epitope by other specificities
has been known to occur (1, 21, 24, 36, 44). In some circum-
stances it has been suggested that the cytokine-mediated active
suppression of dominant clones over subdominant ones (im-

munodomination) occurs (48, 52), but the existence of such
active immunosuppression still is disputed (24). Besides, al-
though immunodominance has been studied widely in many
infectious models, it still is unclear whether dominant and
subdominant populations diverge in their functional capacities
and protection capabilities (6, 20, 48). To address these issues,
in addition to conventional tests, we performed a powerful
single-cell multigene expression study of several antigen-spe-
cific populations during the course of LCMV infection in mice.
When studied in the same infectious context in the same mice
at the same time point of the response, the T-cell populations
of different specificities and present at different frequencies
showed remarkably similar features. Thus, except at the earli-
est stages of infection (days 4 to 5) when GP276-specific cells
expressed less granzyme A mRNA than NP396- and GP33-
specific cells, dominant and subdominant cell effector and
memory had remarkably similar cytokine (Ifng, Tnf, and Tgfb1)
and cytotoxic gene expression (Prf1, Gzmb, Gzma, and Fasl)
and coexpression profiles. Previous comparisons of cytokine
profiles after in vitro stimulation also failed to reveal major
differences (49), and we found that cell surface markers’ ex-
pression most frequently was overlapping. As an exception, the
subdominant GP276-specific population showed some delay in
CD27 upregulation and KLRG1 downregulation at day 8, but
these differences disappeared in the memory phase, when
these cells’ phenotypes were equivalent to those found in
GP33-specific cells. Conversely, the NP396-specific memory
cohort usually had a larger fraction of CCR7� CD62Llow cells
than cell populations with other peptide specificities, but oth-
erwise they expressed the same KLRG1 and IL-7R labeling,
and it was reported previously that this cell type eventually also
upregulates the expression of both of these ligands. Overall,
these data directly argue against the hypothesis that dominant
and subdominant populations follow disparate differentiation
pathways. These findings were confirmed even when major
differences in clonal abundance were introduced artificially by
the adoptive transfer of Tg cells.

The differentiation profiles of monoclonal T-cell popula-
tions recently have fallen under scrutiny, since several reports
suggested that the artificial introduction of TCR Tg CD8 cells
in numbers exceeding those of endogenous cells of similar
epitope specificity (5, 24, 30) resulted in the inadequate differ-
entiation of TCR Tg cells (2, 26, 45). These reports, however,
focused mainly on CD62L and IL-7R expression analysis, and
functional assays were performed only at a single time point of
the infection. These studies also did not take into consider-
ation possible differences in response kinetics that could result
from the introduction of a large cohort of naïve Tg cells.
Indeed, abundant and rare clone behavior always was studied
in different mice, where Tg cells could be submitted to different
antigen loads and abundant and rare clone accumulation
peaked at different time points (2). Supporting the notion that
previously reported differences between high- and low-dose
transfers can be explained by a different response kinetics,
adoptive transfers of �105 precursors were shown to acceler-
ate the kinetics of pathogen clearance and CD8 expansion (10,
35, 56).

Contrary to those studies, we compared TCR Tg and en-
dogenous cells of the same epitope specificity from the same
animals, where both faced exactly the same antigen exposure

FIG. 6. Rapid progress of CD8� T-cell differentiation during early
infection can be monitored using a combination of TCR Tg cells,
CFSE division profiles, and CD69 expression. B6.Ly5.1 mice were
injected with 5 � 105 P14 Tg cells (Ly5.2�) and infected with 2 � 105

PFU of LCMV Armstrong. (A) At day 3 postinfection, splenocytes
were stained with CD69, and division profiles were analyzed by the
evaluation of CFSE expression. Cells that had divided four or more
times were sorted into two subpopulations (CD69� and CD69�) based
on the indicated gates. (B) Gene expression in individually sorted
CD69� and CD69� P14 cells was analyzed on day 3 postinfection; the
results are presented in the same format as that used for Fig. 1B.
(C) The progression of gene expression in individually sorted P14 cells
was analyzed as the linear maturation of cells occurred (i.e., in the
following sequence: day 3 CD69� cells [white]3 day 3 CD69� cells
[grey]3 day 4 [black]). Statistically significant differences between
progressive differentiation stages are marked (�� and ���, P � 0.01
and P � 0.001, respectively.
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and showed similar response kinetics. Moreover, when Tg cells
are present, the endogenous GP33-specific population expands
very little, which should prevent any TCR downregulation
early in the response. We found that under these conditions,
Tg and endogenous GP33-specific CD8 cells retrieved from
the same mice always were remarkably similar. They not only
had initiated IL-7R and CD62L upregulation precociously at
day 8 but also showed similar phenotypes and gene expression
profiles at the response peak. The analysis of CD8 T cells with
other specificities in these transferred mice also supported the
notion that high-dose transfers only accelerate response kinet-
ics. Indeed, we found that in P14-injected mice both NP396-
and GP276-specific populations also had initiated IL-7R and
CD62L upregulation at day 8 after infection. Surprisingly,
these cells appeared to be otherwise unaffected by the presence
of high frequencies of TCR Tg cells. Their frequency and their
capacity to produce IFN-� was similar in mice left untreated or
receiving P14 Tg cells. These results demonstrate that high-
frequency adoptive transfers do not inhibit overall endogenous
responses but only influence the expansion of T-cell popula-
tions with the same TCR specificity.

Our results also do not support the notion that high-fre-
quency transfers induce major modifications in the properties
of memory cells. We demonstrated that memory cells on day
90 that arose from 5 � 103 and 5 � 105 P14 cells did not differ
in functional capacities such as stimulation-induced cytokine
secretion. We did not find evidence for the predominant gen-
eration of CD62L� Tg memory cells in high-frequency trans-
fers. In our hands, the GP33-specific endogenous memory cells
frequently expressed more CD62L than the Tg memory cells.
Differences between the present and previously published re-
sults (2, 26) could be due to mouse-to-mouse variability, as we
found in our experiments, or to the fact that we always evalu-
ated endogenous and Tg cells present in the same mouse. Our
results suggest that studies showing a preferential expression of
CD62L in high-frequency cells were not exhaustive, and that
the conclusion that these cells only generate CD62L� TCM (a
major argument to suggest abnormal differentiation) is unre-
liable.

Overall, these data suggests that high-frequency adoptive
transfers just accelerate response kinetics, and that Tg cells
only compete with the endogenous cells that share the same
TCR specificity. It is likely that such competition is greatly
influenced by the relative avidity/cross-reactivity of the TCR
Tg cells with respect to the average avidity/cross-reactivity of
the endogenous antigen-specific cells. Different Tg CD8s pop-
ulations were classified according to these parameters in the
hierarchy OT1 � P14 � anti-HY (13), which appears to cor-
relate directly with their inhibitory effect on endogenous re-
sponses. Indeed, the transfer of the high-avidity/cross-reactive
OT-1 clone virtually abrogates endogenous responses, while
P14 transfers have a smaller effect (2). In contrast, in high-
frequency anti-HY Tg transfers to normal mice, the endoge-
nous cells partially outcompete the Tg population. Both Tg
and endogenous responses show reduced amplitude and be-
come similarly represented in the overall anti-HY response
(47).

TCR downregulation is a rapid and dose-dependent corol-
lary of T-cell activation in vitro (43) but is rather transitory,
lasting for about 24 h. TCR downregulation also was detected

in acute infections in vivo (8, 54), but due to the lack of other
markers to identify antigen-specific cells, these previous stud-
ies could not evaluate fully the extent of this phenomenon.
Here, we established that Tg cells identified by an allogeneic
marker, even when present at physiologic frequencies, down-
regulated TCR expression, and a major fraction fully lost TCR
cell surface expression and failed to bind tetramers. This be-
havior is likely a common feature of CD8 immune responses,
since we also found it in other infectious models and in other
TCR Tg cells (P14 or OT-1 cells immunized with Listeria-
expressing GP33 [LM-GP33] or LM-OVA, respectively; un-
published data).

Several aspects of this phenomenon must be emphasized. In
contrast to the transient loss of TCR after in vitro activation,
in vivo responding populations could remain TCR negative
throughout a long time period during the expansion phase;
activation status and tetramer binding were inversely corre-
lated, allowing for the possibility that more activated cells
could be rendered completely invisible by prominent TCR
downregulation.

To summarize, the detailed analysis of CD8 T cells respond-
ing to different LCMV epitopes in the same infectious envi-
ronment showed that relative clone abundance or TCR spec-
ificity did not alter substantially the properties of effector and
memory cells. From this perspective, the current notion that
high-frequency transfers of naïve Tg cells induce abnormal
T-cell differentiation must be toned down. We found that dif-
ferences in Tg behavior can be explained by a different re-
sponse kinetics, that abundant Tg and rare endogenous cells
with the same peptide specificity had overlapping properties,
and that Tg cells did not affect the amplitude or the quality of
the endogenous response to other LCMV peptides. It also was
demonstrated recently that high-frequency transfers did not
affect the quality of the memory responses (53). In contrast,
the use of TCR Tg cells that can be recognized by allotype
markers revealed that during acute infection, when high viral
loads are present, a substantial fraction of responding cells
downregulate their TCR and fail to bind MHC tetramers, and
that tetpos and tetneg cells have different properties. Therefore,
TCR-Tg mice may be fundamental for the evaluation of the
entirety of the early immune response.

Finally, the important and long-lasting loss of TCR expres-
sion we found to occur during the expansion phase has major
implications for our capacity to study early events in the vast
majority of acute infections in the mouse (when Tg cells are
not available) and, more importantly, in humans. Studies based
on the tetramer binding identification and/or magnetic bead
purification of antigen-specific cells likely are incomplete and
biased (14, 30), since they select subpopulations with peculiar
properties that do not represent the overall characteristics of
the responding peptide-specific cohort. Moreover, it is at
present unclear if any of the methods currently used to identify
responding cells will be able to do so and in which circum-
stances. The failure to bind tetramers is due to TCR down-
regulation. It therefore is possible that the vast majority of
tetneg cells also are undetected through cytokine expression
after in vitro stimulation with specific peptides, since these
responses depend on the cell surface expression of the peptide-
specific TCR. Moreover, we found that TCR downregulation
increased when higher doses of virus were injected, suggesting
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that the higher the viremia the more incomplete will be our
assessment of the acute response. This important pitfall must
be taken into consideration: we may fail to detect a major
cohort of responding cells when high virus loads are present.
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RRÉSUMÉÉSUMÉ  
 

 Les cytokines de la famille γc sont essentielles au développement, à la 

différenciation thymique et à la survie périphérique des lymphocytes T naïfs. 

Transmettant leurs signaux par des récepteurs qui ont en commun la chaîne γc, les 

interleukines -2, -7, -15 et -21 sont des facteurs solubles pléiotropes. De par leur 

redondance lors d’une réponse immunitaire, le rôle individuel des cytokines γc dans 

l’homéostasie des lymphocytes T CD8 et dans la réponse anti-virale n’a été que 

partiellement élucidé. De plus, l’état actuel des connaissances ne permet pas de savoir 

avec précision à quel moment de la différenciation et selon quels mécanismes ces 

cytokines interviennent.  

Afin d’évaluer le rôle des cytokines γc dans l’homéostasie des lymphocytes T 

CD8 naïfs, nous avons comparé des cellules monoclonales CD8 issues de souris TCR 

transgéniques P14 γc-compétentes ou γc-déficientes. Nous avons montré que les cellules 

T CD8 naïves γc
-/- ne s’accumulent pas dans les organes lymphoïdes secondaires et que 

les quelques cellules résiduelles se caractérisent par une petite taille, une diminution de 

l’expression du CMH de classe I et une augmentation de l’apoptose. Nous avons 

ensuite corrigé le défaut intrinsèque de survie des cellules T CD8 γc
-/-naïves, en 

surexprimant la molécule humaine Bcl-2, un facteur anti-apoptotique. Cette approche 

nous a permis de restaurer le nombre de lymphocytes T CD8 naïfs en périphérie, 

malgré l’absence de chaîne γc. Par contre, tout comme ce qui avait été démontré pour 

les cellules T CD4, l’expression de Bcl-2 ne permet pas de corriger le défaut de taille et 

de synthèse protéique des cellules γc-déficientes. Nous concluons donc que les 

cytokines γc génèrent des signaux Bcl-2-dépendants et Bcl-2-indépendants pour 

maintenir le phénotype et l’homéostasie des lymphocytes T CD8 naïfs. 

Afin de définir l’implication précise des cytokines γc au cours de la 

différenciation des cellules T CD8, nous avons évalué la réponse des cellules T CD8 

Bcl-2+ γc
+/+ ou γc

-/- après infection par le virus de la chorioméningite lymphocytaire. De 

façon tout à fait étonnante, nous avons démontré que de nombreuses étapes de la 

réponse anti-virale primaire se déroulent normalement en l’absence de chaîne γc. En 

effet, l’expansion clonale, les changements phénotypiques associés à une activation et 

l’acquisition de fonctions effectrices par les lymphocytes T CD8 γc-déficients sont 

préservés. Par contre, les signaux dépendants de la chaîne γc s’avèrent essentiels à la 

différenciation et la prolifération des effecteurs tardifs ainsi qu’à la génération et le 

maintien des lymphocytes T CD8 mémoires. Nous proposons donc que les cytokines 

γc-dépendantes ne sont pas indispensables à l’acquisition de fonctions cytotoxiques et à 

la réponse anti-virale, mais génèrent des signaux Bcl-2-indépendants essentiels à la 

survie et à la prolifération des cellules T CD8 mémoires. 


	Page de garde Français 2.pdf
	Page de garde Anglais 3.pdf
	Remerciements 2.pdf
	Résumé.pdf
	Summary.pdf
	Thesis Final.pdf
	Masse EJI 2007.pdf
	Article 2.pdf
	Figures Article 2.pdf
	Article 3.pdf
	Munitic JV 2009.pdf
	Résumé.pdf

