M. Kawai, S. Kinoshita, K. Ozono, and T. Michigami, Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of an a-klothodeficient model, Journal of the American Society of Nephrology: JASN, vol.27, issue.9, pp.2810-2824, 2016.

R. G. Erben, Update on FGF23 and Klotho signaling, Molecular and Cellular Endocrinology, vol.432, pp.56-65, 2016.
DOI : 10.1016/j.mce.2016.05.008

URL : https://doi.org/10.1016/j.mce.2016.05.008

M. S. Razzaque, Phosphate toxicity: new insights into an old problem, Clinical Science, vol.54, issue.3, 1979.
DOI : 10.1097/00005176-200002000-00025

URL : http://www.clinsci.org/content/ppclinsci/120/3/91.full.pdf

W. L. Lau, A. Pai, S. M. Moe, and C. M. Giachelli, Direct Effects of Phosphate on Vascular Cell Function, Advances in Chronic Kidney Disease, vol.18, issue.2, pp.105-112, 2011.
DOI : 10.1053/j.ackd.2010.12.002

URL : http://europepmc.org/articles/pmc3086393?pdf=render

A. Martin, S. Liu, V. David, H. Li, A. Karydis et al., expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling, The FASEB Journal, vol.11, issue.8, pp.2551-256210, 2011.
DOI : 10.1002/jbmr.65

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136343/pdf

M. Christov and H. Jüppner, Insights From Genetic Disorders of Phosphate Homeostasis, Seminars in Nephrology, vol.33, issue.2, pp.143-157, 2013.
DOI : 10.1016/j.semnephrol.2012.12.015

URL : http://europepmc.org/articles/pmc3676170?pdf=render

Z. Xiao, J. Huang, L. Cao, Y. Liang, X. Han et al., Osteocytespecific deletion of Fgfr1 suppresses FGF23, PLoS One, vol.9, issue.8, 2014.
DOI : 10.1371/journal.pone.0104154

URL : https://doi.org/10.1371/journal.pone.0104154

M. Wolf and K. E. White, Coupling fibroblast growth factor 23 production and cleavage, Current Opinion in Nephrology and Hypertension, vol.23, issue.4, pp.411-419, 2014.
DOI : 10.1097/01.mnh.0000447020.74593.6f

URL : http://europepmc.org/articles/pmc4322859?pdf=render

V. David, A. Martin, T. Isakova, C. Spaulding, L. Qi et al., Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production, Kidney International, vol.89, issue.1, 2015.
DOI : 10.1038/ki.2015.290

URL : http://europepmc.org/articles/pmc4854810?pdf=render

N. Ito, A. R. Wijenayaka, M. Prideaux, M. Kogawa, R. T. Ormsby et al., Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli, Molecular and Cellular Endocrinology, vol.399, 2015.
DOI : 10.1016/j.mce.2014.10.007

V. S. Tagliabracci, J. L. Engel, S. E. Wiley, J. Xiao, D. J. Gonzalez et al., Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis, Proceedings of the National Academy of Sciences, vol.108, issue.11, pp.5520-5525, 2014.
DOI : 10.1021/cr0782729

URL : http://www.pnas.org/content/111/15/5520.full.pdf

A. Martin, V. David, and L. D. Quarles, Regulation and function of the FGF23/klotho endocrine pathways):131e155. https, Physiological Reviews, vol.92, issue.1, 2011.

S. L. Ferrari, J. P. Bonjour, and R. Rizzoli, Fibroblast Growth Factor-23 Relationship to Dietary Phosphate and Renal Phosphate Handling in Healthy Young Men, The Journal of Clinical Endocrinology & Metabolism, vol.90, issue.3, 2005.
DOI : 10.1210/jc.2004-1039

URL : https://academic.oup.com/jcem/article-pdf/90/3/1519/10744977/jcem1519.pdf

S. A. Burnett, S. C. Gunawardene, F. R. Bringhurst, H. Jüppner, H. Lee et al., Regulation of C-Terminal and Intact FGF-23 by Dietary Phosphate in Men and Women, Journal of Bone and Mineral Research, vol.20, issue.8, pp.1187-1196, 2006.
DOI : 10.1042/cs0390505

URL : http://onlinelibrary.wiley.com/doi/10.1359/jbmr.060507/pdf

R. Scanni, M. Vonrotz, S. Jehle, H. N. Hulter, and R. Krapf, The Human Response to Acute Enteral and Parenteral Phosphate Loads, Journal of the American Society of Nephrology, vol.25, issue.12, pp.2730-2739, 2014.
DOI : 10.1681/ASN.2013101076

URL : http://jasn.asnjournals.org/content/25/12/2730.full.pdf

C. Bergwitz and H. Jüppner, Phosphate sensing Advances in Chronic Kidney Disease, pp.132-144, 2011.

N. Bon, G. Couasnay, A. Bourgine, S. Sourice, S. Beck-cormier et al., Phosphate (Pi)-regulated heterodimerization of the high-affinity sodium-dependent Pi transporters PiT1/Slc20a1 and PiT2/ Slc20a2 underlies extracellular Pi sensing independently of Pi uptake, The Journal of Biological Chemistry, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01677954

L. Beck, C. Leroy, S. Beck-cormier, A. Forand, C. Salaün et al., The Phosphate Transporter PiT1 (Slc20a1) Revealed As a New Essential Gene for Mouse Liver Development, PLoS ONE, vol.5, issue.2, p.9148, 2010.
DOI : 10.1371/journal.pone.0009148.s009

URL : https://doi.org/10.1371/journal.pone.0009148

Y. Lu, Y. Xie, S. Zhang, V. Dusevich, L. F. Bonewald et al., DMP1-targeted Cre Expression in Odontoblasts and Osteocytes, Journal of Dental Research, vol.86, issue.4, pp.320-325, 2007.
DOI : 10.1128/MCB.02120-05

W. C. Skarnes, B. Rosen, A. P. West, M. Koutsourakis, W. Bushell et al., A conditional knockout resource for the genome-wide study of mouse gene function, Nature, vol.138, issue.7351, pp.337-342, 2011.
DOI : 10.1016/0378-1119(94)90790-0

URL : http://europepmc.org/articles/pmc3572410?pdf=render

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

URL : https://academic.oup.com/nar/article-pdf/29/9/e45/9901003/2900e45.pdf

D. Giovannini, J. Touhami, P. Charnet, M. Sitbon, and J. Battini, Inorganic phosphate export by the retrovirus receptor XPR1 in metazoans):1866e1873. https, Cell Reports, vol.3, issue.6, 2013.
DOI : 10.1016/j.celrep.2013.05.035

URL : https://doi.org/10.1016/j.celrep.2013.05.035

Y. Nishida, Y. Taketani, H. Yamanaka-okumura, F. Imamura, A. Taniguchi et al., Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men, Kidney International, vol.70, issue.12, pp.2141-2147, 2006.
DOI : 10.1038/sj.ki.5002000

J. Lim, J. Burclaff, G. He, J. C. Mills, and F. Long, Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice, Bone Research, vol.28, p.16049, 2017.
DOI : 10.1038/88919

R. C. Smith, L. M. O-'bryan, E. G. Farrow, L. J. Summers, E. L. Clinkenbeard et al., Circulating ??Klotho influences phosphate handling by controlling FGF23 production, Journal of Clinical Investigation, vol.122, issue.12, pp.4710-4715, 2012.
DOI : 10.1172/JCI64986DS1

URL : http://www.jci.org/articles/view/64986/files/pdf

M. Eren, A. T. Place, P. M. Thomas, P. Flevaris, T. Miyata et al., PAI-1 is a critical regulator of FGF23 homeostasis):e1603259. https, PiT2 regulates neuronal outgrowththrough interaction withmicrotubule-associated protein 1B. Scientific Reports, pp.1-13, 1038.
DOI : 10.1126/sciadv.1603259

URL : https://doi.org/10.1126/sciadv.1603259

A. Forand, E. Koumakis, A. Rousseau, Y. Sassier, C. Journe et al., Disruption of the phosphate transporter Pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction, Cell Reports, vol.17, issue.7, 1905.
URL : https://hal.archives-ouvertes.fr/hal-01413091

T. Isakova, A. Barchi-chung, G. Enfield, K. Smith, G. Vargas et al., Effects of Dietary Phosphate Restriction and Phosphate Binders on FGF23 Levels in CKD, Clinical Journal of the American Society of Nephrology, vol.8, issue.6, 2013.
DOI : 10.2215/CJN.09250912

URL : http://cjasn.asnjournals.org/content/8/6/1009.full.pdf

G. A. Block, D. C. Wheeler, M. S. Persky, B. Kestenbaum, M. Ketteler et al., Effects of Phosphate Binders in Moderate CKD, Journal of the American Society of Nephrology, vol.23, issue.8, pp.1407-1415, 2012.
DOI : 10.1681/ASN.2012030223

URL : http://jasn.asnjournals.org/content/23/8/1407.full.pdf

V. David, C. Francis, and J. L. Babitt, Ironing out the cross talk between FGF23 and inflammation):F1eF8. https, AJP: Renal Physiology, vol.312, issue.1, 2017.
DOI : 10.1152/ajprenal.00359.2016

URL : http://europepmc.org/articles/pmc5283889